IFAE 2007, Napoli 12/04/07

# LVL1 trigger systems for LHC experiments

### F.Pastore, INFN Rome

Thanks to M. Dellavalle and A. Satta

### outline

LHC requirements
ATLAS and CMS LVL1 trigger strategy
Calorimeter trigger
Muon trigger

Some notes on LHCb

## **Global requirements**



- **p**-p collider  $\sqrt{s}$ = 14 TeV
- Bunch crossing rate 40 MHz (25 ns bunch spacing)
  - 80% of bunched will be filled, effective bunch crossing rate 32 MHz
  - Two luminosity scenarios:
    - Low Luminosity: L=2x10<sup>33</sup> first 2 years after start-up, 10 fb<sup>-1</sup>/year
    - High Luminosity: L=10<sup>34</sup> 100 fb<sup>-1</sup>/year
  - Average interactions per bunch crossing: 17.3 for HL and 3.5 for LL
    - 10<sup>9</sup> Hz collision rate
  - Total non-diffractive cross section ~ 70 mb Huge range of cross-sections and rates (HL)
    - B production 0.7 mb 7 10^6 Hz
    - W/Z production 200/60 nb 2/0.6 kHz
    - Top 0.8 nb 80 Hz
    - Higgs (150 GeV) 30 pb 3 Hz

# Level 1 trigger strategy

|         | Trigger chains     | Physics Measurments                                                   | Objects               |
|---------|--------------------|-----------------------------------------------------------------------|-----------------------|
|         | e25i, 2e15i        | Higgs (SM, MSSM), new gauge bosons,<br>extra dimensions, SUSY, W, top | electrons             |
|         | γ60i, 2γ20i        | Higgs (SM, MSSM), extra dimensions, SUSY                              | photons               |
| ~10 kHz | μ20i, 2μ10         | Higgs (SM, MSSM), new gauge bosons,<br>extra dimensions, SUSY, W, top | muons                 |
| ~200 Hz | j400, 3j165, 4j110 | SUSY, compositeness, resonances                                       | Jets                  |
| ]       | j70 + xE70         | SUSY, leptoquarks                                                     | Jet + missing $E_{T}$ |
| ~500 Hz | τ35 + xE45         | Extended Higgs models (e.g. MSSM), SUSY                               | Tau + missing $E_T$   |

Selection is based on <u>inclusive high pT physics</u>, with low multiplicity (single/di-objects)

- SM physics overlap with Tevatron and "known" NP (MSSM)
- Sensitive to unpredicted new physics
- Allow reasonable <u>safety factors</u> in the accepted rates to account for physics (crosssections, cavern and other bkg) and detector (performance) uncertainties
- Must ensure rates for monitoring and calibration/energy scale
  - Instrumental and physics bkg (cavern and others not completely known)
  - Detector efficiency from data
  - Selection algorithm performances



### L1 bandwidth optimization

- Allocation of bandwidth across different objects
  - Equally divided across e/γ, mu, tau-jets and comb-jets
  - SF=3: Low Luminosity 4 kHz/obj, 8 kHz High Luminosity
- Turn-on curves: effective requirements on pT defined as the value at which L1 trigger is 95% efficient
- Determination of thresholds for single/double objects
  - Optimal operating point must be chosen in the single vs double space at given rate. Based on efficiency optimization (e/mu/tau, no jets)







# Example of L1 trigger tables

| Trigger                            | Threshold<br>(GeV or GeV/c) | Rate<br>(kHz) | Cumulative Rate<br>(kHz) |
|------------------------------------|-----------------------------|---------------|--------------------------|
| inclusive isolated electron/photon | 29                          | 3.3           | 3.3                      |
| di-electron/di-photon              | 17                          | 1.3           | 4.3                      |
| inclusive isolated muon            | 14                          | 2.7           | 7.0                      |
| di-muon                            | 3                           | 0.9           | 7.9                      |
| single $\tau$ jet                  | 86                          | 2.2           | 10.1                     |
| di- $\tau$ -jet                    | 59                          | 1.0           | 10.9                     |
| 1-jet, 3-jet, 4-jet                | 177, 86, 70                 | 3.0           | 12.5                     |
| jet * $E_T^{m iss}$                | 88 * 46                     | 2.3           | 14.3                     |
| electron * $\tau$ -jet             | 19 * 45                     | 0.8           | 15.1                     |
| minimum bias (calibration)         |                             | 0.9           | 16.0                     |
| TOTAL LOW luminos                  | itv triaaer                 | table         | 16.0                     |

