IFAE, Napoli, 12 Aprile 2007

Electroweak Baryogenesis (EWBG) versus Leptogenesis

Pasquale Di Bari (Max Planck, Munich)

Toward a Cosmological SM ?

(Tegmark et al. 2005)

Parameter	WMAP 3 years + SDSS	Description
Ω_0	$1.003\substack{+0.010\\-0.009}$	Density parameter
	$\Omega_0=1$ (Flat Universe prior)	
h	$0.730^{+0.019}_{-0.019}$	Present expansion rate
q_0	-0.66 ± 0.1	Deceleration parameter
$t_0 ({ m Gyr})$	13.76 ± 0.15	Age of the Universe
$T_{0}\left(K ight)$	2.725 ± 0.001	CMB temperature
$\Omega_{ m B}$	0.0416 ± 0.0019	Baryon Density
$\Omega_{\rm CDM}$	0.197 ± 0.016	Cold Dark Matter Density
Ω_{Λ}	0.761 ± 0.017	Dark Energy Density
w	$-0.941^{+0.087}_{-0.101}$	Dark Energy Equation of State
n_s	$0.948^{+0.014}_{-0.018}$	Scalar index
$\sum_i m_{\nu_i}$	$< 0.94 \mathrm{eV}(95\% CL)$	Sum of neutrino masses

Puzzles of Modern Cosmology

- 1. Matter antimatter asymmetry
- 2. Dark matter
- 3. Accelerating Universe
- 4. Inflation

Thermal history of the Universe

Matter-antimatter asymmetry

Symmetric Universe with matter- anti matter domains ?
 Excluded by CMB + cosmic rays

 $\Rightarrow \eta_{B}^{\text{CMB}} = (6.3 \pm 0.3) \times 10^{-10} \gg \eta_{\overline{B}}$

- Pre-existing ? It conflicts with inflation ! (Dolgov '97)
 - \Rightarrow dynamical generation (baryogenesis)

(Sakharov '67)

Models of Baryogenesis

- From phase transitions:
 - EWBG:
 - * in the SM
 - * in the MSSM
 - * in the NMSSM
 - * in the 2 Higgs model
 - *
 - Affleck-Dine:
 - at preheating
 - Q-balls

- From Black Hole evaporation
- Spontaneous Baryogenesis

- From heavy particle decays:
 - GUT Baryogenesis
 - LEPTOGENESIS

Baryogenesis in the SM ?

- All 3 Sakharov conditions are fulfilled in the SM:
- **1.baryon number violation** at T \gtrsim 100 GeV,
- 2.CP violation in the quark CKM matrix,
- 3.departure from thermal equilibrium (an arrow
 - from the expansion of the Universe

Baryon Number Violation at finite T

('t Hooft

Although at T= 0 baryon number violating processes are inhibited, at finite T:

$$\Gamma(\Delta B \neq 0) \propto T^{4} \exp\left[-\kappa \frac{v(T)}{T}\right]$$

$$v \equiv \langle \Phi \rangle = \begin{cases} 0 \text{ for } T \gtrsim T_{c} \text{ (unbroken)} \\ v(T_{c}) \text{ for } T \leq T_{c} \end{cases}$$

- Baryon number violating processes are unsuppressed at $T \gtrsim T_c \simeq 100$
- Anomalous processes violate lepton number as well but preserve B-L !

I There can be enough departure from thermal equilibrium ?

EWBG in the SM

If the EW phase transition (PT) is 1st order \implies broken phase bubbles nucleate

In the SM the ratio v_c/T_c is directly related to the Higgs mass and only for $M_h < 40 \text{ GeV}$ one can have a strong PT \implies EW baryogenesis in the SM is ruled out by the LEP lower bound $M_h \gtrsim 114 \text{ GeV}$! (also not enough OP)

\implies New Physics is needed!

EWBG in the MSSM

 Additional bosonic degrees of freedom (dominantly the light stop contribution) can make the EW phase transition more strongly first order if :

- Notice that there is a tension between the strong PT requirement and the bound on M_h and in particular one has to impose $5 \le \tan \beta \le 10$
- In addition there are severe constraints from the simultaneous requirement CP violation in the bubble walls without generating too large electric dipole of the electron: is EWBG still alive ?

Is EWBG still alive ?

