IFAE, Napoli, 12 Aprile 2007

Electroweak Baryogenesis (EWBG) versus Leptogenesis

Pasquale Di Bari (Max Planck, Munich)

Thermal history of the Universe

Matter-antimatter asymmetry

Symmetric Universe with matter- anti matter domains?
 Excluded by CMB + cosmic rays

$$\eta_{\rm B}^{\rm CM} = (6.3 \pm 0.3) \times 10^{-10} >> \eta_{\rm B}^{-10}$$

- Pre-existing? It conflicts with inflation! (Dolgov '97)
 -) dynamical generation (baryogenesis)

(Sakharov '67)

Models of Baryogenesis

From phase transitions: From Black Hole evaporation **EWBG**: Spontaneous Baryogenesis * in the SM * in the MSSM * in the NMSSM * in the 2 Higgs model From heavy particle decays: GUT Baryogenesis Affleck-Dine: - LEPTOGENESIS at preheating

Q-balls

Baryogenesis in the SM?

- All 3 Sakharov conditions are fulfilled in the SM:
- 1.baryon number violation at T ♦ 100 GeV,
- 2.CP violation in the quark CKM matrix,
- 3.departure from thermal equilibrium (an arrow of time)

from the expansion of the Universe

Baryon Number Violation at finite T

Although at T= 0 baryon number violating processes are inhibited, at finite T:

$$\Gamma(\Delta B \neq 0) \propto T^4 \exp\left[-\kappa \frac{v(T)}{T}\right]$$

$$E_{\mathrm{sph}}(T) \simeq 4\,\pi\,\frac{v(T)}{g}$$
, where $v \equiv \langle \Phi \rangle = \begin{cases} 0 \text{ for } \mathrm{T} \ \blacklozenge \ \mathrm{T_c} \text{ (unbroken place)} \\ \mathrm{phase} \\ \mathrm{v}(\mathrm{T_c}) \text{ for } \mathrm{T} \ \varOmega \ \mathrm{T}_\mathrm{c} \text{ (broken place)} \end{cases}$

- Baryon number violating processes are unsuppressed at T ♦ T_c 100 GeV
- Anomalous processes violate lepton number as well but preserve B-L!
 - I There can be enough departure from thermal equilibrium?

EWBG in the SM

If the EW phase transition (PT) is 1st order **9 broken phase bubbles nucleate**

In the SM the ratio v_c/T_c is directly related to the Higgs mass and only for $M_h < 40$ GeV one can have a strong PT \odot EW baryogenesis in the SM is ruled out by the LEP lower bound $M_h \spadesuit 114$ GeV! (also not enough \odot P)

New Physics is needed!

EWBG in the MSSM

Additional bosonic degrees of freedom (dominantly the light stop contribution)
 can make the EW phase transition more strongly first order if:

- Notice that there is a tension between the strong PT requirement and the LEP bound on M_h and in particular one has to impose $5 2 \tan \delta = 10$
- In addition there are severe constraints from the simultaneous requirement of CP violation in the bubble walls without generating too large electric dipole more of the electron: is EWBG still alive ?

Is EWBG still alive?

3 possible attitudes:

- Optimistic: Not only it is alive but the allowed region in the MSSM parameter space has interesting features also to solve another of the cosmological puzzles: Dark Matter (Carena et al. '05)
- Realistic: EWBG in the MSSM has strong constraints but these can be relaxed within other frameworks:
 - in the NMSSM (Pietroni '92,Davies et al. '96, Huber and Schmidt '01)
 - in the nMSSM (Wagner et al. '04)
 - in left-right symmetric models at B-L symmetry breaking (Mohapatra and Zhang '92)
 -
- Pessimistic: We need some other mechanism; SUSY has not yet been discovered but on the other hand

