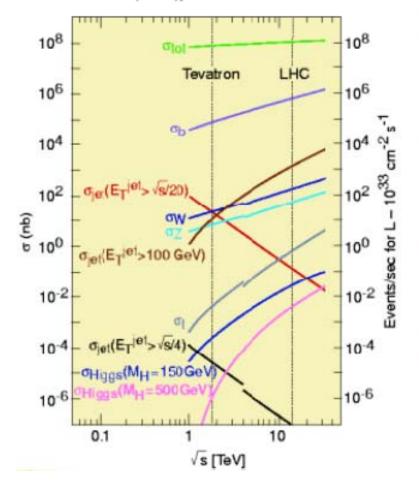
LVL1 trigger systems for LHC experiments

F.Pastore, INFN Rome


Thanks to M. Dellavalle and A. Satta

outline

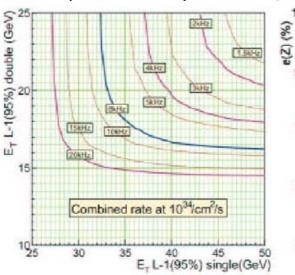
- LHC requirements
- ATLAS and CMS LVL1 trigger strategy
 - Calorimeter trigger
 - Muon trigger
- Some notes on LHCb

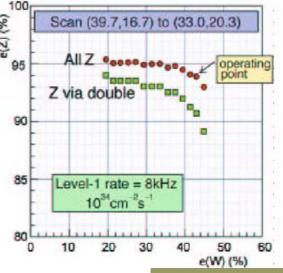
Global requirements

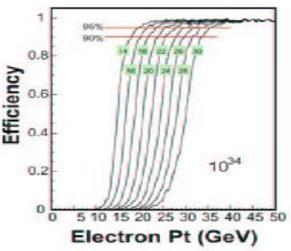
Proton - (anti)proton cross sections

- p-p collider √s= 14 TeV
- Bunch crossing rate 40 MHz (25 ns bunch spacing)
 - 80% of bunched will be filled, effective bunch crossing rate 32 MHz
- Two luminosity scenarios:
 - Low Luminosity: L=2x10³³ first 2 years after start-up, 10 fb⁻¹/year
 - High Luminosity: L=10³⁴ 100 fb⁻¹/year
- Average interactions per bunch crossing:17.3 for HL and 3.5 for LL
 - 109 Hz collision rate
- Total non-diffractive cross section ~ 70 mb
- Huge range of cross-sections and rates (HL)
 - B production 0.7 mb 7 10^6 Hz
 - W/Z production 200/60 nb 2/0.6 kHz
 - Top 0.8 nb 80 Hz
 - Higgs (150 GeV) 30 pb 3 Hz

Level 1 trigger strategy


	Trigger chains	Physics Measurments	Objects
~20 kHz	e25i, 2e15i	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top	electrons
~ 20 KHZ	γ60i, 2γ20i	Higgs (SM, MSSM), extra dimensions, SUSY	photons
~10 kHz	μ20i, 2μ10	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top	muons
~200 Hz	j400, 3j165, 4j110	SUSY, compositeness, resonances	Jets
	j70 + xE70	SUSY, leptoquarks	Jet + missing E _T
~500 Hz	τ35 + xE45	Extended Higgs models (e.g. MSSM), SUSY	Tau + missing E _T


- Selection is based on <u>inclusive high pT physics</u>, with low multiplicity (single/di-objects)
 - SM physics overlap with Tevatron and "known" NP (MSSM)
 - Sensitive to unpredicted new physics
- Allow reasonable <u>safety factors</u> in the accepted rates to account for physics (crosssections, cavern and other bkg) and detector (performance) uncertainties
- Must ensure rates for monitoring and calibration/energy scale
 - Instrumental and physics bkg (cavern and others not completely known)
 - Detector efficiency from data
 - Selection algorithm performances

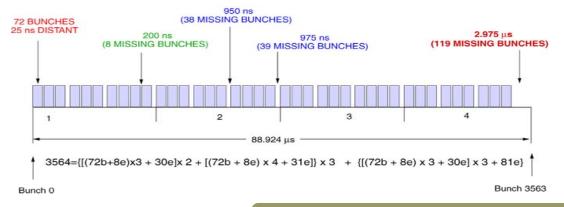

L1 bandwidth optimization

- Allocation of bandwidth across different objects
 - Equally divided across e/γ, mu, tau-jets and comb-jets
 - SF=3: Low Luminosity 4 kHz/obj, 8 kHz High Luminosity
- Turn-on curves: effective requirements on pT defined as the value at which L1 trigger is 95% efficient
- Determination of thresholds for single/double objects
 - Optimal operating point must be chosen in the single vs double space at given rate. Based on efficiency optimization (e/mu/tau, no jets)

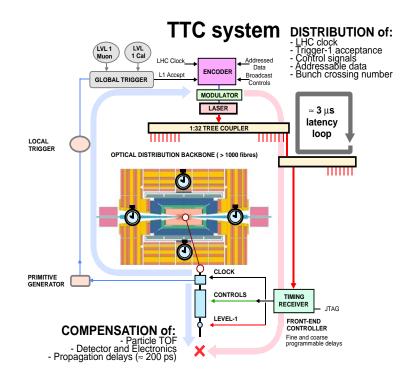
Example for e/γ trigger using W->ev vs Z->ee

