IFAE (Incontri di Fisica delle Alte Energie) 2007 Napoli 11-13/04/2007

V. Antonelli, G. Battistoni, P. Ferrario¹, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano e ¹Università di Valencia) (hep-ph/0307251)

Verifiche del Modello Standard a basse energie con fasci di neutrini

Standard Model and neutrino role

- Since the '60s many experimental confirmations of the Standard Model; precision tests (LEP, high energies)
- Neutrino relevance:
 - Neutrino played a relevant role in the past (Gargamelle, discovery of neutral currents)

 - Neutrino masses and mixing: need to modify Standard
 Model. Theories beyond the S.M.
- Future search of physics beyond the S.M., 2 ways:

1) Higher energy

2) <u>High intensity</u> (High-intensity v beams to study v properties and test e.w. interactions. Low energy tests of S.M.: search for rare processes and measurements of S.M. parameters with low E and very high intensity v beams)

Neutrino physics: present status

see for instance: PRD 67 (2003) 013006; PRD 69 (2004)013005; NPB (Proc. Suppl.)143 (2005)483; Progr. Part. Nucl. Phys. 57(2006)742 and 71; hep-ph/0606060

- Neutrino (v) known since many years, but many of its properties are still poorly known
- Last years very relevant results:
- v massive and oscillating particles. Proofs from: solar (mainly SuperKamiokande and SNO), atmospheric (SK) and reactor (KamLAND) neutrinos; accelerators (K2K)
- At least 2 Δm^2 , hence 3 mass eigenstates:
- $\Delta m_{12}^2 := m_2^2 m_1^2 = 7 \pm 1 \cdot 10^{-5} \text{ eV}^2 : v \text{ solar and from reactor (LMA solution)}$
- $|\Delta m_{23}^2| := |m_3^2 m_2^2| = 2.0 \pm 0.4 \cdot 10^{-3} \text{ eV}^2$: v atmospheric and K2K

- Maximal Mixing in the sector 2-3 : $\tan^2\theta_{23} = 1$; combining KL and solar v data: $\tan^2\theta_{12} = 0.45 \pm 0.08$

- Upper limits (from CHOOZ and Palo Verde) on mixing 1-3: $\theta_{13} < 14^{\circ}$

....however

Open Problems in Neutrino Physics

• Despite the relevant recent results,

Still many open problems

- Nature of neutrino (Dirac o Majorana)
- Absolute value and hierarchy of masses (direct, inverse or quasi-degenere)
- Exact determination of mixing parameters:

 $\theta_{13}=0 \text{ or } \theta_{13}\neq 0$

- Search for CP violation

Future of neutrino physics (from accelerators)

•1st stage: Conventional v beams from a secondary meson beam (K2K, MINOS, CERN/G.Sasso, T2K 1st phase) and Double Chooz (reactor) partial improvement of θ_{13} ; Not enough to study the leptonic CP violation

• 2nd stage: Superbeams (T2K 2nd phase, NovA, CERN)

• beam luminosity increase: θ_{13} precise measurement and/or (eventual) CP violation search

- T2K (Japan, 2009) 2^{nd} phase: v_{μ} beam from JParc to SuperK (L=295 Km)

- NovA (USA): use the beam of NuMI at FNAL, detector at about 800 Km -CERN: possible superbeam exploiting the CERN SPL

•3rd stage (end of next decade): v from primary beam decays Neutrino factories: v from decay of muons (tens of GeV) in accumulation rings ($\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_e$) Beta beams: v beams from β decays (few GeV or lower E) $n \rightarrow p + e^- + \bar{\nu}_e$ $p \rightarrow n + e^+ + \nu_e$ Example: ⁶He for anti-v beam; and ¹⁸Ne for v beams

Neutrino beam from protosinchrotron of 50 GeV, 0.75 MW at JParc

T2K

- Off-axis beam to SuperKamiokande (L = 295 Km).
 Begins spring 2009
- Main goals:
- $\sin^2 \theta_{13}$ measurement with sensitivity 20 times better than Chooz
- Measurement of Δm_{23}^2 and $\sin^2 \theta_{23}$ (atmosferic parameters) at 1-2% (v_{μ} disappearance)
- search for sterile v (weak currents disappearance)
 - Tests of Standard Model parameters: I low energy measurements, different from LEP; eventual possibility of signals of new physics

Beta-Beams

PRO

- Only 1 flavor in the beam
- Well known and determined energy (kinematics well known and nucleon recoil negligible)
- Beams well collimated and with value of ($\gamma/E_{CM})$ higher than ν factories

Proposals:

- Cern- Frejus (L about 130 Km; "low" beam E)
- Higher E beams and longer baselines (Cern-G.Sasso/Canarie)
- proposed for neutrino physics, but useful also to study Standard Model ?
- Analysis already available for neutrino factories
 - Interesting to extend it to beta-beams

WEINBERG ANGLE

Theory of electroweak unification Glashow-Weinberg-Salam (1967) SU(2) x U(1) simmetry invariance → weak and e.m. forces *mixed* couplings

v-e⁻ elastic scattering: competitive for Weinberg angle measurement at "high energy" v factories; at lower energies the lower cross sections compensated by high intensities. For E $\sim M_N$ (quasi) elastic contributions to v-nucleon interactions are sizable.