Neutrino masses: m₁ < m₂ < m₃

neutrino mixing data

2 possible schemes: normal or inverted

$$m_3^2 - m_2^2 = \Delta m_{
m atm}^2$$
 or $\Delta m_{
m sol}^2$ $m_{
m atm} \equiv \sqrt{\Delta m_{
m atm}^2 + \Delta m_{
m sol}^2} \simeq 0.05\,{\rm eV}$ $m_2^2 - m_1^2 = \Delta m_{
m sol}^2$ or $\Delta m_{
m atm}^2$ $m_{
m sol} \equiv \sqrt{\Delta m_{
m sol}^2} \simeq 0.009\,{\rm eV}$

Tritium \Re decay : $m_e < 2.3 \text{ eV}$ (Mainz 95% CL)

 $\Omega \Omega 0 = : m_{\Omega \Omega} < 0.3 - 1.0 \text{ eV}$ (Heidelberg-Moscow 90% CL, similar result by CUORICINO)

using the flat prior (ϕ_0 =1): CMB+LSS : ϕ m_i < 0.94 eV (WMAP+SDSS) CMB+LSS + Ly \odot : ϕ m_i < 0.17 eV (Seljak et al.)

Minimal RH neutrino implementation

SM + RH neutrinos with Yukawa coupling and Majorana mass term:

$$\mathcal{L}_Y = -\overline{l}_L \phi h \nu_R - \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + h.c.$$

After spontaneous symmetry breaking $\Rightarrow m_D = v h \quad (v \equiv \langle \phi_0 \rangle)$

$$\mathcal{L}_{\text{mass}}^{\nu} = -\frac{1}{2} \left[(\bar{\nu}_L^c, \bar{\nu}_R) \begin{pmatrix} \mathbf{w}_T & \mathbf{m}_D^T \\ \mathbf{m}_D & \mathbf{M}_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \right] + h.c.$$

3 limiting cases:

- pure Dirac: M_R= 0
- pseudo-Dirac : M_R << m_D
- see-saw limit: M_R >> m_D

See-saw mechanism

3 light LH neutrinos:
$$m_
u = -m_D \, {1 \over M_B} \, m_D^T \, |_{\mathbf{m}_
u}$$

SEE-SAW

 $N\square 2$ heavy RH neutrinos: $N_1, N_2, ...$

$$(N = \nu_R + \nu_R^c \ , \ \nu = \nu_L + \nu_L^c) \ \Rightarrow \ \beta \beta 0 \nu \, \mathrm{decay}$$

Typical 1 generation example:

$$\mu \sim M_{\text{EW}} \sim 100 \, \text{GeV} \, , \, m_{\nu} \simeq m_{\text{atm}} \sim 0.1 \, \text{eV}$$
 $\Rightarrow M_R \sim 10^{14} \, \text{GeV} \stackrel{<}{\sim} M_{\text{GUT}}$

- the 'see-saw' pivot scale • is then an important quantity to understand the role of RH neutrinos in cosmology

O* ~ 1 GeV

- > > * high pivot see-saw scale heavy RH neutrinos
- O< O* low pivot see-saw scale `light' RH neutrinos

Basics

(Fukugita, Yanagida '86)

M, m_D, m_■ are complex matrices **9** natural source of CP violation

$$N_i \stackrel{\Gamma}{\longrightarrow} l H^{\dagger}$$

$$N_i \stackrel{\overline{\Gamma}}{\longrightarrow} \overline{l} H$$

$$\varepsilon_i \equiv -\frac{\Gamma_i - \Gamma_i}{\Gamma_i + \overline{\Gamma}_i}$$

If $\varepsilon_i \neq 0$ a **lepton asymmetry** is generated from N_i decays and partly converted into a **baryon asymmetry** by sphaleron processes

if $T_{reh} \spadesuit 100 \text{ GeV}$!

