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Standard Model and neutrino roleStandard Model and neutrino role
• Since the ’60s many experimental  confirmations of the 

Standard Model; precision tests (LEP, high  energies)  

•• Neutrino relevanceNeutrino relevance: : 
• Neutrino played a relevant role in the past (Gargamelle, 

discovery of neutral currents)   

• Interact only weakly possible measure of Weinberg angle

• Neutrino masses and mixing:

Fu

Future search of Future search of physicsphysics beyondbeyond the the S.MS.M., 2 ., 2 waysways::
1) Higher energy

2) High intensity (High-intensity ν beams to study ν
properties and test e.w. interactions. Low energy tests of   
S.M.: search for rare processes and measurements of S.M.   
parameters with low E and very high intensity ν beams)

need to modify Standard

Model. Theories beyond the S.M.
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Neutrino physics: present status
see for instance:  PRD 67 (2003) 013006;  PRD 69 (2004)013005;  NPB (Proc. Suppl.)143 (2005)483;   
Progr. Part. Nucl. Phys. 57(2006)742 and 71; hep-ph/0606060 

• Neutrino (ν) known since many years, but many of its properties are still  poorly known 
• Last years very relevant results:

− ν massive and oscillating particles. Proofs from: solar (mainly SuperKamiokande and 
SNO), atmospheric (SK) and reactor (KamLAND) neutrinos; accelerators (K2K)

- At least 2 Δm2 , hence 3 mass eigenstates: 

Δm2
12 : = m2

2 - m1
2 = 7±1·10-5 eV2  : ν solar and from reactor (LMA solution)

|Δm2
23| : = |m3

2- m2
2| = 2.0±0.4 ·10-3 eV2 : ν atmospheric and K2K 

- Maximal Mixing in the sector 2-3 : tan2θ23 =1 ; 
combining KL and solar ν data: tan2θ12 = 0.45±0.08
- Upper limits (from CHOOZ and Palo Verde) on mixing 1-3: θ13< 14°

....however
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Open Problems in Neutrino Physics
• Despite the relevant recent results,

Still many open problems

- Nature of neutrino (Dirac o Majorana)

- Absolute value and hierarchy of masses (direct,
inverse or quasi-degenere)

- Exact determination of mixing parameters: 

θ13=0 or θ13 ≠ 0

- Search for CP violation
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Future of neutrino physics (from accelerators) 
•1st stage: Conventional ν beams from a secondary meson beam (K2K, MINOS, 
CERN/G.Sasso, T2K 1st phase)  and  Double Chooz (reactor) partial 
improvement of θ13 ;  Not enough to study the leptonic CP violation 

• 2nd stage: Superbeams (T2K 2nd phase, NoνA, CERN)
• beam luminosity increase: θ13 precise measurement and/or (eventual) CP violation
search 

- T2K (Japan, 2009) 2nd phase: νμ beam from JParc to SuperK (L=295 Km)
- NoνA (USA): use the beam of NuMI at FNAL, detector at about 800 Km
-CERN: possible superbeam exploiting the CERN SPL

•3rd stage (end of next decade): ν from primary beam decays 
Neutrino factories: ν from decay of muons (tens of GeV) in accumulation rings
(                                     ) 
Beta beams: ν beams from β decays (few GeV or lower E)

Example: 6He for anti-v beam;     and 18Ne for ν beams
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T2K
• Neutrino beam from protosinchrotron of 50 GeV,  0.75 MW at JParc

• Off-axis beam  to SuperKamiokande (L = 295 Km) .                  
Begins spring 2009

• Main goals:
- sin2 θ13 measurement with sensitivity 20 times better than Chooz 
- Measurement of Δm23

2 and sin2 θ23 (atmosferic parameters) at 1-2%
(νμ disappearance)

- search for sterile ν (weak currents disappearance)
- Tests of  Standard Model parameters:          low energy measurements, 

different from LEP; eventual possibility of signals of new physics 
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• Analysis already available for neutrino factories

• proposed for neutrino physics, but useful also to study  Standard  
Model ?

