

1

Highlights from K[±] measurements @KLOE

Sabino Meola *

on behalf of the KLOE collaboration

*Università degli studi di Napoli "Federico II" – INFN Napoli

2

- DAΦNE & KLOE
- Vus with kaons
- Tagging @ KLOE
- $K^+ \rightarrow \mu^+ \nu(\gamma)$
- Semileptonic decays
- Charged kaon lifetime
- Conclusions

DA Φ **NE performance up to Dec 2005**

Sabino Meola K[±] m easurem ents @ KLOE

The KLOE detector

Lead/scintillating fiber 4880 PMTs 98% coverage of solid angle

 $\sigma_E E \cong 5.7\% \ / E G e$

Sabino Meola

 $\sigma_t \cong 54 \ ps \ / E \ (G \ eV) \oplus 50 \ ps$

(relative tim e between clusters)

 K^{\pm} m easurem ents @ KLOE

 $\sigma_{vv} \sim 2 \ cm \ (\pi^o \ from \ K_{_L} \rightarrow \pi^+\pi^-\pi^0)$

Superconducting

4 m diameter × 3.3 m length 90% helium, 10% isobutane 12582/52140 sense/total wires All-stereo geometry

 $\sigma_p \not p \cong 0.4 \%$ (tracks with $\theta > 45^\circ$)

 $\sigma_x^{hit} \cong 150 \ \mu m \ (xy), 2 \ m \ m \ (z)$

 $\sigma_x^{vertex} \sim 1 m m$

IFAE07-Napoli-11-13Aprile2007

5

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

We check the unitarity of the CKM matrix required by the Standard Model. The lack of unitarity is a hint of new physics

The most precise test comes from the 1st row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 = 1 - \Delta$

V_{ud} from super-allowed nuclear β decays V_{us} from kaon decays V_{ub} from B meson decays $|V_{ub}| \sim O(10^{-3})$

V_{us} from kaons decays

Kaon pair production

The ϕ decays at rest producing a kaon pair: $K_L K_s$ or $K^+ K^-$

The detection of a K guarantees the presence of the charge conjugated K with known momentum \Rightarrow Tag mechanism

Normalization to the number of tags allows a precise measurement of <u>absolute BRs</u>

 $\Phi \qquad K^{\pm}$ $\sigma(e^{+}e^{-} \rightarrow \phi) \approx 3 \mu b \qquad P_{LAB} = 127 MeV/c$ $BR(\phi \rightarrow K^{+}K^{-}) \approx 49\% \qquad \lambda(K^{+}) = 95 cm$

Tagging @ KLOE

K[±] events tagged using two body decays (about 85%): K[±] $\rightarrow \mu^{\pm} \nu$, $\pi^{\pm} \pi^{0} \approx 1.5 \times 10^{6} \text{ K}^{+}\text{K}^{-} \text{ ev/pb}^{-1}$

Sabino Meola

 K^{\pm} m easurem ents @ KLOE

IFAE07 - Napoli-11-13 Aprile 2007

8

9

Measurement of the absolute branching ratio

$K^+ \rightarrow \mu^+ \nu(\gamma)$

Published on Phys.Lett.B 632:76-80,2006

Overview $K^+ \rightarrow \mu^+ \nu(\gamma)$

Normalization sample N_{TAG} given by

- $K^- \rightarrow \mu^- \overline{\nu}$ (Data sample 175 pb⁻¹)
- Signal events obtained from the p* distribution
 (p*: momentum of secondary track in kaon c.m.,

pion mass assumed)