(Kuzmin, Rubakov, Shaposhnikov, '85)

$$N_{B-L}^{\mathrm{fin}} = \sum_{i} \varepsilon_{i} \overbrace{\kappa_{i}^{\mathrm{fin}}} \Rightarrow \eta_{B} = a_{\mathrm{sph}} \frac{N_{B-L}^{\mathrm{fin}}}{N_{\gamma}^{\mathrm{rec}}}$$

efficiency factors & # of N_i decaying out-of-equilibrium

(Unflavored) Kinetic Equations

$$z = \frac{M_1}{T} \begin{bmatrix} \frac{dN_{N_i}}{dz} = -(D_i + S_i)(N_{N_i} - N_{N_i}^{\text{eq}}) \\ \frac{dN_{B-L}}{dz} = \sum_{i} \varepsilon_i (D_i + S_i)(N_{N_i} - N_{N_i}^{\text{eq}}) \\ -N_{B-L} \sum_{i} W_i^{\text{ID}} \end{bmatrix}$$
CP violation in decays
Wash-out term from inverse decays

$$D_i \equiv \frac{\Gamma_{D,i}}{H(z)z} = K_i z \langle \frac{1}{\gamma} \rangle, \quad W_i^{\text{ID}} \propto D_i \propto K_i$$

''decay parameters''
$$K_i \equiv \frac{\Gamma(N_i \to l \Phi^\dagger)|_{T \to 0}}{H(T = M_i)} = \frac{(m_D^\dagger m_D)_{ii}}{M_i}$$

- Strong wash-out when K_i ◆ 3
- Weak wash-out when K_i << 3

The traditional picture

- flavor composition of leptons is neglected
- hierarchical heavy neutrino spectrum
- asymmetry generated from the lightest RH neutrino decays (N₁-dominated scenario)

N₁ - dominated scenario

Assume:

1. hierarchical heavy neutrino spectrum

2. • strong wash-out $(K_1 \gg 1)$

decays and inverse processes are fast compared to the expansion of the Universe

or

ullet weak wash-out ($K_1\lesssim 1$) and $|arepsilon_3|, |arepsilon_2|\ll |arepsilon_1|$

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \simeq \varepsilon_{1} \kappa_{1}^{\text{fin}}$$

It does not depend on low energy phases!

The orthogonal seesaw matrix

- parameter counting: 6 + 3 + 6 + 3 = 18
 - ullet experiments \Rightarrow information on the 9 'low energy' parameters in $m_
 u = -U\,D_m\,U^T$:
 - we measure 4: $m_{\rm atm}, \, m_{\rm sol}, \, \theta_{23} \simeq 45^0, \, \theta_{12} \simeq 32^0 \simeq 45^0 \theta_C$
 - we still miss five: $m_1 \lesssim 1 \, \text{eV}$, $\theta_{13} \lesssim 14^0$, $\delta, \varphi_1, \varphi_2$
 - ullet the 9 parameters in Ω and in M_i escape conventional investigation: the dark side!
 - leptogenesis \Rightarrow information on Ω, M_i and also on m_1 but $\varepsilon_i = \varepsilon_i (m_D^\dagger m_D)$ $\Rightarrow U$ cancels out: in general we cannot test leptogenesis with CP in neutrino mixing!

CP asymmetry

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)

Assuming $|M_{j\neq i}-M_i|\gg |\Gamma_{j\neq i}-\Gamma_i|$ (off-resonance condition),

the interference between tree level and one-loop diagrams (self energy + vertex) yields:

$$\varepsilon_i \simeq \frac{1}{8\pi v^2 (m_D^{\dagger} m_D)_{ii}} \sum_{j=2,3} \text{Im} \left[(m_D^{\dagger} m_D)_{ij}^2 \right] \times \left[f_V \left(\frac{M_j^2}{M_i^2} \right) + f_S \left(\frac{M_j^2}{M_i^2} \right) \right]$$

 \Rightarrow the $arepsilon_{\pmb{i}}$'s depend on m_D only through $m_D^\dagger \, m_D \Rightarrow U$ cancels out !

