$\bar{B} \rightarrow X_{s} \gamma$ at NNLO in the SM

Andrea Ferroglia

Universität Zürich

IFAE '07 - Naples

Outline

(1) Introduction: GENERALITIES OF THE $b \rightarrow s \gamma$ PROCESS
(2) $\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)$ AT NNLO
(3) Calculation of the NNLO photon energy spectrum - The contribution of $\mathcal{O}_{7}-\mathcal{O}_{7}$

Inclusive $\bar{B}^{0} \rightarrow X_{s} \gamma$ Decay

Well approximated by the partonic process

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma(b \rightarrow s \gamma)+\Delta^{\text {non pert. }}
$$

FCNC process at the parton level

The $b \rightarrow s \gamma$ Process

In the SM in is loop suppressed, mediated by "Penguin" diagrams

In principle, particularly sensitive to new physics beyond the Standard Model

Effective Theory

Suitable framework for the resummation of large $\alpha_{s}\left(m_{b}\right) \ln \left(m_{b} / M\right) \longrightarrow$ effective low-energy theory with 5 quarks

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{\mathrm{QED} \otimes \mathrm{QCD}}(\mathrm{u}, \mathrm{~d}, \mathrm{c}, \mathrm{~s}, \mathrm{~b}) \\
& +\sum_{i=1}^{8} \frac{4 G_{F}}{\sqrt{2}} V_{\mathrm{ts}}^{*} V_{\mathrm{tb}} C_{i}\left(\mu, M_{\text {heavy }}\right) \mathcal{O}_{i}(\mu)
\end{aligned}
$$

- The Wilson coefficients C_{i} describe the short distance physics
- The matrix elements of the effective operators \mathcal{O}_{i} describe the long distance dynamics
- In the case of B decays, the factorization scale $\mu \ll M_{W}, m_{t}$

Calculational Steps

(1) Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at the renormalization scale $\mu_{0} \sim m_{t}, M_{W}$ by requiring equality of the SM and effective theory Green's functions at the leading order in (external momenta) $/\left(m_{t}, M_{W}\right)$

랑
Mixing: Calculating the operator mixing under renormalization, deriving the effective theory RG equations and evolving $C_{i}\left(\mu_{0}\right)$ from μ_{0} down to $\mu_{b} \sim m_{b}$

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\gamma_{j i} C_{j}(\mu)
$$

(3) Matrix elements: Evaluating the $b \rightarrow X_{s}^{\text {parton }} \gamma$ amplitudes at $\mu_{b} \sim m_{b}$

$$
\langle s \gamma| \mathcal{O}_{i}\left(\mu_{b}\right)|b\rangle
$$

Calculational Steps

(1) Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at the renormalization scale $\mu_{0} \sim m_{t}, M_{W}$ by requiring equality of the SM and effective theory Green's functions at the leading order in (external momenta) $/\left(m_{t}, M_{W}\right)$
(2) Mixing: Calculating the operator mixing under renormalization, deriving the effective theory RG equations and evolving $C_{i}\left(\mu_{0}\right)$ from μ_{0} down to $\mu_{b} \sim m_{b}$

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\gamma_{j i} C_{j}(\mu)
$$

(3) Matrix elements: Evaluating the $b \rightarrow X_{s}^{\text {parton }} \gamma$ amplitudes at
$\mu_{b} \sim m_{b}$
$\langle s \gamma| \mathcal{O}_{i}\left(\mu_{b}\right)|b\rangle$

Calculational Steps

(1) Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at the renormalization scale $\mu_{0} \sim m_{t}, M_{W}$ by requiring equality of the SM and effective theory Green's functions at the leading order in (external momenta) $/\left(m_{t}, M_{W}\right)$
(2) Mixing: Calculating the operator mixing under renormalization, deriving the effective theory RG equations and evolving $C_{i}\left(\mu_{0}\right)$ from μ_{0} down to $\mu_{b} \sim m_{b}$

$$
\mu \frac{d}{d \mu} C_{i}(\mu)=\gamma_{j i} C_{j}(\mu)
$$

(3) Matrix elements: Evaluating the $b \rightarrow X_{s}^{\text {parton }} \gamma$ amplitudes at $\mu_{b} \sim m_{b}$

$$
\langle s \gamma| \mathcal{O}_{i}\left(\mu_{b}\right)|b\rangle
$$

$\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{\mathrm{s}} \gamma\right)$: Experimental Status