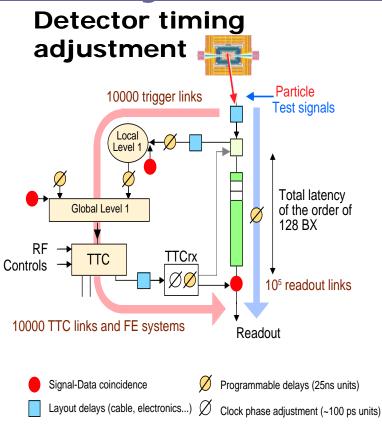
Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)	
inclusive isolated electron/photon	29	3.3	3.3	
di-electron/di-photon	17	1.3	4.3	
inclusive isolated muon	14	2.7	7.0	
di-muon	3	0.9	7.9	
single τ jet	86	2.2	10.1	
di- τ -jet	59	1.0	10.9	
1-jet, 3-jet, 4-jet	177, 86, 70	3.0	12.5	
jet * $E_{\mathrm{T}}^{\mathrm{m} \; \mathrm{iss}}$	88 * 46	2.3	14.3	
electron * τ-jet	19 * 45	0.8	15.1	
minimum bias (calibration)		0.9	16.0	
TOTAL Low luminosity trigger table 160				

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
inclusive isolated electron/photon	34	6.5	6.5
di-electron/di-photon	19	3.3	9.4
inclusive isolated muon	20	6.2	15.6
di-muons	5	1.7	17.3
single τ -jet trigger	101	5.3	22.6
di- 7-jets	67	3.6	25.0
1-jet, 3-jets, 4-jets	250, 110, 95	3.0	26.7
jet * $E_{\mathrm{T}}^{\mathrm{in} \mathrm{iss}}$	113 * 70	4.5	30.4
electron * τ-jet	25 * 52	1.3	31.7
muon * τ -jet	15 * 40	0.8	32.5
minimum bias (calibration)		1.0	33.5
TOTAL High luminos	itv triaaer	table	33.5


- Thresholds at which efficiency of the trigger il 95% of its maximum value
- 1 kHz allocated to minimum-bias events which will be used for calibration and monitoring
- Only muon trigger has low enough threshold for B physics (B->μμ)

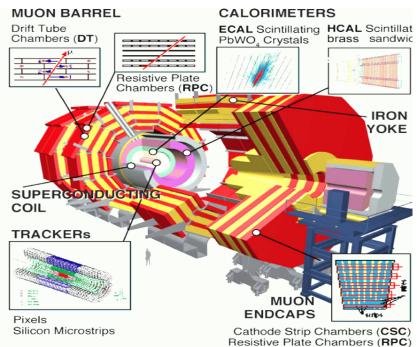
CMS latest results dec. 2006

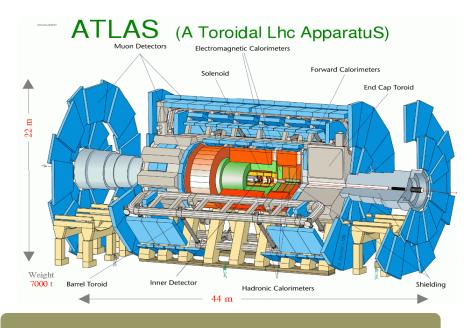

LHC Level-1 systems requirements


- Rate reduction of 10⁴-10⁵
- Data identification with Bunch Crossing Number (absolute synchronization)
 - Logic decisions are taken by custom hardware systems (FPGAs and ASICs) @40 MHz
 - Data held in pipelines, with a fixed latency
 - Fast dectector responses and data movement
- BC identification is crucial
- Redondance of selection criteria ("trigger menus") leads to high trigger efficiency and the possibility to measure it from the data
- Must be sufficiently <u>flexible</u> to face possible variations of LHC luminosity, one order of magnitude at least
 - Event characteristics vary with luminosity, due to changings in pile-up, so it's not a simple events rescaling but events with different number of muons, clusters,... must be managed

LHC bunch structure

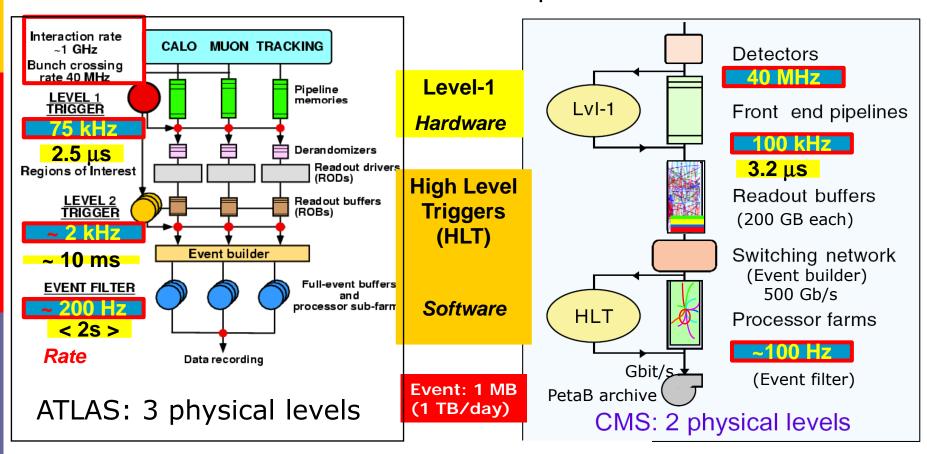
Trigger timing and adjustment





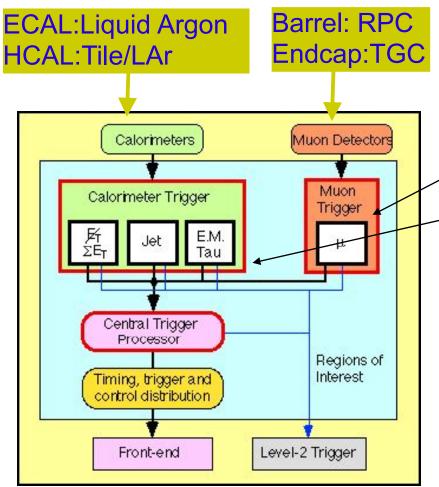
- signals propagated in all the system (TTC system)
 - Bunch Crossing Number
 - Level 1 Accept Number
- Synchronization
 - Detector pulse w/collision at IP
 - Trigger data w/readout data
 - Different detector trigger data w/each other