TOTAL Low luminosity trigger table

| Trigger                            | Threshold<br>(GeV or GeV/c) | Rate<br>(kHz) | Cumulative Rate<br>(kHz) |
|------------------------------------|-----------------------------|---------------|--------------------------|
| inclusive isolated electron/photon | 34                          | 6.5           | 6.5                      |
| di-electron/di-photon              | 19                          | 3.3           | 9.4                      |
| inclusive isolated muon            | 20                          | 6.2           | 15.6                     |
| di-muons                           | 5                           | 1.7           | 17.3                     |
| single $	au$ -jet trigger          | 101                         | 5.3           | 22.6                     |
| di- 7 - jets                       | 67                          | 3.6           | 25.0                     |
| 1-jet, 3-jets, 4-jets              | 250, 110, 95                | 3.0           | 26.7                     |
| jet * E <sup>m iss</sup>           | 113 * 70                    | 4.5           | 30.4                     |
| electron * $\tau$ -jet             | 25 * 52                     | 1.3           | 31.7                     |
| muon $* \tau$ -jet                 | 15 * 40                     | 0.8           | 32.5                     |
| minimum bias (calibration)         |                             | 1.0           | 33.5                     |
| TOTAL High luminosi                | ty trigger                  | table         | 33.5                     |

- Thresholds at which efficiency of the trigger il 95% of its maximum value
- 1 kHz allocated to minimum-bias events which will be used for calibration and monitoring
- Only muon trigger has low enough threshold for B physics (B->µµ)

#### CMS latest results dec. 2006

### LHC Level-1 systems requirements

- Rate reduction of 10<sup>4</sup>-10<sup>5</sup>
- Data identification with Bunch Crossing Number (absolute synchronization)
  - Logic decisions are taken by custom hardware systems (FPGAs and ASICs) @40 MHz
  - Data held in pipelines, with a fixed latency
  - Fast dectector responses and data movement
- BC identification is crucial
- <u>Redondance</u> of selection criteria ("trigger menus") leads to high trigger efficiency and the possibility to measure it from the data
- Must be sufficiently <u>flexible</u> to face possible variations of LHC luminosity, one order of magnitude at least
  - Event characteristics vary with luminosity, due to changings in pile-up, so it's not a simple events rescaling but events with different number of muons, clusters,... must be managed



#### LHC bunch structure

### Trigger timing and adjustment





- signals propagated in all the system (TTC system)
  - Bunch Crossing Number
  - Level 1 Accept Number
- Synchronization
  - Detector pulse w/collision at IP
  - Trigger data w/readout data
  - Different detector trigger data w/each other

### ATLAS/CMS: design principles

- Magnetic field structure
  - ATLAS: 2 Tesla solenoid + Toroids (barrel + 2 end-cap)
  - CMS: 4 Tesla solenoid
- Muon system
  - ATLAS: air-core toroid, minimizing MS, fast dedicated trigger detectors (RPC/TGC, 10 ns)
  - CMS: focus on high bending, instrumented return yoke, 2 independent trigger systems
- Calorimetry: sampling/homogenous
- Trigger architecture
  - ATLAS: minimizes data flow across levels and use of multi-tier Trigger/DAQ architecture
  - CMS: invests on commercial technologies for processing and communication (Terabit/s networks)





### ATLAS/CMS: Trigger overview

Different division of resources for processors and bandwidths



Region of interest: 2/event

HLT partial event reconstruction

# ATLAS: level 1 trigger





### CMS level1 trigger



ECAL: lead-Tungstate Crystals HCAL: sc+cupper absorber plates HCAL Forward: sc+steel absorber plates