Experimiental value $\left(E_{\gamma}>1.6 \mathrm{GEV}\right)$
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4}$

Heavy Flavor Averaging Group ('06)
(1) first error combined statistical and systematic
(2) second error theory input on the shape function/extrapolation
(3) third error $b \rightarrow d \gamma$ contamination

$\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)$: Experimental Status

Experimiental value $\left(E_{\gamma}>1.6 \mathrm{GeV}\right)$
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4}$

Heavy Flavor Averaging Group ('06)
(1) first error combined statistical and systematic
(2) second error theory input on the shape function/extrapolation
(3) third error $b \rightarrow d \gamma$ contamination

Combined experimental error \longrightarrow same size as the expected NNLO QCD corrections to $\Gamma\left(b \rightarrow X_{s} \gamma\right)$, larger than the non-perturbative corrections

$\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)$: General Structure

the partonic decay $b \rightarrow s \gamma$ is usually normalized to the semileptonic decay rate in order to get rid of uncertainties from CKM and m_{b}^{5}

$$
\begin{array}{r}
\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)_{\mathrm{SM}}^{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{c} e \bar{\nu}\right)\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO}} \\
\left\{1+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(\alpha)+\mathcal{O}\left(\alpha_{s}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right)\right\}
\end{array}
$$

NLO QCD 25%
NLO EW 4\%

- NNLO QCD 7%

Perturbative

Estimate of $\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)$ at NNLO

The calculation of the NNLO QCD corrections is a big enterprise:

Bieri, Greub, Steinhauser ('03), Misiak, Steinhauser ('04), Gorbahn, Haisch ('04), Gorbahn, Haisch, Misiak ('05), Melnikov, Mitov ('05), Blokland, Czarnecki, Misiak, Slusarczyk, Tkachov ('05), Asatrian, Hovhannisyan, Poghosyan, Ewerth, Greub, Hurth ('06), Asatrian, Ewerth, AF, Gambino, Greub ('06), Czakon, Haisch, Misiak ('06)

Estimate of $\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)$ at NNLO

The calculation of the NNLO QCD corrections is a big enterprise:
Bieri, Greub, Steinhauser ('03), Misiak, Steinhauser ('04), Gorbahn, Haisch ('04), Gorbahn, Haisch, Misiak ('05), Melnikov, Mitov ('05), Blokland, Czarnecki, Misiak, Slusarczyk, Tkachov ('05), Asatrian, Hovhannisyan, Poghosyan, Ewerth, Greub, Hurth ('06), Asatrian, Ewerth, AF, Gambino, Greub ('06), Czakon, Haisch, Misiak ('06)

Misiak et al.

The result is lower than the NLO results and it is about 1σ lower than the experimental average
Uncertainties: non-perturbative (5\%), parametric (3 \%), higher order (3\%), m_{c} interpolation ambiguity (3 \%)

Scale Dependence

Clear reduction of scale dependence Charm mass dependence remains visible

Central values:

$$
\mu_{b}=2.5 \mathrm{GeV} \mu_{c}=1.5 \mathrm{GeV} \mu_{0}=m_{t}
$$

charm mass renormalization scale $\mu_{c}[\mathrm{GeV}]$

m_{c} Dependence

Misiak \& Steinhauser '06

m_{c} DEPENDENCE

BLM corrections generally dominant. Since small-large m_{c} interpolation works very well at NLO and for NNLO-BLM use it as a first step
Three ansatzt for matching NON-BLM NNLO terms at $m_{c}=0$ are employed and averaged: 3% uncertianty on the BR