Decays and Inverse Decays

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{\text{eq}} \right)$$

$$\frac{dN_{B-L}}{dz} = -\varepsilon_1 \frac{dN_{N_1}}{dz} - W_{ID} N_{B-L}$$

$$D_1 = \frac{\Gamma_{D,1}}{Hz} = K_1 z \left\langle \frac{1}{\gamma} \right\rangle, \quad W_{ID} \propto D_1 \propto K_1$$

$$N_{B-L}(z; K_1, z_{\rm in}) = N_{B-L}^{\rm in} e^{-\int_{z_{\rm in}}^{z} dz' W_{ID}(z')} + \varepsilon_1 \kappa_1(z)$$

$$\kappa_1(z; K_1, z_{\rm in}) = -\int_{z_{\rm in}}^z dz' \left[\frac{dN_{N_1}}{dz'} \right] e^{-\int_{z'}^z dz'' W_{ID}(z'')}$$

- Weak wash-out regime for $K_1 \lesssim 1$ (out-of-equilibrium picture recovered for $K_1 \to 0$)
- Strong wash-out regime for $K_1\gtrsim 1$

 $z' M_1/T$

K_1 t_U $T=M_1$ T_1 WEAK WASH-OUT

Dependence on the initial conditions

Neutrino mixing data favor the strong wash-out regime!

Neutrino mass bounds

Lower bound on M_1 and on $T_{\rm reh}$

(Davidson, Ibarra '02; Buchmuller, PDB, Plumacher '02,'04; Giudice, Notari, Raidal, Riotto, Strumia,'03)

Upper bound on the absolute neutrino mass scale

(Buchmüller, PDB, Plümacher '02,'03,'04)

Upper bound on the absolute neutrino mass scale

(Buchmüller, PDB, Plümacher '02)

The need of a very hot Universe for Leptogenesis

Beyond the traditional picture

- N₂-dominated scenario
- beyond the hierarchical limit
- flavor effects

N₂-dominated scenario

(PDB'05)

See-saw orthogonal matrix:

$$m_
u = -m_D \, rac{1}{M} \, m_D^T \Leftrightarrow rac{\Omega^T \Omega = I}{M}$$

$$oxed{m_D} = egin{bmatrix} U \left(egin{array}{ccc} rac{\sqrt{m_1} \, 0 \, 0}{0 \, \sqrt{m_2} \, 0} \, 0 & \sqrt{M_2} \, 0 \ 0 \, 0 \, \sqrt{M_3} \, \end{array}
ight)} \ \end{array}$$

$$\mathsf{For} \; \Omega \simeq \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \Omega_{22} & \sqrt{1-\Omega_{22}^2} \\ 0 & -\sqrt{1-\Omega_{22}^2} & \Omega_{22} \end{array} \right) \qquad \bullet \quad \overset{\mathsf{1.}\; \mathcal{E}_1 = \emptyset}{\longrightarrow} \; \overset{\mathsf{\rightarrow}}{\longrightarrow} \; \overset{\mathsf{Inc}\; \mathsf{dsymmetry} \; \mathsf{mon}\; \mathcal{H}_1 \; \mathsf{decays} \; \mathsf{but} \dots}{\mathsf{1...} \; \mathsf{inc}\; \mathsf{dsymmetry} \; \mathsf{mon}\; \mathcal{H}_1 \; \mathsf{decays} \; \mathsf{but} \dots} \right)$$

1.
$$\varepsilon_1=0$$
 \Rightarrow no asymmetry from N_1 -decays but . . .

- 4. $K_2 \ge K_{\rm sol} \gg 1 \Rightarrow$ no dependence on the initial conditions

The lower bound on M₁ disappears and is replaced by a lower bound on M₂ The lower bound on T_{reh} remains

Beyond the hierarchical limit

(Pilalftsis '97, Hambye et al '03, Blanchet, PDB '06)

Assume:

- partial hierarchy: M₃ >> M₂, M₁
- $\Rightarrow |\varepsilon_3| \ll |\varepsilon_2|, |\varepsilon_1|$ and $\kappa_3^{\text{fin}} \ll \kappa_2^{\text{fin}}, \kappa_1^{\text{fin}}$

$$N_{B-L}^{\mathrm{fin}} \simeq \varepsilon_1 \, \kappa_1^{\mathrm{fin}} + \varepsilon_2 \, \kappa_2^{\mathrm{fin}}$$