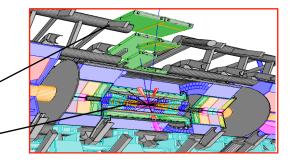
ATLAS/CMS: design principles


- Magnetic field structure
 - ATLAS: 2 Tesla solenoid + Toroids (barrel + 2 end-cap)
 - CMS: 4 Tesla solenoid
- Muon system
 - ATLAS: air-core toroid, minimizing MS, fast dedicated trigger detectors (RPC/TGC, 10 ns)
 - CMS: focus on high bending, instrumented return yoke, 2 independent trigger systems
- Calorimetry: sampling/homogenous
- Trigger architecture
 - ATLAS: minimizes data flow across levels and use of multi-tier Trigger/DAQ architecture
 - CMS: invests on commercial technologies for processing and communication (Terabit/s networks)

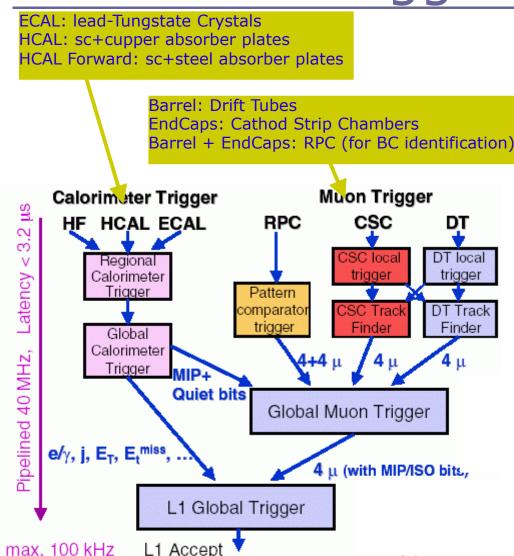
ATLAS/CMS: Trigger overview

Different division of resources for processors and bandwidths




Region of interest: 2/event

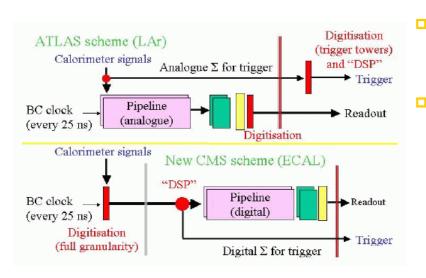
HLT partial event reconstruction



CTP makes the final decision based on multeplicities, using pT thresholds and global energy variables

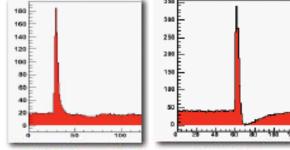
- Accept calo+muon region-of-interest of each candidate found and their multiplicity
- 256 trigger items, combinations of one or more trigger inputs
- The dead-time generated after each L1A can be specified for each item

CMS level1 trigger

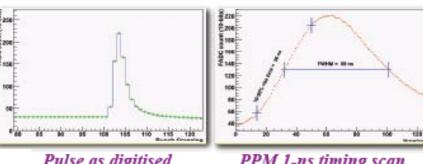

The Global Muon Trigger receives 4 muons candidate of maximum p_T , selects the <u>best</u> quality candidates (n.of hits, matched track segments, responses by the 3 detectors) $\Delta\eta x\Delta\phi = 0.35x0.35$ rad

The Global Calorimeter Trigger selects the best 4 e, γ (separately single and not), τ and jets. It calculates the total E_{τ} and the E_{τ} missing vector

The Global Trigger

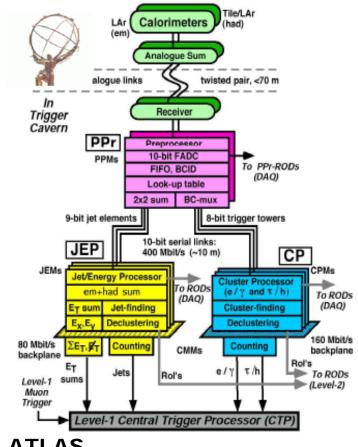

- Accept calo+muon sorted trigger objects
- Synchronizes matching sub-systems data
- Computes up to 128 trigger algorithms in parallel
- Global trigger objects includes etaphi position, used by HLT to start reconstruction

ATLAS/CMS calorimeter trigger

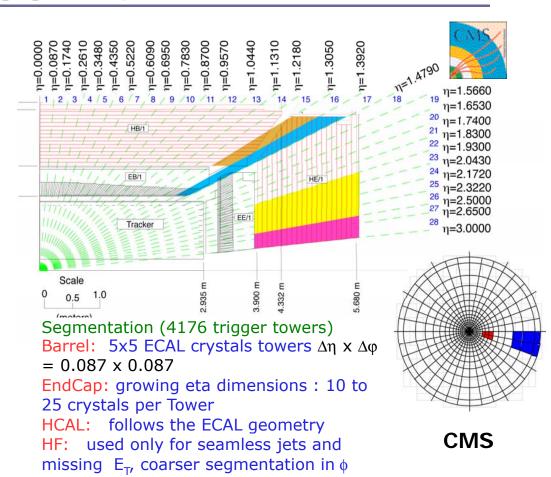

- In CMS: on-detector electronics digitizes analogue signals, trigger towers formed offdetector by digital summation
- In ATLAS, before digitization, a weight is applied to the pulse over bins of sinTheta to produce the approximate ET value (dynamic range of the energy pulse is reduced, 10-bit

precision)

TileCal and LAr signals at trigger

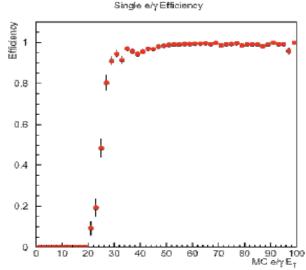

- Peak finder for **BC-identification**
- ET conversion using LUT: 8-bit ET, scaling is linear up to 255 GeV
- Dedicated processors apply the algorithms, using programmable thresholds
- Sliding window technique to find candidate tower
- Et is the sum of ECAL and HCAL contributions, in order to provide sharp turn-on curves with the true ET of the particles