The Global Muon Trigger receives 4 muons candidate of maximum  $p_T$ , selects the <u>best</u> quality candidates (n.of hits, matched track segments, responses by the 3 detectors )  $\Delta\eta x \Delta \phi = 0.35 \times 0.35$  rad

The Global Calorimeter Trigger selects the best 4 e, $\gamma$  (separately single and not),  $\tau$  and jets. It calculates the total E<sub>T</sub> and the E<sub>T</sub> missing vector

#### The Global Trigger

- Accepts calo+muon sorted objects
- Synchronizes matching subsystems
- Computes up to 128 trigger algorithms in parallel
- Global trigger objects includes eta-phi position, used by HLT to start reconstruction

### ATLAS/CMS calorimeter trigger



- Peak finder for BC-identification
- ET conversion using LUT: 8-bit ET, scaling is linear up to 255 GeV
- Dedicated processors apply the algorithms, using programmable thresholds
- Sliding window technique to find candidate tower
- Et is the sum of ECAL and HCAL contributions, in order to provide sharp turn-on curves with the true ET of the particles

- **CMS**: on-detector electronics digitizes analogue signals, trigger towers formed off-detector by digital summation
- ATLAS, before digitization, a weight is applied to the pulse over bins of sinTheta to produce the approximate ET value (dynamic range of the energy pulse is reduced, 10-bit precision)



TileCal and LAr signals at trigger



### Calorimeter trigger primitives



#### ATLAS

- ~7200 projective trigger towers
- **Trigger towers**  $\Delta \eta \propto \Delta \phi = 0.1 \times 0.1$
- ET summations: Acceptance coverage: |η|=4.9 (FCAL)
- 32 threshold bits + 3 multiplicity bits are sent to CTP





# CMS: e/γ trigger



# ATLAS: single $e/\gamma$ trigger

 $\eta$ 

 $\phi$ 



 $e/\gamma$  and tau/hadron trigger Trigger towers  $\Delta \eta \ge \Delta \phi = 0.1 \ge 0.1$ Acceptance coverage:  $|\eta|=2.5$  (ID and LAr) 16 thresholds: Cluster RoI: 2x2-towers region (EM+Had) Cluster ET: summed 4 overlapping 2x1 towers with energy > threshold EM Isolation: Energy in the 12 adjacent cells < threshold







# CMS: Jet and tau trigger

QCD Jet Efficiency |n|<5

12x12 towers sliding window 

Low Luminosity Jet Trigger Rates ([η]<5)

CMS UW-Madicor

CMBIM 126 ORCA 4

(20th minimum blas)

2-Jet

3-Jet

4-Jef

125 150 175 200 225 250

Calibrated Trigger E<sub>T</sub> Cutoff (GeV)

L=2<10<sup>75</sup> cm<sup>-4</sup> s<sup>-1</sup>

Rate (kHz)

25 60 76 100

Central ET greater than 8 neighbors and over threshold to suppress noise

Efficiency

0.8

0.6

0.4

Q. 2

Tau vetos pattern: narrow clusters from single and 3-prong decays of taus, with charged pions deposits in the HCAL (distinguished by electrons)



Low Luminosity Tau and Jet Trigger Rates



# ATLAS: Jet trigger



#### Window 0.4 x 0.4





De-duster/Rol can be in 4 possible positions



Window 0.8 x 0.8

#### Jet trigger

Trigger towers  $\Delta \eta \ge \Delta \phi = 0.2 \ge 0.2$ Acceptance coverage:  $|\eta|=3.2$  (endcap) 8 thresholds: **Jet RoI: 2x2-towers region (EM+Had)** Jet windows: summed 2, 3 or 4 jet element with energy > threshold

- rate foreseen on L1: R ~ O(100) Hz
- choice of Level 1 thresholds and prescales under study
  - distribute rate as equal as possible among the jet E<sub>T</sub>-spectrum
  - keep the thresholds as constant as possible through runtime-> adjustment to increasing luminosities by prescales