- Background subtraction
- Efficiency related to DC reconstruction only

(tracking plus vertexing), evaluated directly on data

Journ Kriok

11

Signal $K^+ \rightarrow \mu^+ \nu(\gamma)$

- Signal given by K⁺ decays in the FV (40 cm < ρ < 150 cm) of the Drift Chamber, using ${\sim}60~pb^{\text{-1}}$
- Background is mainly due to events

with a π^0 in the final state: $K^+ \rightarrow \pi^+ \pi^0$ $K^+ \rightarrow \pi^0 \sigma^+ \gamma$

$$K^{+} \rightarrow \pi^{+} \pi^{0}$$
$$K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$$
$$K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu}$$

$$BR = \frac{N_{K \mu \nu(\gamma)}}{N_{TAG}} \cdot \frac{1}{\epsilon_{DC}}$$

IFAE07-Napoli-11-13 Aprile2007

Sabino Meola K[±] m easurem ents @ KLOE

PLB 632(2006) 76 **Result**

- Fit of the momentum distribution of the charged secondary, p*
- 8 x 10⁵ events
- Total accuracy 0.27%

BR($K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} (\gamma)$) = 0.6366 ± 0.009 ± 0.015

Measurement of the K[±] semileptonic decays absolute branching ratios $K^{\pm} \rightarrow \pi^{0} e^{\pm} v_{e}$ & $K^{\pm} \rightarrow \pi^{0} \mu^{\pm} v_{\mu}$

Sabino Meola K[±] measurements @KLOE IFAE07-Napoli-11-13Aprile2007 13

- 4 independent normalization samples $(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}, K^{\pm} \rightarrow \pi^{\pm} \pi^{0})$ help us to keep under control systematic effects
 - due to the tag selection (Data sample 410 pb⁻¹)
- Kinematical cuts to reject non semileptonic decays
- Fit of the charged secondary square mass spectrum m²_{lept}
- Efficiency evaluated from MC and corrected for Data/MC ratio

K[±]₁₃ signal selection

- Two tracks vertex in the FV: 40 cm < ρ < 150 cm
 Track of charged secondary extrapolated to EMC
- Two body decays cut: $p^*(m_{\pi}) < 195 \text{ MeV/c}$
- π^0 reconstruction:
 - 2 neutral clusters in EMC with TOF matching the kaon decay vertex
- Mass of charged secondary from TOF measurement

$$\boldsymbol{t}_{\pi^{0}}^{decay} = \frac{(\boldsymbol{t}_{1} - \boldsymbol{L}_{1}/\boldsymbol{c}) + (\boldsymbol{t}_{2} - \boldsymbol{L}_{2}/\boldsymbol{c})}{2}$$

$$m_{lept}^{2} = p_{lept}^{2} \cdot \left[\frac{c^{2}}{L_{lept}^{2}} (t_{lept} - t_{\pi^{0}}^{decay})^{2} - 1 \right]$$

K[±]₁₃ background (II)

The kinematical cuts reject \approx 96% of the background events

Sabino Meola

K[±] m easurem ents @ KLOE

K[±] semileptonic decays

- Fit m_{lept}^2 spectrum with linear combination of Ke3 , Kµ3 shapes, and bck contributions.² Average of the four data samples.
- Fractional accuracy:

1.8% for $K_{_{e3}}$; 2.4% for $K_{_{\mu3}}$

Systematic error studies to be completed

 $BR(K_{e3}^{\pm}) = 5.047(19)_{stat}(39)_{corr-stat}(81)_{syst}\%$ $BR(K_{\mu3}^{\pm}) = 3.310(16)_{stat}(45)_{corr-stat}(65)_{syst}\%$ $\rho(K_{e3},K_{\mu3}) = 0.42$

Systematic dominated by uncertainty on tracking efficiency correction

Measurement of

the charged kaon lifetime

Sabino Meola K[±] m easurements @ KLOE IFAE07 - Napoli-11-13 Aprile 2007 18

Given the tag, look for the decay vertex of the second kaon

• Method #1: fit t^{*} distribution from decay length Measure the charged K decay length taking into account the energy loss: $\tau^* = \sum_i \Delta L_i / \beta_i \gamma_i c$

Method #2: Directly measure decay time (in progress)
 Use all the charged K decays with a π⁰ in the final state
 to reconstruct decay time from π⁰ clusters time

Two methods allow us cross check of systematics

K[±] lifetime: method #1

- $K^{\pm} \rightarrow \mu^{\pm} \nu$ tag
- K decay vertex in the fiducial volume (using DC only)
- Signal K track extrapolated backwards to the IP
- dE/dx taken into account \Rightarrow 2mm step

$$T^* = \sum_i \Delta T_i = \sum_i \frac{\sqrt{1-\beta^2}}{C\beta} \Delta L_i$$

Efficiency evaluated directly on data

Proper time fit

The proper time distribution, corrected with the efficiency, is fitted with a convolution of an exponential function and a resolution function.