3 possible attitudes:

- Optimistic: Not only it is alive but the allowed region in the MSSM parameter space has interesting features also to solve another of the cosmological puzzles: Dark Matter (Carena et al. '05)
- Realistic: EWBG in the MSSM has strong constraints but these can be relaxed within other frameworks:
 - in the NMSSM

(Pietroni '92, Davies et al. '96, Huber and Schmidt '01)

- in the nMSSM

(Wagner et al. '04)

- in left-right symmetric models at B-L symmetry breaking (Mohapatra and Zhang '92)

• Pessimistic: We need some other mechanism; SUSY has not yet been discovered but on the other hand

Neutrino masses: $m_1 < m_2 < m_3$

neutrino mixing data

2 possible schemes: normal or inverted

$$m_3^2 - m_2^2 = \Delta m_{\rm atm}^2 \text{ or } \Delta m_{\rm sol}^2 \quad m_{\rm atm} \equiv \sqrt{\Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2} \simeq 0.05 \,\text{eV}$$
$$m_2^2 - m_1^2 = \Delta m_{\rm sol}^2 \text{ or } \Delta m_{\rm atm}^2 \quad m_{\rm sol} \equiv \sqrt{\Delta m_{\rm sol}^2} \simeq 0.009 \,\text{eV}$$

Minimal RH neutrino implementation

SM + RH neutrinos with Yukawa coupling and Majorana mass term:

$$\mathcal{L}_Y = -\overline{l_L} \phi h \nu_R - \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + h.c.$$

After spontaneous symmetry breaking $\Rightarrow m_D = v h$ $(v \equiv \langle \phi_0 \rangle)$

$$\mathcal{L}_{\mathrm{mass}}^{\nu} = -\frac{1}{2} \left[\left(\bar{\nu}_{L}^{c}, \bar{\nu}_{R} \right) \left(\begin{array}{c} M_{T} & m_{D}^{T} \\ m_{D} & M_{R} \end{array} \right) \left(\begin{array}{c} \nu_{L} \\ \nu_{R}^{c} \end{array} \right) \right] + h.c.$$

3 limiting cases :

- pure Dirac: $M_R = 0$
- pseudo-Dirac : M_R << m_D
- see-saw limit: M_R >> m_D

See-saw mechanism

All eigenstates (light and heavy neutrinos) are Majorana neutrinos (self-conjugate particles)

$$(N = \nu_R + \nu_R^c, \quad \nu = \nu_L + \nu_L^c) \quad \Rightarrow \quad \beta \beta 0 \nu \text{ decay}$$

Typical 1 generation example: $\mu \sim M_{\rm EW} \sim 100 \,{\rm GeV} \,, \, m_{\nu} \simeq m_{\rm atm} \sim 0.1 \,{\rm eV}$ $\Rightarrow M_R \sim 10^{14} \,{\rm GeV} \stackrel{<}{\sim} M_{\rm GUT}$

 $\mu > \mu^* \implies$ high pivot see-saw scale \implies `heavy' RH neutrinos

 $\mu < \mu^* \implies$ low pivot see-saw scale \implies `light' RH neutrinos

If $\epsilon_i \neq 0$ a **lepton asymmetry** is generated from N_i decays and partly converted into a **baryon asymmetry** by sphaleron processes **if** T_{reh} \geq 100 GeV ! (Kuzmin,Rubakov,Shaposhnikov, '85)

$$N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \Rightarrow \eta_{B} = a_{\text{sph}} \frac{N_{B-L}^{\text{fin}}}{N_{\gamma}^{\text{rec}}}$$

efficiency factors \simeq # of N_i decaying out-of-equilibrium

The traditional picture

- flavor composition of leptons is neglected
- hierarchical heavy neutrino spectrum
- asymmetry generated from the lightest RH neutrino decays (N₁-dominated scenario)

N₁ - dominated scenario

Assume:

1. hierarchical heavy neutrino spectrum

2. • strong wash-out $(K_1 \gg 1)$

decays and inverse processes are fast compared to the expansion of the Universe

or

• weak wash-out ($K_1 \lesssim 1$) and $|arepsilon_3|, |arepsilon_2| \ll |arepsilon_1|$

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \simeq \varepsilon_{1} \kappa_{1}^{\text{fin}}$$

t does not depend on low energy phases

CP asymmetry

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)

Assuming $|M_{j\neq i} - M_i| \gg |\Gamma_{j\neq i} - \Gamma_i|$ (off-resonance condition),

the interference between tree level and one-loop diagrams (self energy + vertex) yields:

$$\varepsilon_i \simeq \frac{1}{8\pi v^2 (m_D^{\dagger} m_D)_{ii}} \sum_{j=2,3} \operatorname{Im} \left[(m_D^{\dagger} m_D)_{ij}^2 \right] \times \left[f_V \left(\frac{M_j^2}{M_i^2} \right) + f_S \left(\frac{M_j^2}{M_i^2} \right) \right]$$

 \Rightarrow the ε_i 's depend on m_D only through $m_D^{\dagger} m_D \Rightarrow U$ cancels out !

Decays and Inverse Decays

$$\kappa_1(z; K_1, z_{\rm in}) = -\int_{z_{\rm in}}^z dz' \left[\frac{dN_{N_1}}{dz'}\right] e^{-\int_{z'}^z dz'' W_{ID}(z'')}$$

- Weak wash-out regime for $K_1 \leq 1$ (out-of-equilibrium picture recovered for $K_1 \rightarrow 0$)
- Strong wash-out regime for $K_1 \gtrsim 1$

Dependence on the initial conditions

Neutrino mixing data favor the strong wash-out regime !