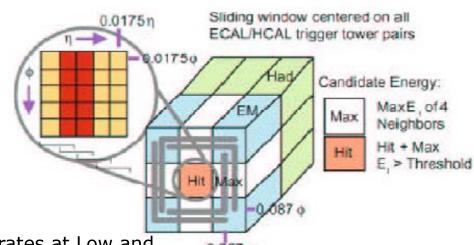
Pulse as digitised


PPM 1-ns timing scan

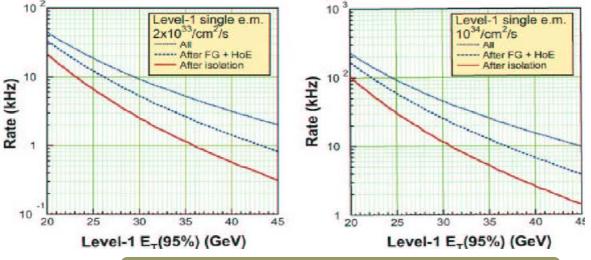
Calorimeter trigger primitives

ATLAS

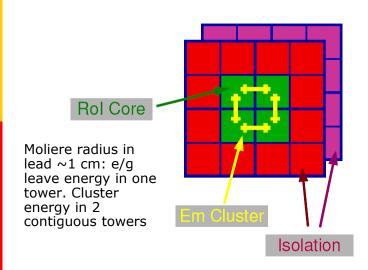

- ~7200 projective trigger towers
- Trigger towers $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- ET summations: Acceptance coverage: $|\eta| = 4.9$ (FCAL)
- 32 threshold bits + 3 multiplicity bits are sent to CTP



CMS: e/γ trigger


- 3 x 3 trigger towers sliding window
- ET of the hit trigger tower is the sum of central values + 4 highest neighbors
- Isolation: 2 separated streams based on longitudinal and lateral shower profile:
 - "fine-grain" FG veto: strip structure inside the tower (1x5), highest energy strip >90% of the total energy. Noise and pileup contamination to 2%
 - Ehad/Eem < 5%

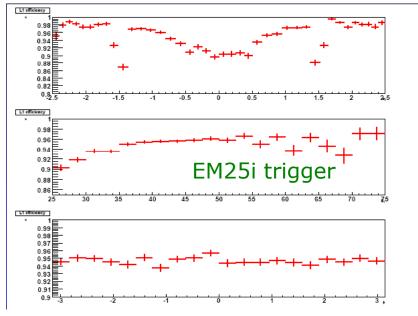
25 GeV cut: 95% at 31 GeV, 1.9 kHz expected

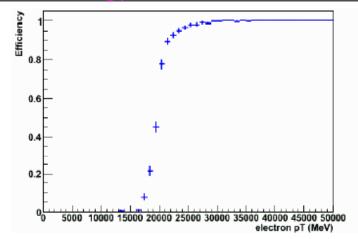


Expected rates at Low and High luminosity, with different isolation cuts

e/g and tau/hadron trigger

Trigger towers $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

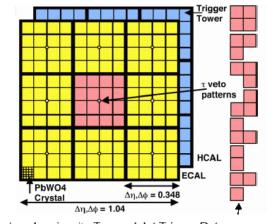

Acceptance coverage: $|\eta|=2.5$ (ID and LAr)


16 thresholds:

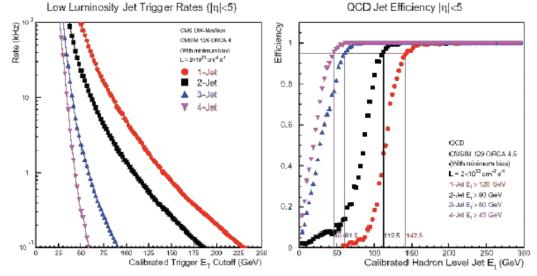
- Cluster RoI: 2x2-towers region (EM+Had)
- Cluster ET: summed 4 overlapping 2x1
- towers with energy > threshold
- EM Isolation: Energy in the 12 adjacent cells
- < threshold

 E_T

φ

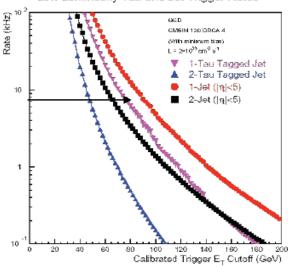


Single e 25 GeV: 96.7 %, ~ 6 kHz



CMS: Jet and tau trigger

- 12x12 towers sliding window
- Central ET greater than 8 neighbors and over threshold to suppress noise
- Tau vetos pattern: narrow clusters from single and 3-prong decays of taus, with charged pions deposits in the HCAL (distinguished by electrons)



Low Luminosity Tau and Jet Trigger Rates

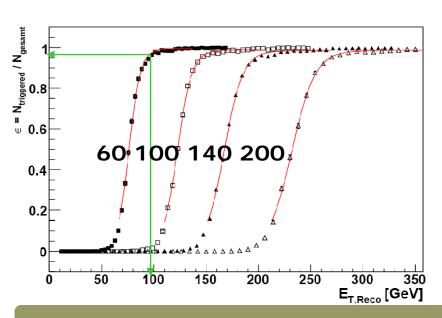
□ **Dijet at 90 GeV**: 2.1 kHz, 95% @ 113 GeV