# CMS: transverse E trigger



- **<u>The HT trigger:</u>** scalar sum of ET of jets above a given threshold (typically 10 GeV)
  - Less sensitive to noise and pileup effects
  - Can capture high jet multiplicity events (fully hadronic top decays, hadronic decays of squarks and gluinos), with single jet energies below the jet-trigger thresholds
- Quiet and MIP bits used by the muon trigger
  - Quiet: computed when ET in the calorimeter regions are below a given threshold
  - MIP: Quiet + at least one HCAL tower with fine grain bit ON





## ATLAS/CMS Muon trigger





- Different bending planes in ATLAS & CMS
- Low pT systems for B-physics study
- Italian responsibility in both experiments

# ATLAS: muon trigger



Momentum is defined with track deviation from an infinite momentum muon (Coincidence Windows)



#### Fast and high redundancy system

- Wide pT-threshold range: 2 separate systems: low pt and high pt trigger
- Safe Bunch Crossing Identification
- Strong rejection of fake muons (induced by noise and physics background) using algorithms on 2 views
- □ 1/8 BC interpolator to measure RPC timing hit
- Requirement for cosmic-ray and beam-halo triggers included in design



BC Identification efficiency vs pipeline delay (test-beam data)



10 Luminosity, nb-1

### ATLAS: muon trigger performance

- Due to the air-toroid structure, the study of cavern background is mandatory
- Low pT system more sensitive to accidental background due to less redundancy





F.Pastore IFAE 2007, Napoli 12/04/07

1

10

### **ATLAS: Muon Trigger rates**



p<sub>T</sub>\_cutoff  $d \, \sigma$ i  $R_i = L$  $\mathcal{E}(p_T)dp$  $dp_{\tau}$  $p_{T}$  \_ inf

Level-1 Efficiency

| Muon<br>sources | 11 GeV<br>10 <sup>34</sup> | 20 GeV<br>10 <sup>34</sup> |
|-----------------|----------------------------|----------------------------|
| π/Κ             | 7420 Hz                    | 3540 Hz                    |
| b               | 2330 Hz                    | 760 Hz                     |
| С               | 1100 Hz                    | 340 Hz                     |
| W               | 28 Hz                      | 26 Hz                      |
| t               | Negligible                 | Negligible                 |
| Sum             | 12 kHz                     | 4.7 kHz                    |

# CMS: L1 muon trigger



- Muon system, stations interleaved with the iron yoke of the return flux
  - DT, outside the magnet coil, in the Barrel
    - 4 stations, 2-3 SL each, 1 SL=4 staggered layers of tubes
  - CSC, in the endcap
    - 3 stations, 6 layers of CSC each
  - RPC, in the Barrel and endcap, dedicated to BC-identification

# CMS: muon trigger primitives

#### **RPC** pattern recognition

Pattern trigger logic (PACT)

 Many possible hits patterns assigned to each pT (and direction), due to dE/dx fluctuations and MS. Each pattern identifies a pT threshold

• Time coincidence of hits in predefined patterns required on 3/4 to 4/6 stations, which gives the **BC assignment** 



#### DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p, value
- DT: 3-out-of-4 hits in each superlayer, fits a straight line within angular acceptance.
  Segments are correlated using angular distance form the IP
- CSC: segments in both views, then correlated: cathode strips on bending, anode dedicated to BC identification





### CMS: muon trigger turn on

brIRPC

5

**PC** 

fwdRPC

3

Effic

RPC

20

40

60

 $\overline{\mathbf{v}}_{1}$ 





Global muon trigger: fake muon bkg reduced < 0.2%

60

### CMS: L1 muon trigger rates







- structure)
  - bb: ~ 100 kHz (whole B-decay within acceptance ~15 kHz)
  - □ cc: ~ 600 kHz
- Multitude of trigger requests (excl. and incl.):
  - Excl: Signals to over-constrain the unitary triangle
  - Excl: Measurement of the purity of the B-tagging
  - Incl.:Calibration, alignments and systematic studies
  - Incl.:Unbiased control samples