Weinberg angle determination

 6 cross sections: neutrino (antineutrino) neutral currents on proton (neutron) and neutrino (antineutrino) charged currents

•Fixing the values of the electric form factors there are 6 parameters left : Weinberg angle and 5 form factors $(G^{p}_{M}, G^{n}_{M}, G^{s}_{M}, G^{s}_{A}, G^{s}_{A})$

Analytical study:

 search for cross section combinations (v-v asymmetries, etc.) to isolate Weinberg angle dependence;

- "forward" approximation of form factors

We cannot ignore "strange" terms and the forward approximation is not enough

Direct analytical solution

SYSTEM of 6 equations coupled 2 by 2 •The equation for Weinberg angle can be solved analytically in terms of measurable quantities

$$\sin^{2} \vartheta_{w} = \frac{1}{2} + \frac{a_{3} - b_{2}}{4b_{1}}$$

$$= \sqrt{\frac{Ey (2 - y) + \sqrt{E^{2}y^{2} (2 - y)^{2} - F^{2} [2 (1 - y) + y^{2}]^{2}}{4a [2 (1 - y) + y^{2}] y (2 - y)}}$$

$$= \sqrt{\frac{2 (1 - y) + y^{2}}{ay (2 - y)}} \frac{B}{\sqrt{Ay (2 - y) \sqrt{E^{2}y^{2} (2 - y)^{2} - B^{2} [2 (1 - y) + y^{2}]^{2}}}}$$

$$= -\sqrt{\frac{Cy (2 - y) + \sqrt{C^{2}y^{2} (2 - y)^{2} - D^{2} [2 (1 - y) + y^{2}]^{2}}{a [2 (1 - y) + y^{2}] y (2 - y)}}}$$
A,B,C,D,E,F: cross section combinations;

$$\mathbf{y} = \mathbf{E}_{p}/\mathbf{E}_{v} \text{ kinematical variable of elastic scattering}}$$

ho

Numerical study

•From data analysis simultaneous fit of the values of Weinberg angle and hadronic form factors

 In the experimental situation not possible to distinguish the neutral current on neutron

from 6 to 4 cross sections \rightarrow loss of information.

•Example of analysis: fix all the other form factors to their central value and determine simultaneously $sin^2\theta_W$; G^S_M (Q²)

$$G_{M^{s}}(Q^{2}) = \frac{F_{1}^{s}Q^{2} + F_{2}^{s}(0)}{(1+\tau)(1+\frac{Q^{2}}{M_{N}^{2}})^{2}} \qquad \tau = \frac{Q^{2}}{4M_{N}^{2}}$$

 G_{A}^{s} known with bad accuracy (about 30%), but cross sections weekly dependent on G_{A}^{s} . We assume dipole form and take 1 σ variation for the forward value $G_{A}^{s}(0) = -0.13 \pm 0.09$

Experimental requirements

It is fundamental to select QE scattering from other reactions. Elastic and quasi elastic cross sections: optimal region around 1 GeV (ex. T2K)

•Neutral currents must be identified: only recoiling proton can me measured: no NC on neutron...

Different Q² bins should be investigated: kinematic reconstruction

Main Obstacles:

•reinteractions and Fermi motions in the nucleus: reactions different from QE can mimick QE, kinematics is in general modified, additional low energy protons are produced in the nucleus

Detector alternatives

1) Water Cherenkov: Pro: there is the possibility of assembling a very large mass (some MTon) **Con: the Cherenkov threshold prevents the detection of** recoiling protons with p<1 GeV. 2) Liquid Argon TPC Pro: in principle p down to 50 MeV can be identified. Con: Difficult to assemble a large mass; nuclear reinteractions in Ar are more important than in water For p > 300 MeV \implies Q² > 0.1 GeV², about 75% of the events surviving. Measurements at near detector already competive with detector below kton (around 500 ton)

Interesting possibility mainly for superbeams

A simple example

- Using for fluxes and energy:
 - $\Phi_{v} \cong 10^{16} (\text{m}^{2}/\text{yr}); \ \Phi_{\text{anti-v}} \cong 5 \ 10^{14} (\text{m}^{2}/\text{yr}); \ E_{v} = 1 \ \text{GeV}$
- Detector: 10 ktons Liquid Ar
- Assuming in data generation $\sin^2\theta_w = 0.2312$
 - From simultaneous fit of $\sin^2\theta_w$ and $G_M{}^S$, varying $G_A{}^S$, we get: $\sin^2\theta_w = 0.2309 \pm 0.0019 \text{ (stat)} \pm 0.0024 \text{ (syst)}$

CONCLUSIONS

- Standard Model: tested with high accuracy and working very well up to the electroweak scale
- Useful to improve parameters knowledge at medium-low energies.
- Role of v physics and future experiments with high intensity beams
- Neutrino (antineutrino) nucleon interaction: dependence from Weinberg angle and hadronic form factors
- Analytical study and estimate of accuracy in sin²θ_W determination
 Numerical analysis of the problem
- Examples: β beams and superbeams potentiality
 Measurements realistic with present Icarus technology
- Measurement at energies low with respect to LEP is interesting to verify theory consistency and/or eventual signals of physics beyond S.M.