Single tau at 80 GeV: 6.1 kHz

ATLAS: Jet trigger

Window 0.4 x 0.4

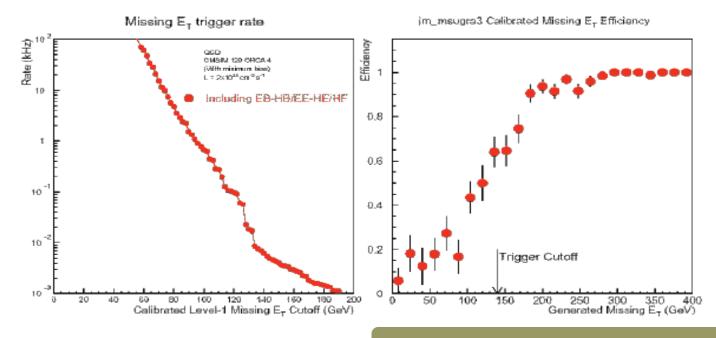
Window 0.8 x 0.8

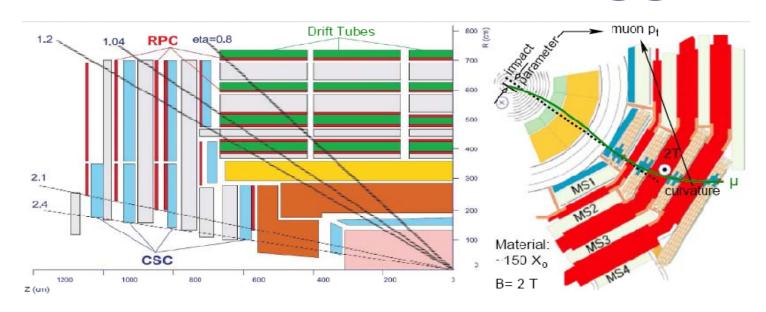

De clusterFlot must be in centre position (to avoid 6x6, and 2 jets/window)

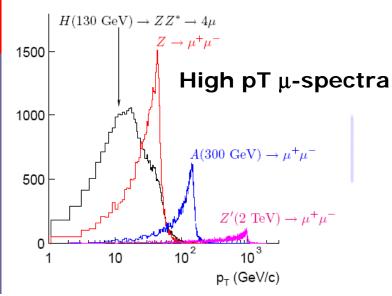
Jet trigger

Trigger towers $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ Acceptance coverage: $|\eta|=3.2$ (endcap) 8 thresholds:

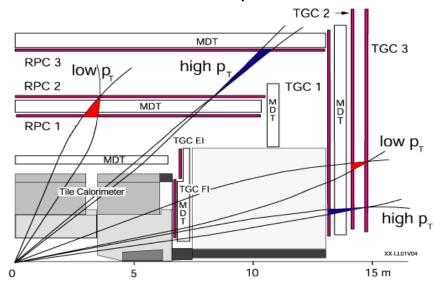
- Jet RoI: 2x2-towers region (EM+Had)Jet windows: summed 2, 3 or 4 jet
- element with energy > threshold


- rate foreseen on L1: R ~ O(100) Hz choice of Level 1 thresholds and prescales under study
 - distribute rate as equal as possible among the jet E_T-spectrum
 - keep the thresholds as constant as possible through runtime-> adjustment to increasing luminosities by prescales

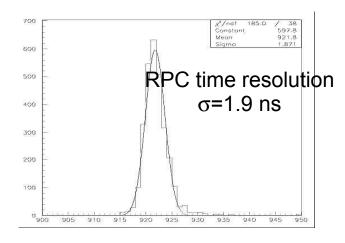

CMS: transverse E trigger


- ET and missing-ET triggers use the transverse energy sums (Em + Had) computed in the calorimeter regions, defined by a threshold and a prescaling factor
- The HT trigger is defined as the scalar sum of the ET of jets above a given threshold (typically 10 GeV)
 - Less sensitive to noise and pileup effects
 - Can capture high jet multiplicity events (fully hadronic top decays, hadronic decays of squarks and gluinos), with single jet energies below the jet-trigger thresholds
- Quiet and MIP bits used by the muon trigger
 - Quiet: computed when ET in the calorimeter regions are below a given threshold
 - MIP: Quiet + at least one HCAL tower with fine grain bit ON

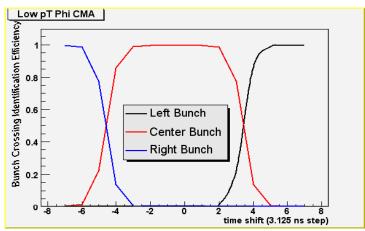
ATLAS/CMS Muon trigger



- Different bending planes in ATLAS and CMS
- Low pT systems for Bphysics study
- Italian responsibility in both experiments

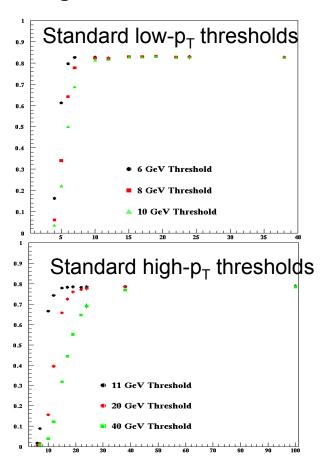


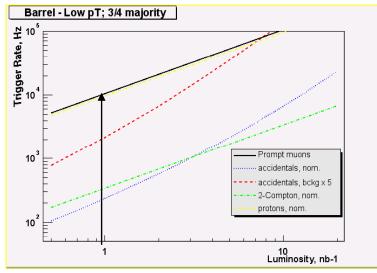
Momentum is defined with track deviation from an infinite momentum muon (Coincidence Windows)

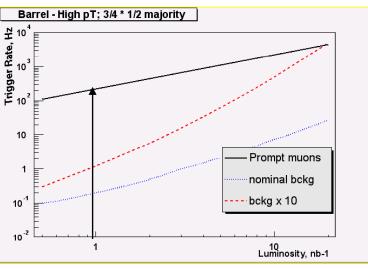


Fast and high redundancy system

- Wide pT-threshold range: 2 separate systems: low pt and high pt trigger
- Safe Bunch Crossing Identification
- Strong rejection of fake muons (induced by noise and physics background) using algorithms on 2 views
- □ 1/8 BC interpolator to measure RPC timing hit
- Requirement for cosmic-ray and beam-halo triggers included in design

