SUSY effects in $\Delta F = 2$ transitions

Diego Guadagnoli

Technical University Munich

Outline

- Introduction: impact of FCNC processes on generic SUSY corrections
 - ⇒ New-Physics 'flavour problem'
- Approach 1: use exp. info to constrain the general MSSM (general = with completely *free* soft terms)
- Approach 2: implement a natural "near-flavour-conservation" mechanism

within the MSSM \Rightarrow MFV-MSSM

SUSY: what we learn from FCNCs

FCNC effects are small (in principle ideal room for flavour-changing New Physics)

... but at the **quantitative** level no sensible discrepancy to date w.r.t. SM predictions

quark-FCNC processes (within or outside the $\Delta F = 2$ case) quantitatively confirm the SM pattern of FCNC

Naïve assessment of SUSY effects

Example: $\Delta F = 2$ case

SUSY corrections ~
$$\left(\frac{\delta}{M_{\text{SUSY}}}\right)^2 \times f(\text{SUSY mass ratios})$$

Since mixing measurements check (within errors) with the SM, one has roughly:

| SUSY corrections |
$$\leq \sqrt{\sigma_{\rm exp}^2 + \sigma_{\rm th}^2}$$

$$\sigma_{\rm th} > 10 \% \ (!)$$

Sensitivity to O(%) deviations from SM demands **steady improvement** on the non-pert. error

bounds on δ (or rather, on δM_{SUSY})

D.Guadagnoli, IFAE 07, April 11-13, 2007

Analysing FCNCs in SUSY

The SUSY (and NP in general) flavour problem

- a) assuming $M_{SUSY} \sim O(300 \text{ GeV})$ [if we want it to stabilize the EW scale]

⇒ $|\delta| < 10^{-2} \div 10^{-3}$ in absence of a symmetry principle (e.g. GIM-like mechanism) such small numbers are ugly

- **b**) assuming $|\delta| \sim O(1)$
 - $M_{\rm SUSY} \gg {\rm O(TeV)}$

back to "Separation-of-Scales" Problems

Theoretical approaches to SUSY flavour effects

Operation Constrain the 'general' MSSM (with completely free soft terms)

Take the δ bounds "as they come" (from measured FCNCs) and study allowed effects on still-to-measure quantities (e.g. $A_{CP}[B_s \rightarrow \psi \phi], ...$)

2 Maybe FCNC effects in SUSY are small, because already those in the SM are.

Naturalness of "near-flavour-conservation" in SUSY: MFV-MSSM

Constrain the general MSSM

Example: constraints from $b \rightarrow s$ FCNCs

Implication on the B_s – mixing phase

- ✓ In the SM one has $Arg M_{12}^{SM} \equiv Arg\{\langle \bar{B}_s | H_{eff, SM}^{\Delta B, S=2} | B_s \rangle\} = 2\lambda^2 \eta \simeq 0.04$
- What is the allowed range for $Arg M_{12}^{MSSM}$ with the previous limits on the δ 's?

D.Guadagnoli, IFAE 07, April 11-13, 2007

2

Minimal Flavour Violation in the MSSM

Minimal Flavour Violation (MFV)

MFV:

In the SM, FCNC are small, because of the GIM mechanism. Can extensions of the SM incorporate a *similar* mechanism of near-flavour-(and CP)-conservation?

Controversial issue on how to define MFV

- 'pragmatic' definition, Buras et al., '00: in terms of allowed effective operators + explicit occurrence of the CKM
- **EFT definition**, **D'Ambrosio** et al., '02: in terms of the SM Yukawa couplings

Def. \bullet does not produce a consistent low-energy limit for the MSSM, even at low tan β

Altmannshofer, Buras, D.G., '07

- In fact, in extensions of the SM one has (by def.)
 new, a priori unrelated sources of flavour (and CP) violation.
- MFV can then only be defined as a 'symmetry requirement' for such **new** sources
- The set of allowed operators and FV structures is an **outcome** of such requirement

MFV 'principle'

the SM Yukawa couplings are the *only* structures responsible for low-energy flavour and CP violation

every new source of flavour violation must be expressed as function of the SM Yukawa couplings

Example: soft mass term for 'left-handed' squarks

$$L_{\text{soft}} = -(m_Q^{IJ})^2 \left((\tilde{u}_L^I)^* \tilde{u}_L^J + (\tilde{d}_L^I)^* \tilde{d}_L^J \right) + \dots$$
a priori new source of flavour violation

FC effects are <u>naturally small</u>: intuitively $\delta = O(1) \times f(CKM)$

MFV expansion

$$[m_Q^2]^T = \overline{m}^2 \underline{a_1} \mathbf{1} + \underline{b_1} K^+ Y_u^2 K + \underline{b_2} Y_d^2 + O(Y_u^2 Y_d^2)$$

squark mass scale

and

expansion coefficients

free parameters after the MFV expansion

Strategy

- Tix them to scenarios
- ② Extract just the expansion coefficients (12 indep. parameters)

Dramatic increase in the predictivity and testability of the model

$\Delta F = 2$ example for mass scales chosen as

$$\overline{m} = 200 \,\text{GeV}$$

 $M_o = 500 \,\text{GeV}$

$$M_g = 500 \,\mathrm{GeV}$$

$$M_{1,2} = (100, 500) \,\text{GeV}$$

 $(U(1)\times SU(2))$ gaugino masses)

$$\mu = 1000 \, \mathrm{GeV}$$

 $(\mu$ -parameter)

Comments

- Distributions of values, due to the extraction of the expansion parameters, are quite <u>narrow</u>
- Corrections are <u>naturally small</u>
- Corrections are *dominantly* positive. Signature of the MFV-MSSM at low tan β

Due to MFV, the mixing phase is aligned with the SM value

Analysis of the separate contributions

Note

When μ is large, LR entries in the squark mass matrices become relevant, even for low tan β .

They manifest dominantly in gluino contributions, which become competitive with chargino's.

Example with (GeV):

$$m = 300$$

 $M_g = 300$
 $M_{1,2} = (100,500)$
 $\mu = 1000$

D.Guadagnoli, IFAE 07, April 11-13, 2007

Test of 'constrained' MFV (CMFV) within the MSSM

The case of Q_1 -dominated MFV (so-called CMFV) can be tested by looking at the ratio

$$R_{CMFV} \equiv \frac{\text{contrib. to operators other than } Q_1}{\text{contrib. to } Q_1}$$

One can 'define' CMFV to hold when, *e.g.*

 $| R_{CMFV} | < 0.05$

D.Guadagnoli, IFAE 07, April 11-13, 2007

Conclusions

- In the general MSSM, SUSY effects are typically constrained to be **small** (exceptions: $(B_s \rightarrow \psi \phi)$, ...) after imposing existing exp. input
- In the MFV-MSSM, SUSY effects are **naturally small**, due to a 'built-in' GIM-like mechanism.

In either case, to resolve such effects, one needs a better control, O(few %), of the effective operator matrix elements