Tecniche di rivelazione di raggi cosmici e *extended air showers*

Oscar Adriani

INFN Sezione di Firenze / Dipartimento di Fisica dell'Università di Firenze

- Region 1: 10⁹ eV 10¹² eV
 - Direct detection
- Region 2: 10¹² eV 10¹⁷ eV
 - Direct detection
 - EAS
 - Charged particles
 - Cherenkov
 - Fluorescence
- Region 3: 10¹⁷ eV 10²¹ eV
 - Giant array Hybrid techniques
- Examples used in the talk: INFN approved experiments

What are the CR?

Primary cosmic rays

 $\Phi \propto E^{-2.7}$

Deviations from this power law
knee (4.10¹⁵ eV)
ankle (5.10¹⁸ eV)

Very different techniques are necessary to cover these huge differences of:

- •Fluxes
- •Energies

The INFN approved experiments that will be used as 'examples' for this talk:

- WIZARD/Pamela
- · AMS2
- · CREAM
- · ARGO-YBJ
- AUGER

} Region 2
} Region 3

Region 1

Only some selected topics for each experiment will be shown for time limitation! I apologize for this.....

Region 1: $10^9 \text{ eV} - 10^{12} \text{ eV}$

- Best known region
- Direct measurements are possible
- Effect of solar modulation up to 1 GeV
- All elements are present (up to U)
- Absolute flux important for v physics

'Ideal' experiment

Measurement of energy/momentum
 Identification of type of particle

Pamela Magnetic spectrometer

Si Tracker + magnet

- Rigidity measurement
- •5 Nd-B-Fe magnet segments
- •0.48T at the centre
- •(13.2 x 16.2 cm²) x 44.5 cm high
- •6 planes of 300µm thick double sided Si detectors
- •<3µm resolution in bending view
- +/-10 MIP dynamic
 range (VA1 chips)
- $MDR \sim 1 TV/c$

AMS02 RICH

AMS02 TRD

• 20 layers,328 chambers,5248 tubes

Mechanical Accuracy <100µm

CERN beamtest with TRD prototype: proton rejection > 100 up to 250 GeV at electron efficiency 90% reached

Region 2: $10^{12} eV - 10^{17} eV$

- •Very interesting region (astrophysics!!!)
- •Knee around 10¹⁵ 10¹⁶ eV

Transition region between direct and indirect measurements

What is the knee?

First change in slope at 4*10¹⁵ eV total energy It should be related to some change in the propagation or acceleration of the CR

- Escape from the galaxy?
- Differents cut-off for different elements?
- Rigidity (η=p/Z) dependent cut off?

Which is the composition of the CR at the knee? Heavy or Light CR?

Direct measurements (Balloon) Energy and Z Direct measurements are possible up to $\cong 10^{15}$ eV Techniques similar to the 'Region 1' Bigger acceptance, simpler detectors observables energy range groups JACEE(1980-1995?) p, He, ..., Fe; TeV – PeV/p **RUNJOB(1995-)** p, He, ..., Fe; TeV – PeV/p ultra-heavy ($Z \cong 30$); 1-10 GeV/n **ATIC**(2001-2002) 10 GeV-100 TeV/p p, He, ..., Fe; **TRACER**(2003-2006) $B \rightarrow Fe$ 1-1000 GeV/n 11/04/2007 IFAE 2007 - Napoli Oscar Adriani

CREAM

•Complementary charge measurements:

- •Timing based Charge Detector
- Cherenkov Counter
- •Pixellated Silicon Charge Detector
- Scintillating Fiber hodoscopes

Complementary energy measurements:
TRD (velocity for Z>2)
Si-W Calorimeter (energy for all Z)

•Large acceptance •2.2 m²sr

Modular Design for Recovery

Direct measurement of Energy (1 TeV \rightarrow 1000 TeV) Measurement of Z (p \rightarrow Fe)

Charge Measurements: 2 layers of SCD

Park et al, Nucl. Instr. and Meth. A , 570, 286-291, 2007

Indirect measurements

If the energy of the CR is too big to be directly measured, indirect measurements are necessary.
The atmosphere is used as 'PASSIVE CALORIMETER'
Object of the measurements:

- 1. Charged particles: μ^{\pm} , e^{\pm} , p (Extended Air Shower detectors, EAS)
- 2. Cherenkov light
- 3. Fluorescence light

Charged component: EAS vs Atmospheric Depth

......

Charged component EAS Detection

Density Sampling

the particle density is observed in an array of detectors (sampling), and it is used to identify the shower core and the total number of particles in the shower \rightarrow reconstruction of the energy of the primary CR

Fast Timing

the arrival direction of the primary CR (shower's axis) is obtained by measuring the different arrival times of the particles on the different detectors of the array

The ARGO-YBJ experiment

High Altitude Cosmic Ray Laboratory @ YangBaJing

Site Altitude: 4,300 m a.s.l., ~ 600 g/cm² Site Coordinates: longitude 90° 31' 50" E, latitude 30° 06' 38" N

ARGO-YBJ detector Hall

Detector performance

High space-time granularity + Full coverage technique + High altitude

11

a unique way to study EAS

- Full space-time reconstruction
- Shower topology
- Structure of the shower front

<u>How can we measure X_{max}?</u>

- We can profit of the different components of the shower development!
 - Charged components
 - Cherenkov component
 - Fluorescence component
- Cherenkov light produced by the ultrarelativistic component of the shower (mainly e±)
- Fluorescence light produced by the de-excitation of the N2 molecules in the air after the excitation induced by the shower.