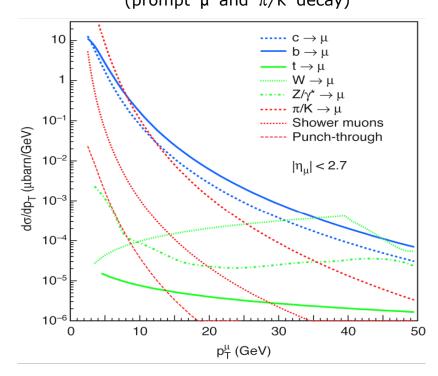

BC Identification efficiency vs pipeline delay (test-beam data)

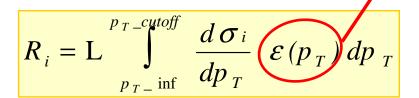




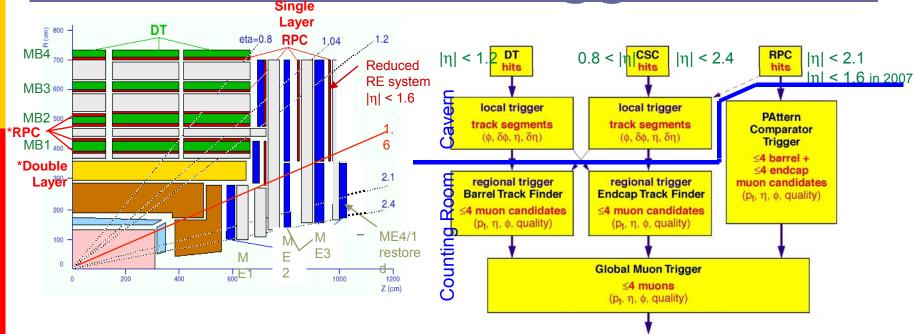
ATLAS: muon trigger performance

- Due to the air-toroid structure, the study of cavern background is mandatory
- Low pT system more sensitive to accidental background due to less redundancy



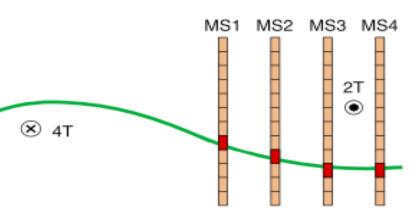


Inclusive µ cross-section @ LHC (prompt μ and π/K decay)

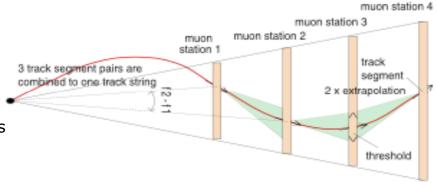


Muon sources	11 GeV 10 ³⁴	20 GeV 10 ³⁴
π/K	7420 Hz	3540 Hz
b	2330 Hz	760 Hz
С	1100 Hz	340 Hz
W	28 Hz	26 Hz
t	Negligible	Negligible
Sum	12 kHz	4.7 kHz

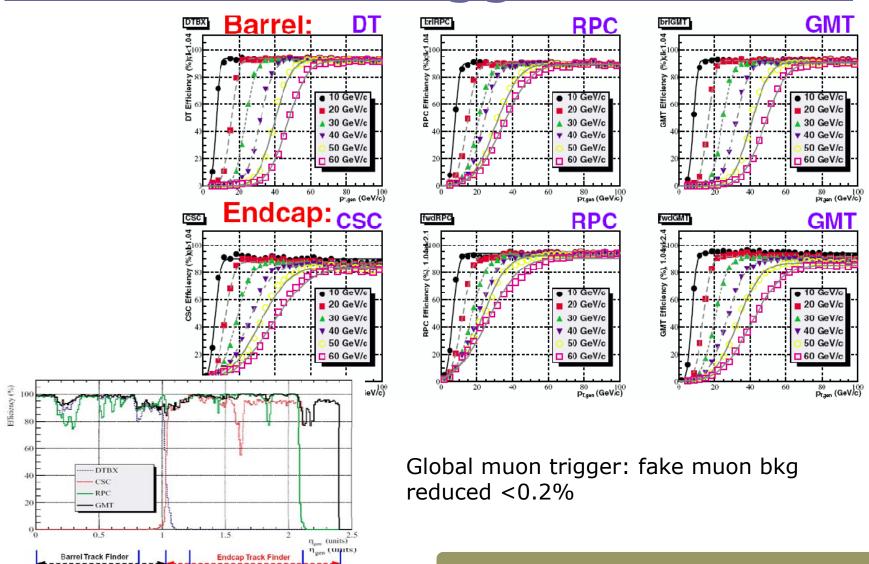
CMS: L1 muon trigger


- Muon system, stations interleaved with the iron yoke of the return flux
 - DT, outside the magnet coil, in the Barrel
 - 4 stations, 2-3 SL each, 1 SL=4 staggered layers of tubes
 - CSC, in the endcap
 - 3 stations, 6 layers of CSC each
 - RPC, in the Barrel and endcap, dedicated to BC-identification