Photon Energy Spectrum-I

In the $b \rightarrow s \gamma$ decay at LO the photon energy is fixed

$$
E_{\gamma}=\frac{m_{b}}{2} \quad \text { (in the b rest frame) }
$$

Photon Energy Spectrum-I

In the $b \rightarrow s \gamma$ decay at LO the photon energy is fixed

$$
E_{\gamma}=\frac{m_{b}}{2} \quad \text { (in the b rest frame) }
$$

but we observe an energy spectrum

Photon Energy Spectrum-I

In the $b \rightarrow s \gamma$ decay at LO the photon energy is fixed

$$
E_{\gamma}=\frac{m_{b}}{2} \quad \text { (in the b rest frame) }
$$

but we observe an energy spectrum

Experimental lower cut on the photon energy

Photon Energy Spectrum-II

The photon energy spectrum originates from

- perturbative gluon / quark pair bremsstrahlung $b \rightarrow s \gamma+n \times g+m \times q \bar{q}$
- non-perturbative motion of the b quark in the B meson (Fermi motion)

Photon Energy Spectrum-II

The photon energy spectrum originates from

- perturbative gluon / quark pair bremsstrahlung $b \rightarrow s \gamma+n \times g+m \times q \bar{q}$
- non-perturbative motion of the b quark in the B meson (Fermi motion)

The calculation of the perturbative contribution of the spectrum is a necessary element of the ongoing NNLO evaluation of the $\bar{B} \rightarrow X_{s} \gamma$ branching ratio

Photon Energy Spectrum-II

The photon energy spectrum originates from

- perturbative gluon / quark pair bremsstrahlung $b \rightarrow s \gamma+n \times g+m \times q \bar{q}$
- non-perturbative motion of the b quark in the B meson (Fermi motion)

The calculation of the perturbative contribution of the spectrum is a necessary element of the ongoing NNLO evaluation of the $\bar{B} \rightarrow X_{s} \gamma$ branching ratio

$$
\begin{gathered}
\mathcal{O}_{7} \mathcal{O}_{7} \Longrightarrow\left\{\begin{array}{l}
\text { Melnikov, Mitov'05 } \\
\text { Asatrian, Ewerth, Greub }+ \\
\text { AF, Gambino'06 }
\end{array}\right. \\
\mathcal{O}_{7} \mathcal{O}_{8} \Longrightarrow\left\{\begin{array}{l}
\text { Greub et al. } \\
\text { AF, Gambino, Mitov, Ossola in progress }
\end{array}\right.
\end{gathered}
$$

From Amplitudes to Cutkosky Rules

$$
\begin{gathered}
z=\frac{2 E_{\gamma}}{m_{b}} \\
\frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right)
\end{gathered}
$$

From Amplitudes to Cutkosky Rules

$$
z=\frac{2 E_{\gamma}}{m_{b}}
$$

$$
\frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right)
$$

From Amplitudes to Cutkosky Rules

$$
z=\frac{2 E_{\gamma}}{m_{b}}
$$

$$
\frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right)
$$

From Amplitudes to Cutkosky Rules

$$
\begin{aligned}
& z=\frac{2 E_{\gamma}}{m_{b}} \\
& \frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right)
\end{aligned}
$$

From Amplitudes to Cutkosky Rules

$$
\begin{aligned}
& z=\frac{2 E_{\gamma}}{m_{b}} \\
& \frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right) \\
& H^{N L O}(z) \rightarrow \int \text { phase space } \\
& \delta\left(z-\frac{2 E_{\gamma}}{m_{b}}\right)
\end{aligned}
$$

From Amplitudes to Cutkosky Rules

$$
z=\frac{2 E_{\gamma}}{m_{b}}
$$

$$
\frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right)
$$

$H^{N L O}(z) \rightarrow$ sum over the Im parts of two-loop self energy diagrams using the Cutkosky rules

REMEMBER: multiply the integrand by $\delta\left(z-2 E_{\gamma} / m_{b}\right)$

NNLO Cuts:

$$
\frac{d G_{77}(z)}{d z}=\delta(1-z)+\frac{\alpha_{s}\left(m_{b}\right)}{\pi} C_{F} H^{N L O}(z)+\left(\frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right)^{2} C_{F} H^{N N L O}(z)+O\left(\alpha_{s}^{3}\right)
$$

non trivial color structure

$$
H^{N N L O}(z)=C_{F} H^{(2, \mathrm{a})}(z)+C_{A} H^{(2, \mathrm{na})}(z)+T_{R} N_{L} H^{(2, \mathrm{NL})}(z)
$$