The shower can be 'followed' in it's 2d or 3d development

'Complete' EAS detection

Fluorescence detector to reconstruct the longitudinal development

Array of Cherenkov detectors for the lateral distribution measurement ($\alpha \cong 6^{0}$).

Array of charged particle detectors to sample the shower

Summary of Region 2

- 1. The knee is not fully understood
- 2. Direct measurements are energy limited
- 3. Indirect measurements are not very precise but can profit of the different measurements that can be done (charged particles, Cherenkov, Fluorescence) to identify the primary CR

$\frac{\text{Region 3: } 10^{17} \text{ eV} - 10^{21} \text{ eV}}{(\text{UHECR})}$

GZK cut off

AGASA reports 18% systematic uncertainty in energy determination. 10% of systematic is due to interaction model.

Accelerator calibration is necessary: LHCf GZK cutoff: 10^{20} eV $p\gamma(2.7K) \rightarrow \Delta \rightarrow N\pi$

> super GZK events?!?

Current experimental status

At least 5 'old' experiments observed events with E > 10²⁰ eV (Volcano Ranch, Haverah Park, Yakutsk, Fly's Eye/HiRes, Agasa)

Pierre Auger Observatory

>250 researchers from 17 Countries: Italian AUGER Groups: Catania, L'Aguila, Lecce, Milano, Napoli, Roma, Torino

- Full sky coverage •
 - South Argentina Funded North Not Yet Funded
- Hybrid detection technique •
 - 1600 particle detectors (Water Cherenkov) over 3000 km²
 - 4 Fluorescence Detectors
- It will Measure Direction, Energy, & Composition of CR
- Very high statistics!
 - ~ 60 events/yr E > 10²⁰eV
 - ~ 6000 events/yr E > 10¹⁹eV

Conclusions

- Huge energy range and huge differences in CR fluxes requires very different techniques
- The modern detectors are very refined and precise in all the different CR regions
- CR physics is extremely interesting and challenging!!!!

Astrophysics of galactic cosmic rays

Momentum resolution

Pamela Calorimeter

Si-W Calorimeter

- Measures energies of e^{\pm} . $\Delta E/E = 15\% / E^{1/2} + 5\%$
- Si-X / W / Si-Y structure.
- 22 Si / 21 W \Rightarrow 16X₀ / 0.9 λ_0
- Imaging: EM vs- hadronic discrimination, longitudinal and transverse shower profile
- Total number of channels
 4224

• Wide dynamic range $\cong 1$ - 1000 MIP

Calorimeter Requirements: • p/e⁺ selection eff. ~ 90%

- p rejection factor $\sim 10^5$
- e^- rejection factor > 10⁴

Electron-Proton Separation

AMSO2: Tracking system Dimensions~ 6.4 m² MDR ~ 2 TV/c 8 planes, 300k channels

Z discrimination is possible up to Fe

AMS-02: Electromagnetic Calorimeter

- Lead scintillating fiber sandwich (640 kg), 3D sampling by crossed layer
- $\sim 17 X_o$ radiation lenghts
- 9 superlayers piled up disposed along
 Y and X alternately
- Energy resolution (GeV) $\Delta E/E \simeq 10.1\%/\sqrt{E} \oplus 2.6\%$
- Distinction between hadrons and e/γ by shower shape
- Protons supressed by 10^{-4} up to 500 GeV. Together with TRD, rejection of hadrons/electrons $\geq 10^{6}$
- Independent γ detector, angular resolution $\sim 2^\circ, \gamma$ independently triggered

Hybrid Technique

3-D image of the shower:

- Longitudinal profile from FD
- Lateral profile from SD
- Stereo detection

Cross calibration:

Two complementary and independent methods for the EAS detection

Better data quality:

Systematics are reduced Geometrical and energetic resolutions are improved Better determination of the shower axis (simultaneous measurement of the event with different detectors) Small model dependance

Uniform sky coverage:

- SD: 100% duty cycle
- FD: 10% duty cycle

Atmospheric monitoring is crucial

Balloons/Satellites

Balloons:

Altitude ~ 40 km → ~ 5 g/cm² residual atmosphere Limited life (day/night effect) (6-40 hours) 'Local' observations Long duration (40 days) Big payloads (4 ton) Payload can be recovered Limited cost

Satellites:

Altitude > 300 km → ~ 0 g/cm² residual atmosphere 3 years data taking 'All sky' survey Many possible orbits Limited payload mass Limited power Complexity Cost!

MC Simulation of 10¹⁹eV Proton Shower

10km

Approach from the earth (EUSO from the sky???)

Auger technique

Air Fluorescence Detector

Ground Array

e[±]

u±

Auger performances (SD + FD) South observatory (end of 2007): 1600 SD 4 FD eyes

Duty Cycle: SD 100% FD 10-15% (dark and clean nights)

Efficiency: >90% above 10¹⁹ eV

Energy resolution (final goal):

10 ²⁰ eV	SD alone
	15%
10 ¹⁹ EeV	30%

Angular resolution :

>3.10¹⁸ eV

SD alone 1.4°-2.2° Hybrid system 10 % 20%

> Hybrid system 0.6°

Hybrid system ≈ 50 m

TCD charge measurement Maestro, CREAM collaboration meeting Jan.11-12, 2007

Depth of Shower Maximum (Xmax)

Expected values for the mean Xmax for proton and iron primaries according to EAS simulations.

FD: Advantages and Disadvantages

Advantages:

 Calorimetric measurement of shower energy

- Model independance
- Reduced importance of MC
- Large collecting area

•Entire shower profile is observed •Good precision in X_{max}

Disadvantages:

Dark nights
 Reduced live time

Strong dependance on weather conditions
Monitoring is necessary
Reduced live time