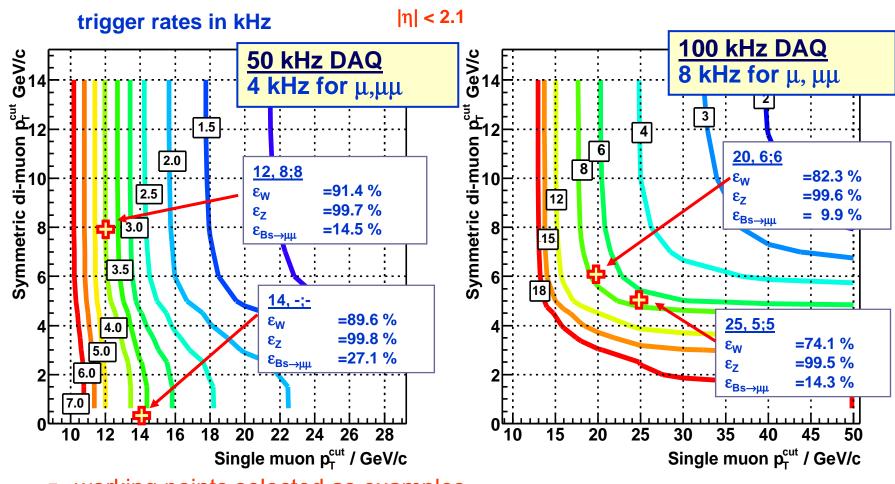
CMS: muon trigger primitives


RPC pattern recognition

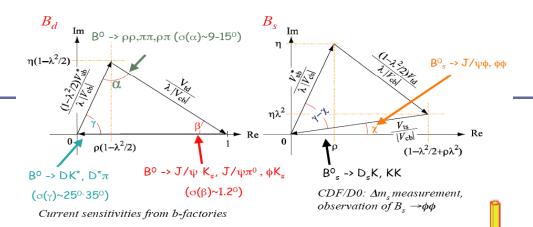
- Pattern trigger logic (PACT)
 - Many possible hits patterns assigned to each pT (and direction), due to dE/dx fluctuations and MS. Each pattern identifies a pT threshold
 - Time coincidence of hits in predefined patterns required on 3/4 to 4/6 stations, which gives the **BC** assignment


DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p, value
- DT: 3-out-of-4 hits in each superlayer, fits a straight line within angular acceptance.
 Segments are correlated using angular distance form the IP
- CSC: segments in both views, then correlated: cathode strips on bending, anode dedicated to BC identification

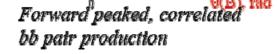


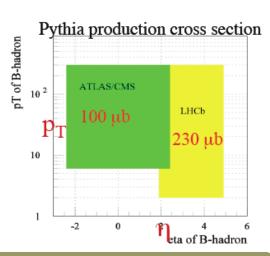
CMS: L1 muon trigger rates


working points selected as examples

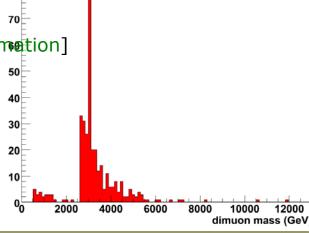
$$L = 2x10^{33} cm^{-2} s^{-1}$$

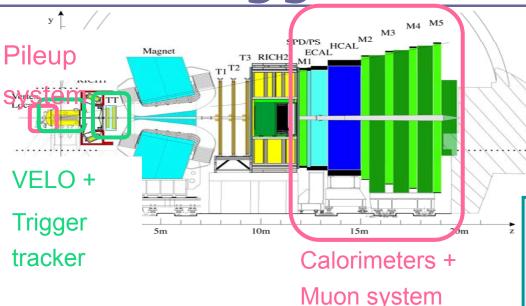
 $L = 10^{34} \text{cm}^{-2} \text{s}^{-1}$


LHCb



Designed to make precision measurements of CPV and rare decays in the B system ($\sigma\gamma$ <10 degree)


- Large $\sigma_{ββ}$ ~500 μb, but $\sigma_{ββ}/\sigma_{τοτ}$ ~ 5x10⁻³
- Interesting B decays BR ~ 10⁻⁵
- Nominal luminosity: $2 \times 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}$ (10-50 times lower than ATLAS/CMS)
 - dominated by single p-p /low occupancy events
 - 2 fb-1/year -> 10¹² bb produced/year
 - Expected 'visible' rate: 10 MHz (given by low L and LHC bunch structure)
 - □ bb: ~ 100 kHz (whole B-decay within acceptance ~15 kHz)
 - □ cc: ~ 600 kHz
- Multitude of trigger requests (excl. and incl.):
 - Excl: Signals to over-constrain the unitary triangle
 - Excl: Measurement of the purity of the B-tagging
 - Incl.:Calibration, alignments and systematic studies
 - Incl.:Unbiased control samples



LHCb: trigger strategy

- Exclusive triggers: 'hot' physics eg. $B_s \rightarrow D_s h$, $B_s \rightarrow \phi \phi$, $B^0 \rightarrow J/\psi$ K_S , $B^0 \rightarrow D^*\pi$, $B_{(s)} \rightarrow h^+h^-$, $B^0 \rightarrow K^*\mu^+\mu^-$, $B^0 \rightarrow D^0$ K^* , $B_s \rightarrow \mu^+\mu^-$, $B_s \rightarrow J/\psi$ ϕ , $B_s \rightarrow \phi \gamma$
- □ Inclusive triggers → Data mining:
 - Inclusive single-muon (900Hz) [independent of signal type]
 - Sample triggered independent of signal type unbiased on the signal side
 - Signal trigger efficiencies, beauty content ~60%
 - Inclusive di-muon (600Hz) [selected without lifetime information]
 - Clean mass peaks for alignment, momentum (B field) calibration
 - \Box Proper time resolution using prompt J/ ψ events
 - Inclusive D* (300Hz) [selected without RICH information]
 - □ Clean signal of $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$
 - Measure PID performance as a function of momentum
 - □ Charm content ~20%

LHCb trigger overview

- Open geometry, excellent tracking capability
- Selection of B mesons using pT and impact parameter (IP) of the B decay (related to high mass and long lifetime of the b-quark)
 - Hardware trigger (L0): selection of events with at least one high ET object, reject complex events and beamhalo

10 MHz

L0: high p_T + track multiplicity

- synchr. (40 MHz), fixed 4 μs latency
- custom boards, commercial compon.