Fit between 16 and 30 ns

K[±] lifetime: method #2

- $K^{\pm} \rightarrow \mu^{\pm} \nu$ tag
- $K^{\pm} \rightarrow \pi^0 X$ decay(looking for neutral clusters in the EC)
- K[±] neutral decay vertex(π^0) in the fiducial volume

V_{us} from KLOE results

V_{us} from KLOE results

	K _L e3	Κ _L μ 3	K _s e3	<i>K</i> ± e3	<i>Κ</i> ±μ3	Slopes KLOE final
BR	0.4008(15)	0.2699(15)	7.046(91)×10 ⁻⁴	0.05047(92)	0.03310(80)	$\lambda''_{+} = 0.0230(18)$ $\lambda''_{-} = 0.0014(8)$
τ	50.84(23) ns		89.58(6) ps	12.367(78) ns		$\lambda_0 = 0.0156(26)$
						KLOE prelim.

K[±] m easurem ents @ KLOE

IFAE07 - Napoli-11-13 Aprile 2007 25

K[±] at KLOE - summary

Absolute **BR**($K^+ \rightarrow \mu^+ \nu(\gamma)$) with **0.27%** accuracy **Phys.Lett.B** 632:76-80,2006

Independent determination of V_{us} at 1% level

 $K^{\pm} \rightarrow \pi^{0} I^{\pm} v_{I}$ absolute BR and **lifetime**: **preliminary** results

Together with the results on neutral kaons gives a significant contribution to the determination of V_{us}x f⁺(0) 0.2% level

BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$) in progress

Using 2 fb⁻¹ collected KLOE will measure:

 $K^{\pm} \rightarrow \pi^0 I^{\pm} v_{|}$ form factors, $BR(K^{\pm} \rightarrow \pi^0 \pi^0 I^{\pm} v_{|})$

BR(K \rightarrow ev)/BR(K \rightarrow $\mu\nu$) to test e- μ universality

About 6 x 10⁴ Ke2 events produced with 2.5fb⁻¹

Spare slides

Sabino Meola K[±] m easurements @ KLOE IFAE07-Napoli-11-13 Aprile 2007 28

Double **A**nnular ring **•** for Nice Experiments E Ca e_____ OE

Sabino Meola K[±] m easurem ents @ KLOE

electron-positron collider $\sqrt{s} = m_{\phi} = 1.019 \text{ GeV}$ $\sigma(\phi) \approx 3 \,\mu b$ 2 rings to minimize beam-beam interactions 12.5 mrad crossing angle 2 interaction regions (KLOE - DEAR/FINUDA)

Sabino Meola

K[±] m easurem ents @ KLOE

IFAE07-Napoli-11-13Aprile2007

30

The DA¢NE e⁺e collider

•Collisions at c.m. energy around the ϕ mass:

√s ~ 1019.4 MeV

•Angle between the beams at crossing: $\alpha_{crs} \sim 12.5 \text{ mrad}$

•Residual laboratory momentum of φ:

$p_{\phi} \sim 13 \text{ MeV/c}$

•Cross section for ϕ production @ peak:

Grand total (2001/5): $\int L = 2.5 \, \text{fb}^{-1}$. $L_{\text{peak}} = 1.3 \times 10^{32} \text{ cm}^{-1}$ **Results** presented in this talk from 2001/2 data: ∫*L* = 450 pb⁻¹.