Neutrino mass bounds

The need of a very hot Universe for Leptogenesis

Beyond the traditional picture

- N₂-dominated scenario
- beyond the hierarchical limit
- flavor effects

N₂-dominated scenario

The lower bound on M_1 disappears and is replaced by a lower bound on M_2 . The lower bound on T_{reh} remains

Beyond the hierarchical limit

(Pilalftsis '97, Hambye et al '03, Blanchet, PDB '06)

Assume:

- partial hierarchy: $M_3 >> M_2$, M_1
- $\Rightarrow |\varepsilon_3| \ll |\varepsilon_2|, |\varepsilon_1| \quad \text{and} \quad \kappa_3^{\text{fin}} \ll \kappa_2^{\text{fin}}, \kappa_1^{\text{fin}}$

 $N_{B-L}^{\rm fin} \simeq \varepsilon_1 \, \kappa_1^{\rm fin} + \varepsilon_2 \, \kappa_2^{\rm fin}$

• heavy N₃: M₃ >> 10¹⁴ GeV

3 Effects play simultaneously a role for $\delta_2 \lesssim 1$:

1) the two wash-out add up
$$\Rightarrow N_{B-L}^{fin} \searrow$$

2) $\varepsilon_2 \kappa_2^{fin} \sim \varepsilon_1 \kappa_1^{fin} \Rightarrow N_{B-L}^{fin} \nearrow$
3) both $\varepsilon_1, \varepsilon_2 \propto \delta_2^{-1}$ for $\delta_2 \ll 0.1 \Rightarrow N_{B-L}^{fin} \nearrow$

For $\delta_2 \stackrel{<}{\sim} 0.01$ (degenerate limit):

 $(M_1^{\min})_{\text{DL}} \simeq 4 \times 10^9 \,\text{GeV}\,\left(\frac{\delta_2}{0.01}\right) \quad \text{and} \quad (T_{\text{reh}}^{\min})_{\text{DL}} \simeq 5 \times 10^8 \,\text{GeV}\,\left(\frac{\delta_2}{0.01}\right)$

$$M_{3} \gtrsim 3 M_{2}$$

$$M_{2}$$

$$M_{2}$$

$$M_{1}$$

$$\delta_{2} \equiv \frac{M_{2} - M_{1}}{M_{1}}$$

Flavor effects

(Nardi,Roulet'06;Abada et al.'06;Blanchet,PDB'06)

$$N_1 \longrightarrow l_1 H^{\dagger}$$
, $N_1 \longrightarrow \overline{l}'_1 H$

Flavour composition:

$$\begin{aligned} |l_{\lambda} &= \sum_{\alpha} \langle l_{\alpha} | l_{1} \rangle | l_{\alpha} \rangle \quad (\alpha = e, \mu, \tau) \\ |\overline{l}_{1}^{\prime} \rangle &= \sum_{\alpha} \langle l_{\alpha} | \overline{l}_{1}^{\prime} \rangle | \overline{l}_{\alpha} \rangle \end{aligned}$$

Does it play any role ? No if $M_1 > \mathcal{O}(10^{12} \text{ GeV})$

However for lower values of M_1 the τ -Yukawa interactions,

$$-\bar{l}_{L\alpha}\phi f_{\alpha\alpha}e_{R\alpha}, \quad (\alpha=\tau)$$

are fast enough to break the coherent evolution of the $|l_1\rangle$ and $|\overline{l'_1}\rangle$ quantum states that are projected on the flavor basis! projectors:

$$P_{1\alpha} \equiv |\langle l_{\alpha} | l_{1} \rangle|^{2} = P_{1\alpha}^{0} + \frac{\Delta P_{1\alpha}^{0}}{2} \quad (\sum_{\alpha} P_{1\alpha} = 1)$$

$$\bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha} | \bar{l}_{1}' \rangle|^{2} = P_{1\alpha}^{0} - \frac{\Delta P_{1\alpha}^{0}}{2} \quad (\sum_{\alpha} \bar{P}_{1\alpha} = 1)$$

these 2 terms correspond to 2 different flavor effects :

- In each inverse decay $H^{\dagger} + l_{\alpha} \rightarrow N_{1}$ the Higgs interacts now with incoherent flavor eigenstates !
- \implies the wash-out is reduced and $K_1 \rightarrow K_{1\alpha} \equiv P_{1\alpha}^0 K_1$
 - In general $|\vec{l}_1'\rangle \neq CP|l_1\rangle$ and this produces an additional CP violating contribution to the

flavoured CP asymmetries

$$\varepsilon_{1\alpha} \equiv -\frac{P_{1\alpha}\Gamma_1 - \bar{P}_{1\alpha}\bar{\Gamma}_1}{\Gamma_1 + \bar{\Gamma}_1} = P_{1\alpha}^0 \varepsilon_1 + \underbrace{\left(\frac{\Delta P_{1\alpha}}{2}\right)}_2$$

Interestingly one has that this additional contribution depends on U !