NNLO CuTs: CLOSED FERMION LOOP GRAPHS

$$
H^{N N L O}(z)=C_{F} H^{(2, \mathrm{a})}(z)+C_{A} H^{(2, \mathrm{na})}(z)+T_{R} N_{L} H^{(2, \mathrm{NL})}(z)
$$

Similar graphs with closed gluon/ghost loop contribute to $H^{(2, a)}$

NNLO Cuts: NON-ABELIAN GRAPHS

$$
H^{N N L O}(z)=C_{F} H^{(2, \mathrm{a})}(z)+C_{A} H^{(2, \mathrm{na})}(z)+T_{R} N_{L} H^{(2, \mathrm{NL})}(z)
$$

NNLO CUTS: ABELIAN GRAPHS-PART 1

$$
H^{N N L O}(z)=C_{F} H^{(2, \mathrm{a})}(z)+C_{A} H^{(2, \mathrm{na})}(z)+T_{R} N_{L} H^{(2, \mathrm{NL})}(z)
$$

NNLO Cuts:
 ABELIAN GRAPHS-PART 2

$$
H^{N N L O}(z)=C_{F} H^{(2, \mathrm{a})}(z)+C_{A} H^{(2, \mathrm{na})}(z)+T_{R} N_{L} H^{(2, \mathrm{NL})}(z)
$$

What to do With the Integrals?

We need to calculate the imaginary parts of three-loop self energy diagrams
For each given cut, after summing over the spin of the b-quark, we are left with with linear combinations of integrals of the form

$$
\int \mathfrak{D}^{D} k_{1} \mathfrak{D}^{D} k_{2} \mathfrak{D}^{D} k_{3} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{\mathcal{D}_{1}^{m_{1}} \cdots \mathcal{D}_{t}^{m_{t}}}
$$

$$
S \rightarrow \text { scalar products } k_{i} \cdot k_{j}
$$

$$
\text { or } k_{i} \cdot p
$$

$$
\mathcal{D} \rightarrow \quad \text { propagators }
$$

$$
\left[\sum k(+p)\right]^{2}\left(+m_{b}^{2}\right)
$$

Luckily, just a "small" number of these diagrams are independent: the MIs

Use the technical tools usually employed in the calculation of multi-loop Feynman diagrams to select a set of MI and to evaluate them \Longrightarrow IBPs + differential equation method

What to do With the Integrals?

We need to calculate the imaginary parts of three-loop self energy diagrams
For each given cut, after summing over the spin of the b-quark, we are left with with linear combinations of integrals of the form

$$
\int \mathfrak{D}^{D} k_{1} \mathfrak{D}^{D} k_{2} \mathfrak{D}^{D} k_{3} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{\mathcal{D}_{1}^{m_{1}} \cdots \mathcal{D}_{t}^{m_{t}}}
$$

$$
S \rightarrow \text { scalar products } k_{i} \cdot k_{j}
$$

$$
\text { or } k_{i} \cdot p
$$

$$
\mathcal{D} \rightarrow \quad \text { propagators }
$$

$$
\left[\sum k(+p)\right]^{2}\left(+m_{b}^{2}\right)
$$

Luckily, just a "small" number of these diagrams are independent: the MIs
Use the technical tools usually employed in the calculation of multi-loop Feynman diagrams to select a set of MI and to evaluate them \Longrightarrow IBPs + differential equation method

What to do With the Integrals?

We need to calculate the imaginary parts of three-loop self energy diagrams
For each given cut, after summing over the spin of the b-quark, we are left with with linear combinations of integrals of the form

$$
\int \mathfrak{D}^{D} k_{1} \mathfrak{D}^{D} k_{2} \mathfrak{D}^{D} k_{3} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{\mathcal{D}_{1}^{m_{1}} \cdots \mathcal{D}_{t}^{m_{t}}}
$$

$$
S \rightarrow \text { scalar products } k_{i} \cdot k_{j}
$$

$$
\text { or } k_{i} \cdot p
$$

$$
\mathcal{D} \rightarrow \quad \text { propagators }
$$

$$
\left[\sum k(+p)\right]^{2}\left(+m_{b}^{2}\right)
$$

Luckily, just a "small" number of these diagrams are independent: the MIs
Use the technical tools usually employed in the calculation of multi-loop Feynman diagrams to select a set of MI and to evaluate them
\Longrightarrow IBPs + differential equation method