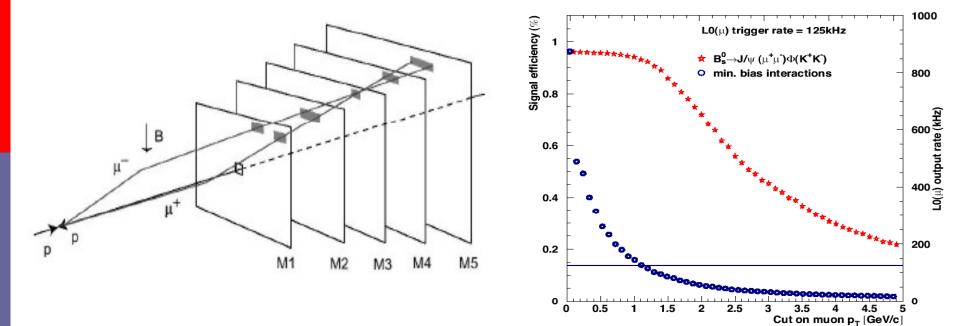
1 MHz

HLT inclusive: refine $p_T + IP$

- latency: 1 ms (max 50 ms)
- event buffers
- interface to Gbit Eth. readout networks

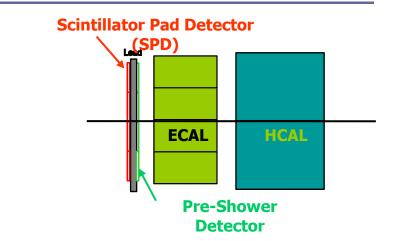
Full detector information

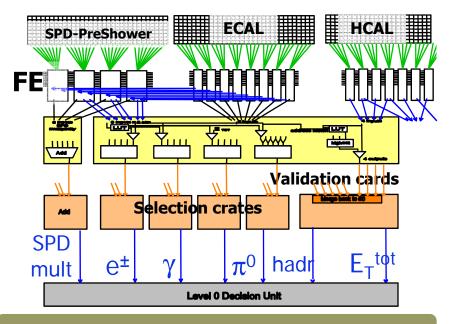
HLT full reconstruction

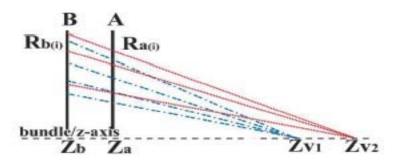

• Full detector: ~ 40 kb / evt (50 GB/s)

Single PC farm ~1600 CPUs

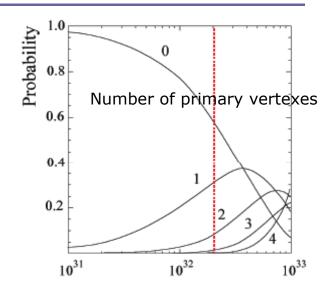
≤ 2 KHz

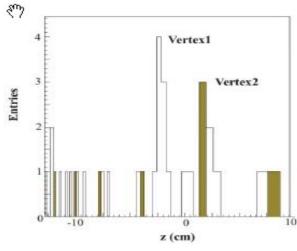

LHCb: level-0 muon trigger


- Detectors: 1380 chambers: 1368 MWPC + 12 3-GEM for hottest region
- Five projective stations, with graduated segmentation (26k logical pads)
- Strategy: search of track on four layers and check compatible hits on the fifth
- Decision: send the two highest pT candidates in the chambers ($\Delta p/p \sim 20\%$)
- □ Typical Performance: ~88% efficiency on B->J/ψ(μμ)X


LHCb: level-0 calorimeter trigger

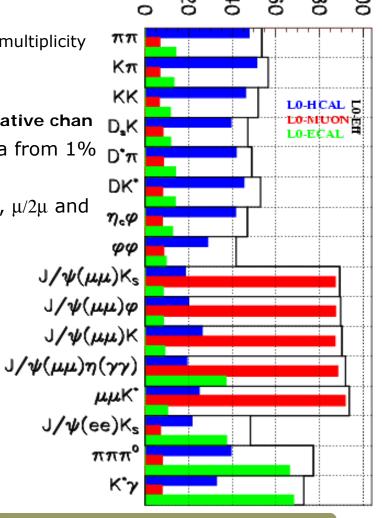
- Calorimeter
 - ECAL: Shashlik technology (lead/fibers r/o by WLS fibers), I=25, 8-bit ET
 - HCAL: iron/scintillating tiles (8-bit ET per cell)
 - Scintillator PAD (SPD) for neutral/charged separation
 - Preshower (PS) for e/π separation
- Strategy: look for two highest ET candidates of each type (>3GeV)
 - PID by HCAL+ECAL and SPD+PS
- Also sent to L0: total calorimeter ET and SPD track multiplicity
- Typical Performance: 30-50%
 efficiency on hadronic channels for about 700 kHz bandwidth





LHCb: level-0 pile-up system

- Used to suppress events with multiple primary interactions within one bunch crossing (reducing event size, required bandwidth and offline analysis)
- Two dedicated silicon disks in the backward direction $(\eta < 0)$ reconstruct the longitudinal position of the IP
- Strategy
 - perform all combinatorial combinations of hits, find the most probable position (primary vertex) and mask all hits belonging to it
 - The height of the secondary peak gives the secondary vertex multeplicity, used to select the event
- Typical performance: 60% efficiency identifying double interactions with 95% purity



LHCb level-0: Decision and performance

- OR combination of
 - single objects thresholds, to exclude min. bias
 - global variables, to exclude combinatorics (total ET, track multiplicity in the 2nd vertex, pile-up and SPD multiplicity)
- Expected efficiency for a given channel
 - ~50% for hadrons, ~90% for muons, ~70% for radiative chan
- □ The level-0 trigger enhances the bb content of the data from 1% to 3%: expected rates are bb 30 kHz, cc 106 kHz
 - L0 hadron trigger mainly occupy the bandwidth (60%), $\mu/2\mu$ and $e/\gamma/\pi0$ about 20% each

Туре	Threshold (GeV)	Rate (kHz)
Hadron	3.6	705
Electron	2.8	103
Photon	2.6	126
πº local	4.5	110
π ⁰ global	4.0	145
Muon	1.1	110
Di-muon	1.3	145

Level-0 efficiency %