 $\overline{\mu}$ $\overline{\tau}$

 \overline{l}'_1

Flavoured Kinetic Equations

It is then necessary to track the asymmetries separately in each flavor:

$$\Delta_{\alpha} \equiv \frac{B}{3} - L_c$$

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{eq} \right)$$
$$\frac{dN_{\Delta_{\alpha}}}{dz} = -\varepsilon_{1\alpha} \frac{dN_{N_1}}{dz} - P_{1\alpha}^0 W_{ID} N_{\Delta_{\alpha}}$$

$$N_{B-L} = \sum N_{\Delta_{\alpha}}$$

NO FLAVOR

WITH FLAVOR

General scenarios (K₁ >> 1)

Lower bound on M₁

But for a fixed K_1 , there is a relaxation of the lower bounds of a factor 2 (semi-democratic) or 3 (democratic), but it can be much larger in the case of one flavor dominance.

A relevant specific case

• Let us consider:

$$\Omega = R_{13} = \begin{pmatrix} \sqrt{1 - \omega_{31}^2} & 0 & -\omega_{31} \\ 0 & 1 & 0 \\ \omega_{31} & 0 & \sqrt{1 - \omega_{31}^2} \end{pmatrix}$$

•Since the projectors and flavored asymmetries depend on U \Rightarrow one has to plug the information from neutrino mixing experiments

> • For $m_1=0$ (fully hierarchical light neutrinos) $\implies P_{1e}^0 \simeq 0, \quad P_{1\mu}^0 \simeq P_{1\tau}^0 \simeq 1/2, \quad \Delta P_{1\alpha} = 0$

> > \implies Semi-democratic case

Flavor effects represent just a correction in this case !

The role of Majorana phases

•However allowing for a non-vanishing m₁ the effects become much larger especially when Majorana phases are turned on !

Leptogenesis from low energy phases ?

•The lower bound gets more stringent but still successful leptogenesis is possible just with CP violation from 'low energy' phases that can be tested in $\beta\beta0\nu$ decay (Majorana phases) and neutrino mixing (Dirac phase)

• Moreover considering the degenerate limit these lower bounds can be relaxed: this is important for ` δ -leptogenesis' ! (Anisimov, Blanchet, PDB, in preparation)

Conclusions

- Leptogenesis has at the moment a clear advantage on EWBG: neutrino masses have been discovered and even in the right range; a discovery of CP violation in neutrino mixing would represent another success;
- EWBG has the nice virtue to be highly predictive (therefore also falsifiable): LHC,ILC,DM direct searches, EDM's, gravitational waves in LISA (Riotto et al. '01);
- EWBG discovery would kill leptogenesis making it useless;
- However, if nothing beyond a SM Higgs will be found then this would represent another positive test for leptogenesis and a definitive death of EWBG

The orthogonal seesaw matrix

• parameter counting: 6 + 3 + 6 + 3 = 18

- experiments \Rightarrow information on the 9 'low energy' parameters in $m_{\nu} = -U D_m U^T$:
 - we measure 4: $m_{\rm atm}, \, m_{\rm sol}, \, \theta_{23} \simeq 45^0, \, \theta_{12} \simeq 32^0 \simeq 45^0 \theta_C$
 - we still miss five: $m_1 \leq 1 \text{ eV}, \theta_{13} \leq 14^0, \delta, \varphi_1, \varphi_2$
- the 9 parameters in Ω and in M_i escape conventional investigation: the dark side !
- leptogenesis \Rightarrow information on Ω, M_i and also on m_1 but $\varepsilon_i = \varepsilon_i (m_D^{\dagger} m_D)$
 - $i \Rightarrow U$ cancels out: in general we cannot test leptogenesis with CP in neutrino mixing !

(Unflavored) Kinetic Equations

$$D_{i} \equiv \frac{\Gamma_{D,i}}{H(z) z} = K_{i} z \left\langle \frac{1}{\gamma} \right\rangle, \quad W_{i}^{\text{ID}} \propto D_{i} \propto K_{i}$$

``decay parameters'' I

$$K_i \equiv \frac{\Gamma(N_i \rightarrow l \Phi^{\dagger})|_{T \rightarrow 0}}{H(T = M_i)} = \frac{(m_{\mathsf{D}}^{\dagger} m_{\mathsf{D}})_{ii}}{M_i}$$

- Strong wash-out when $K_i \gtrsim 3$
- Weak wash-out when $K_i << 3$