### LHCb: trigger strategy

- Exclusive triggers : 'hot' physics eg.  $B_s \rightarrow D_s h$ ,  $B_s \rightarrow \phi \phi$ ,  $B^0 \rightarrow J/\psi K_s$ ,  $B^0 \rightarrow D^* \pi$ ,  $B_{(s)} \rightarrow h^+h^-$ ,  $B^0 \rightarrow K^*\mu^+\mu^-$ ,  $B^0 \rightarrow D^0 K^*$ ,  $B_s \rightarrow \mu^+\mu^{-}$ ,  $B_s \rightarrow J/\psi \phi$ ,  $B_s \rightarrow \phi \gamma$
- Inclusive triggers  $\rightarrow$  Data mining:
  - Inclusive single-muon (900Hz) [independent of signal type ]
    - Sample triggered independent of signal type unbiased on the signal side
    - Signal trigger efficiencies, beauty content ~60%
  - Inclusive di-muon (600Hz) [selected without lifetime information]
    - Clean mass peaks for alignment, momentum (B field) calibration
    - $\hfill\square$  Proper time resolution using prompt J/ $\psi$  events
  - Inclusive D\* (300Hz) [selected without RICH information]
    - Clean signal of  $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$
    - Measure PID performance as a function of momentum
    - Charm content ~20%



# LHCb trigger overview



## LHCb: level-0 muon trigger



- Detectors: 1368 MWPC + 12 3-GEM for hottest region
- Five projective stations, with graduated segmentation (26k logical pads)
- Strategy: search of track on four layers and <u>check compatible hits on the fifth</u>
- Decision: send the two highest pT candidates in the chambers (Δp/p ~ 20%)
- Typical Performance: ~88% efficiency on B->J/ψ(μμ)X



### LHCb: level-0 calorimeter trigger

- Calorimeter
  - ECAL: Shashlik technology (lead/fibers r/o by WLS fibers), l=25, 8-bit ET
  - HCAL: iron/scintillating tiles (8-bit ET per cell)
  - Scintillator PAD (SPD) for neutral/charged separation
  - Preshower (PS) for  $e/\pi$  separation
- Strategy: look for two highest ET candidates of each type (>3 GeV)
  - PID by HCAL+ECAL and SPD+PS
- Also sent to L0: total calorimeter ET and SPD track multiplicity
- Typical Performance: 30-50% efficiency on hadronic channels for about 700 kHz bandwidth



### LHCb: level-0 pile-up system



- Used to suppress events with multiple primary interactions within one bunch crossing (reducing event size, required bandwidth and offline analysis)
- Two dedicated silicon disks in the backward direction (η<0) reconstruct the longitudinal position of the IP
- Strategy
  - perform all combinatorial combinations of hits, find the most probable position (primary vertex) and mask all hits belonging to it
  - The height of the secondary peak gives the secondary vertex multeplicity, used to select the event
- Typical performance: 60% efficiency identifying double interactions with 95% purity



### LHCb level-0: Decision and performance

- OR combination of
  - single objects thresholds, to exclude min. bias
  - global variables, to exclude combinatorics (total ET, track multiplicity in the 2nd vertex, pile-up and SPD multiplicity)
- Expected efficiency for a given channel
  - ~50% for hadrons, ~90% for muons, ~70% for radiative chan
- The level-0 trigger enhances the bb content of the data from 1% to 3%: expected rates are bb 30 kHz, cc 106 kHz
- L0 hadron trigger mainly occupy the bandwidth (60%),  $\mu/2\mu$  and  $e/\gamma/\pi0$  about 20% each

| Type                                    | Threshold | Rate (kHz) |  |
|-----------------------------------------|-----------|------------|--|
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (GeV)     |            |  |
| Hadron                                  | 3.6       | 705        |  |
| Electron                                | 2.8       | 103        |  |
| Photon                                  | 2.6       | 126        |  |
| π <sup>0</sup> local                    | 4.5       | 110        |  |
| π <sup>0</sup> global                   | 4.0       | 145        |  |
| Muon                                    | 1.1       | 110        |  |
| Di-muon                                 | 1.3       | 145        |  |