• heavy N_3 : $M_3 >> 10^{14}$ GeV

- 3 Effects play simultaneously a role for $\[\[\] \]_2 \cong \]$ 1) the two wash-out add up $\Rightarrow N_{B-L}^{fin} \searrow \]$ 2) $\[\[\[\] \] \]_2 \approx_2 \kappa_2^{fin} \sim \varepsilon_1 \, \kappa_1^{fin} \Rightarrow N_{B-L}^{fin} \nearrow \]$ 3) both $\[\[\] \] \]_2 \approx_2 \infty \, \delta_2^{-1} \]$ for $\[\[\] \] \]$ 3) both $\[\[\] \] \]_2 \approx_2 \infty \, \delta_2^{-1} \]$ for $\[\] \] \]$

For $\delta_2 \stackrel{<}{\sim}$ 0.01 (degenerate limit):

$$(M_1^{\rm min})_{\rm DL} \simeq 4 \times 10^9 \, {
m GeV} \left(rac{\delta_2}{0.01}
ight) \quad {
m and} \quad (T_{
m reh}^{
m min})_{
m DL} \simeq 5 \times 10^8 \, {
m GeV} \left(rac{\delta_2}{0.01}
ight)$$

Flavor effects

(Nardi,Roulet'06;Abada et al.'06;Blanchet,PDB'06)

$$N_1 \longrightarrow l_1 \, H^\dagger$$
 ,

$$N_1 \longrightarrow \overline{l}'_1 H$$

Flavour composition:

$$\begin{aligned} |l_{\rangle} &= \sum_{\alpha} \langle l_{\alpha} | l_{1} \rangle | l_{\alpha} \rangle & (\alpha = e, \mu, \tau) \\ |\overline{l}_{1}' \rangle &= \sum_{\alpha} \langle l_{\alpha} | \overline{l}_{1}' \rangle |\overline{l}_{\alpha} \rangle & \end{aligned}$$

Does it play any role? No if $M_1 > \mathcal{O}(10^{12} \, \text{GeV})$

However for lower values of M_1 the -Yukawa interactions,

$$-\bar{l}_{L\alpha} \phi f_{\alpha\alpha} e_{R\alpha} , \quad (\alpha = \tau)$$

are fast enough to break the coherent evolution of the $|l_1\rangle$ and $|\overline{l}_1'\rangle$ quantum states that are projected on the flavor basis!

projectors:

$$P_{1\alpha} \equiv |\langle l_{\alpha} | l_{1} \rangle|^{2} = P_{1\alpha}^{0} + \frac{\Delta P_{1\alpha}^{0}}{2} \quad (\sum_{\alpha} P_{1\alpha} = 1)$$
$$\bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha} | \bar{l}'_{1} \rangle|^{2} = P_{1\alpha}^{0} - \frac{\Delta P_{1\alpha}^{0}}{2} \quad (\sum_{\alpha} \bar{P}_{1\alpha} = 1)$$

these 2 terms correspond to 2 different flavor effects:

- In each inverse ${\rm decay}_{H^\dagger + l_\alpha \to N_1}$ the Higgs interacts now with incoherent flavor eigenstates !
- **9** the wash-out is reduced and $K_1 \rightarrow K_{1\alpha} \equiv P_{1\alpha}^0 K_1$
 - In general $|\bar{l}_1'\rangle \neq CP|l_1\rangle$ and this produces an additional CP violating contribution to the flavoured CP asymmetries

$$\varepsilon_{1\alpha} \equiv -\frac{P_{1\alpha}\Gamma_1 - \bar{P}_{1\alpha}\bar{\Gamma}_1}{\Gamma_1 + \bar{\Gamma}_1} = P_{1\alpha}^0 \varepsilon_1 + \underbrace{\Delta P_{1\alpha}}_2$$

Interestingly one has that this additional contribution depends on U!