Sabino M eo la

K[±] m easurem ents @ KLOE

K LOng Experiment

Spherical *beam pipe*

10 cm \emptyset , 0.5 mm thick in Be-Al alloy to minimize regeneration, scattering and γ conversion

Large volume <u>drift chamber</u> 4 cm \emptyset , L=3.4 m, carbon-fiber frame, ⁷^m low density gas (90% He – 10% C₄H₁₀), 12582 all stereo squared cells, tungsten and aluminium wires (52140)

 $\sim 4\pi \ \underline{calorimeter}$, 4880 cells 15X₀ thick, 0.5 mm lead 1mm \emptyset scintillating fibers

Superconducting coil B = 0.52 T

Remind: $\lambda_{L} = 3.5m$

KLOE - Drift Chamber

$$\sigma_{r_{\phi}} = 150 \, \mu m$$

$$\sigma_{z} = 2 \, mm$$

$$\sigma_{p} / p \sim 4 \times 10^{-3}$$

$$\sigma_{vertex} \sim 3 \, mm$$

$$\sigma(m_{\pi\pi}) \sim 1 \, MeV$$

KLOE - EM Calorimeter

Sabino Meola K[±] m easurements @ KLOE IFAE07 -N apoli-11-13 Aprile 2007

The KLOE experiment

Tracking in the DC

drift chamber resolution $\sigma_{r_{\phi}} \approx 150 \ \mu m$

 $K_s \rightarrow \pi^+ \pi^-$ events

Measuring photons

Tag mechanism (I)

K[±] events tagged using two body decays (about 85%):

$$K^{\pm} \rightarrow \mu^{\pm} \, \nu$$
 , $\pi^{\pm} \, \pi^{0} \approx$ 1.5 x 10° $K^{+}K^{-} \, ev/pb^{-}$

Two-body decays identified as peaks in the momentum spectrum of secondary tracks in the kaon rest frame $P^*(m_{\pi})$

 $\epsilon_{TAG} \simeq 36\% \Rightarrow \simeq 3.4 \times 10^5 \,\mu\nu \, tags/pb^{-1} \\ \simeq 1.1 \times 10^5 \,\pi \,\pi^0 \, tags/pb^{-1}$

Tag mechanism (II)

To minimize the impact of the trigger efficiency on the signal side we restrict our normalization sample N_{TAG} to 2-body decays which provide themselves the Emc trigger of the event:

self-triggering tags

Emc trigger: 2 trigger sectors over threshold ~50 MeV

Tag bias

Measuring the BRs we must take into account a correction due to the bias on the signal sample induced by the tag selection <u>Tag bias</u>

The correction C_{TB} is evaluated from MC and is given by:

$C_{TB} = BR_{MC}$ (with tag) / BR_{MC} (without tag)

 $K^+ \rightarrow \mu^+ \nu(\gamma)$

- Signal given by K⁺ decay in the DC FV (40 cm $< \rho <$ 150 cm) Using $\sim\!60~\text{pb}^{\text{-1}}$
- Background given by events with π^0 in the final state:

$$K^{+} \rightarrow \pi^{+} \pi^{0} \qquad K^{+} \rightarrow \pi^{0} e^{+} v_{e}$$

$$K^{+} \rightarrow \pi^{0} \mu^{+} v_{\mu}$$

$$BR = \frac{N_{K\mu\nu(\gamma)}}{N_{TAG}} \cdot \frac{1}{\epsilon_{DC}} \cdot \frac{1}{C_{TB}}$$
Tag bias estimated from MC:

$$C_{TB} = 1.0164 + /- 0.0002$$

$$MC includes
radiative
process
MC includes
P* [MeV]$$

160

180

200

240

260

280

300

220

- Efficiency has been evaluated with an uncorrelated sample selected using only calorimeter information (Data sample of ~115 pb⁻¹)
- Double Kµv events have a typical signature in the EMC i.e. 2 isolated clusters with energy in the range $80 < E_{CLU} < 320 \text{ MeV}$
- Acceptance for radiative photons