BetaBeta--BeamsBeams
• Only 1 flavor in the beam 
• Well known and determined energy (kinematics well known  
and nucleon recoil negligible)

• Beams well collimated and with value of (γ/ECM) higher than
ν factories

PRO

Interesting to extend it to beta-beams     

Proposals:
- Cern- Frejus (L about 130 Km; ‘‘low’’ beam E)
- Higher E beams and longer baselines (Cern-G.Sasso/Canarie)
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WEINBERG ANGLEWEINBERG ANGLE
Theory of electroweak unification 
Glashow-Weinberg-Salam (1967)
SU(2) x U(1) simmetry invariance 

weak and e.m. forces mixed
couplings

SU(2) g

U(1)   g’

n-

ν-e- elastic scattering: competitive for Weinberg angle
measurement at ‘‘high energy’’ ν factories;  at lower energies

the lower cross sections compensated by high intensities.
For E ~MN (quasi) elastic contributions to ν-nucleon

interactions are sizable.
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Neutral current scattering amplitudes

FORM FACTORS introduction
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Weinberg angle determinationWeinberg angle determination
•6 cross sections: neutrino (antineutrino) neutral 
currents on proton (neutron) and neutrino 
(antineutrino) charged currents

•Fixing  the  values  of  the electric form factors there are 6
parameters left :  Weinberg angle and 5 form factors

(G
p

M, G
n

M , G
S

M , GA , G
S

A)

•Analytical study:
- search for cross section combinations (ν-ν asymmetries, 
etc.) to isolate Weinberg angle dependence;
- ‘‘forward’’ approximation of form factors

We cannot ignore ‘‘strange’’ terms and the 
forward approximation is not enough
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Direct analytical solutionDirect analytical solution

•The equation for Weinberg angle can be solved analytically in terms 
of measurable quantities

SYSTEM of 6 equations coupled 2 by 2

A,B,C,D,E,F: cross section combinations; 

y =EP/Eν kinematical variable of elastic scattering
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Numerical studyNumerical study
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•From data analysis simultaneous fit of the values of  
Weinberg angle and hadronic form factors

•In the experimental situation not possible to distinguish the 
neutral current on neutron

from 6 to 4 cross sections loss of information.

•Example of analysis: fix all the other form factors to their 
central value and determine simultaneously sin2θW ; GS

M (Q2)

GS
A known with bad accuracy (about 30%),  but cross sections 

weekly dependent on GA
S. We assume dipole form and take 1 σ

variation for the forward value GA
S(0)=-0,13   0.09±

\



Experimental requirementsExperimental requirements
It is fundamental to select QE scattering from other 
reactions. Elastic and quasi elastic cross sections: optimal 
region around 1 GeV (ex. T2K)

•Neutral currents must be identified: only recoiling 
proton can me measured: no NC on neutron...

•Different Q2 bins should be investigated: kinematic
reconstruction

Main Obstacles: 

•reinteractions and Fermi motions in the nucleus: 
reactions different from QE can mimick QE, kinematics 
is in general modified, additional low energy protons are 
produced in the nucleus



Detector alternativesDetector alternatives
1) Water Cherenkov: 
Pro: there is the possibility of assembling a very large 

mass (some MTon)
Con: the Cherenkov threshold prevents the detection of 

recoiling protons with p<1 GeV. 

2) Liquid Argon TPC

Pro: in principle p down to 50 MeV can be identified.

Con: Difficult to assemble a large mass; nuclear 
reinteractions in Ar are more important than in water

For p  > 300 MeV Q2 >  0.1 GeV2 , about 75% of the events 
surviving. Measurements at near detector already competive with 
detector below kton (around 500 ton)

Interesting possibility mainly for superbeams
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A simple example

- Using for fluxes and energy:

 Φν ≅ 1016 (m2/yr) ;  Φanti-ν ≅ 5 1014 (m2/yr) ; Eν = 1 GeV

- Detector : 10 ktons Liquid Ar

- Assuming in data generation sin2θw = 0.2312

- From simultaneous fit of sin2θw and GM
S, varying GA

S, we get:

sin2θw = 0.2309 ± 0.0019 (stat) ± 0.0024 (syst)
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CONCLUSIONSCONCLUSIONS
• Standard Model: tested with high accuracy and working very well up  

to the electroweak scale
• Useful to improve parameters knowledge at medium-low energies. 

• Role of  ν physics and future experiments with high intensity beams

• Neutrino (antineutrino) nucleon interaction: dependence from 
Weinberg angle and hadronic form factors

• Analytical study and estimate of  accuracy  in  sin2θW determination
• Numerical analysis of the problem

• Examples: β beams and superbeams potentiality
Measurements  realistic with present Icarus technology  

• Measurement at energies low with respect to LEP is interesting to
verify theory consistency and/or eventual signals of physics beyond S.M.