In pictures:

1)
$$\Gamma \neq \bar{\Gamma}$$

2)
$$|\overline{l}_1'\rangle \neq CP|l_1\rangle$$

Flavoured Kinetic Equations

It is then necessary to track the asymmetries separately in each flavor:

$$\Delta_{\alpha} \equiv \frac{B}{3} - L_{\alpha}$$

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{\text{eq}} \right)$$

$$\frac{dN_{\Delta_{\alpha}}}{dz} = -\varepsilon_{1\alpha} \frac{dN_{N_1}}{dz} - P_{1\alpha}^0 W_{ID} N_{\Delta_{\alpha}}$$

$$N_{B-L} = \sum_{\alpha} N_{\Delta_{\alpha}}$$

NO FLAVOR

WITH FLAVOR

General scenarios (K₁ >> 1)

Alignment case

$$P_{1\alpha} = \overline{P}_{1\alpha} = 1 \quad \text{ and } P_{1\beta \neq \alpha} = \overline{P}_{1\beta \neq \alpha} = 0 \quad \Longrightarrow \quad \frac{N_{B-L}^J}{[N_{B-L}^J]_{\text{unfl}}} = 1$$

Democratic (semi-democratic) case

$$P_{1\alpha} = \overline{P}_{1\alpha} = 1/3 \quad (P_{1\alpha} = 0, P_{1\beta \neq \alpha} = 1/2)$$
 $\Longrightarrow \frac{N_{B-L}^{f}}{[N_{B-L}^{f}]_{unfl}} \simeq 3$

One-flavor dominance

$$P_{1\alpha}^0 \ll P_{1\beta \neq \alpha}^0 \sim \mathcal{O}(1) \quad \text{and} \quad \varepsilon_{1\alpha} \simeq \varepsilon_{1\beta \neq \alpha} \qquad \qquad \Longrightarrow \quad \frac{N_{B-L}^f}{[N_{B-L}^f]_{\text{unfl}}} \gg 1$$

big effect!

Lower bound on M₁

→ The lowest bounds independent of the initial conditions (at K₁=K_{*}) don't change! (Blanchet, PDB '06)

But for a fixed K_1 , there is a relaxation of the lower bounds of a factor 2 (semi-democratic) or 3 (democratic), but it can be much larger in the case of one flavor dominance.

A relevant specific case

• Let us consider:

$$\Omega = R_{13} = \begin{pmatrix} \sqrt{1 - \omega_{31}^2} & 0 & -\omega_{31} \\ 0 & 1 & 0 \\ \omega_{31} & 0 & \sqrt{1 - \omega_{31}^2} \end{pmatrix}$$

- •Since the projectors and flavored asymmetries depend on U
- 9 one has to plug the information from neutrino mixing experiments
 - For $m_1=0$ (fully hierarchical light neutrinos)
 - **9** $P_{1e}^0 \simeq 0$, $P_{1\mu}^0 \simeq P_{1\tau}^0 \simeq 1/2$, $\Delta P_{1\alpha} = 0$
 - 9 Semi-democratic case

Flavor effects represent just a correction in this case!

The role of Majorana phases

•However allowing for a non-vanishing m₁ the effects become much larger especially when Majorana phases are turned on !

$$M_1^{min}$$
 (GeV) M_1^{min} (GeV) M_1^{min} $M_1^$

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} \times \operatorname{diag}(e^{i\frac{\Phi_1}{2}}, e^{i\frac{\Phi_2}{2}}, 1),$$

Leptogenesis from low energy phases?

Let us now further impose \Rightarrow real setting Im(\Rightarrow_{13})=0

- •The lower bound gets more stringent but still successful leptogenesis is possible just with CP violation from 'low energy' phases that can be tested in $\partial \partial 0$ decay (Majorana phases) and neutrino mixing (Dirac phase)

Conclusions

- Leptogenesis has at the moment a clear advantage on EWBG: neutrino masses have been discovered and even in the right range;
- EWBG has the nice virtue to be highly predictive
 (therefore also falsifiable): LHC,ILC,DM direct searches,
 EDM's, gravitational waves in LISA (Riotto et al. '01);
- EWBG discovery would kill leptogenesis making it useless;
- However, if nothing beyond a SM Higgs will be found then it would represent another positive test for leptogenesis and a definitive death of EWBG