Dirac Deltas as Propagators

The cut propagators (phase space Dirac delta s) can be written as difference of propagators

$$
\delta\left(q^{2}+m^{2}\right)=\frac{1}{2 \pi i}\left(\frac{1}{q^{2}+m^{2}-i \delta}-\frac{1}{q^{2}+m^{2}+i \delta}\right)
$$

All the integrals in which one of the cut propagators is simplified or raised to a negative power are zero, since the $\pm i \delta$ prescription becomes irrelevant: the reduction procedure is simplified

Anastasiou Melnikov ('02)
The same can be done for the Dirac delta enforcing the kinematic constrain

$$
\delta\left(E_{\gamma}+\frac{p_{b} \cdot p_{\gamma}}{m_{b}}\right)=2 m_{b} \delta\left(\left(p_{b}+p_{\gamma}\right)^{2}+(1+z) m_{b}^{2}\right)
$$

Dirac Deltas as Propagators

The cut propagators (phase space Dirac delta s) can be written as difference of propagators

$$
\delta\left(q^{2}+m^{2}\right)=\frac{1}{2 \pi i}\left(\frac{1}{q^{2}+m^{2}-i \delta}-\frac{1}{q^{2}+m^{2}+i \delta}\right)
$$

All the integrals in which one of the cut propagators is simplified or raised to a negative power are zero, since the $\pm i \delta$ prescription becomes irrelevant: the reduction procedure is simplified

```
Anastasiou Melnikov ('O2)
```

The same can be done for the Dirac delta enforcing the kinematic constrain

$$
\delta\left(E_{\gamma}+\frac{p_{b} \cdot p_{\gamma}}{m_{b}}\right)=2 m_{b} \delta\left(\left(p_{b}+p_{\gamma}\right)^{2}+(1+z) m_{b}^{2}\right)
$$

Dirac Deltas as Propagators

The cut propagators (phase space Dirac delta s) can be written as difference of propagators

$$
\delta\left(q^{2}+m^{2}\right)=\frac{1}{2 \pi i}\left(\frac{1}{q^{2}+m^{2}-i \delta}-\frac{1}{q^{2}+m^{2}+i \delta}\right)
$$

All the integrals in which one of the cut propagators is simplified or raised to a negative power are zero, since the $\pm i \delta$ prescription becomes irrelevant: the reduction procedure is simplified

The same can be done for the Dirac delta enforcing the kinematic constrain

$$
\delta\left(E_{\gamma}+\frac{p_{b} \cdot p_{\gamma}}{m_{b}}\right)=2 m_{b} \delta\left(\left(p_{b}+p_{\gamma}\right)^{2}+(1+z) m_{b}^{2}\right)
$$

Comparison of NLO and NNLO

The BLM corrections ($\sim \alpha_{s}^{2} \beta_{0}$) provide the dominant part of the NNLO corrections. They are obtained by naive non-abelianization:

$$
\alpha_{s}^{2} N_{L} \longrightarrow-\frac{3}{2} \alpha_{s}^{2} \beta_{0}
$$

red line NLO, dotted line NNLO-BLM, blue line full NNLO

Summary \& Conclusions

- A NNLO calculation of $\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)$ is needed in order to match the expected 5% experimental error at the end of B factories.
- With the NNLO results recently obtained it was possible to obtain a NNLO estimate for the branching ratio. The theory uncertainty is now at the level of the experimental one.
- The estimate suffers a 3% uncertainty due to the fact that we do not know the full m_{c} dependence at NNLO.
- The theory uncertainty is at the moment dominated by non-perturbative effects.
- The calculation of the spectrum is part of this NNLO program, the dominant $\mathcal{O}_{7}-\mathcal{O}_{7}$ contribution has been calculated independently by two groups, using multi-loop Feynman diagrams calculation techniques. The calculation of the contribution of other operators (ex $\left.\mathcal{O}_{7}-\mathcal{O}_{8}\right)$ is under way.