$BR = 0.6366 \pm 0.0009_{stat.} \pm 0.0015_{syst.}$

Summary table of systematic and statistical uncertainties					
Source of syst. uncert.	Value	Source of stat. uncert.	Value		
$\delta_{Low\ Energy\ Cut}$	$5 imes 10^{-4}$	First estimate	$6 imes 10^{-4}$		
δ_{High} Energy radiative γ	$7 imes 10^{-4}$	Data efficiency	4×10^{-4}		
$\delta_{High\ Energy\ Cut}$	2×10^{-4}	MC efficiency	4×10^{-4}		
$\delta_{Fiducial \ Volume}$	5×10^{-4}	True MC efficiency	$3 imes 10^{-4}$		
$\delta_{Background}$	3×10^{-4}	Tag bias	$1 imes 10^{-4}$		
$\delta_{p^* \ range}$	3×10^{-4}	Total stat. uncert.	$9 imes 10^{-4}$		
δ_{Tag}	1×10^{-4}				
$\delta_{MC\ Lifetime}$	$< 10^{-6}$	Total number of	events		
$\delta_{Nuclear\ interactions}$	$<4\times 10^{-4}$	865283			
δ_{FILFO}	$< 3 \times 10^{-4}$	005205			
$\delta_{T3 \ filter}$	$O(10^{-6})$				
$\delta_{Trigger}$	9×10^{-4}	Total accuracy: 0.27%			
Total syst. uncert.	$15 imes 10^{-4}$				

Sabino Meola K[±] m easurem ents @ KLOE

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$

- Normalization N_{TAG} given by 175 pb⁻¹ from 2002's data selftriggering $K^- \rightarrow \mu^- \overline{\nu}$
- Counting events in the distribution of secondary track momentum in the kaon rest frame p*
- Fit together signal and backgrounds Km2 and 3-bodies
- Efficiency related to DC reconstruction only (tracking plus vertexing), evaluated on data

K[±]₁₃ background (I)

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ with a π^{0} undergoing a Dalitz decay, or with a wrong cluster associated to π^{\pm} , give a m_{I}^{2} under the Ke3 peak

 \Rightarrow cut requiring

 $|E_{miss} - P_{miss}| < 90 \text{ MeV}$

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ with early $\pi^{\pm} \rightarrow \mu^{\pm}\nu$, give m₁² under the Kµ3 peak \Rightarrow rejected using the missing momentum of the secondary track in the pion rest frame (P*_{sec} < 90 MeV)

KI3 preliminary results

• Averages accounting for correlations:

BR(Ke3)	5.047 ± 0.046
BR(Kμ3)	3.310 ± 0.040

- χ^2 /dof for the 4 measurements:
 - *Ke3*: $\chi^2/dof = 3.20/3 \rightarrow P(\chi^2) \simeq 36\%$ *K*µ3: $\chi^2/dof = 5.32/3 \rightarrow P(\chi^2) \simeq 15\%$

 The error accounts for the data and Monte Carlo statistics used in the fit, the MC statistics for the efficiency evaluation, the Data/MC efficiency corrections, and the systematics on the tag selection. It is dominated by the error on Data/MC efficiency correction.

 Still to be evaluated the systematics due to the signal selection efficiency, to the nuclear interaction, and to the momentum dependency of the tracking efficiency

Vertex reconstruction efficiency

The K track on the tagging side is extrapolated backwards to the signal hemisphere

Step along the extrapolated kaon looking for the best neutral vertex

Using the arrival time of the γ 's from the π^0 decay

$$\epsilon_{trk+vtx} = \frac{DC \ vtx \ (K \to X) \land \pi^{0} \ vtx \ (K \to X\pi^{0}) \in FV}{\pi^{0} \ vtx \ (K \to X\pi^{0}) \in FV}$$

 $\text{FV} \equiv 40 \text{ cm} \leq \rho \leq 150 \text{ cm}$

Systematics estimate

Source of systematic uncertainties	Systematic uncertainties (ps)
Fit range	± 60
Time binning	± 20
Efficiency correction	± 10
Beam Pipe thickness	± 10
DC wall thickness	± 15

Systematic uncertainties of the order of 65 ps

