

Cosmic Ray Experiments

(below the atmosphere)

Ivan De Mitri Università del Salento and INFN Lecce

Talk Outline

- Overview and definitions
- Techniques used to measure CR properties
- > Main updated results in different energy regions

Physical Motivation(s)

To study and understand:

- **CR origin** (production sites, acceleration mechanisms,...)
- High Energy Astrophysics and Cosmology
- Particle physics at c.m. energies up to 1000 TeV
-

Through the measurement of:

- Energy spectra
- * Chemical composition
- Arrival directions
- *

The (high energy physicist) atmosphere The target !

"Standard" atmosphere :

 $X_v = X_0 \exp(-h/h_0)$

X₀ ≈ 1030 g/cm²

 $h_0 \approx 6.4 - 8.4 \text{ km}$

$$\sigma_{p-Air} \sim 300 \text{ mb} @ E \sim 1-100 \text{ TeV}$$

 $\Lambda_p \sim 80 \text{ g/cm}^2 \qquad \Lambda_{Fe} \sim 2-3 \text{ g/cm}^2 \qquad \Lambda_{rad} \sim 37 \text{ g/cm}^2$

$$X_0 \sim 13 \Lambda_p \sim 28 \Lambda_{rad}$$

 $X_v \sim \Lambda_p \iff h \sim 18 \text{km}$

EAS Components

- <u>Soft</u>: p, n, π, e, γ,...
- <u>Hard</u>: μ, ν

15

10000

• <u>Čerenkov light</u> (mainly produced by electrons)

3

2

1

Fluorescence light

10

Altitude (km)

5

Shower particle tracks: proton

muons

electrs

hadrons neutrs

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Data Analysis flowchart in a "typical" EAS experiments

IFAE 2007

Below the knee

- Measure the unaccompanied hadrons flux with hadrons calorimeters
- Go to high altitude to lower the energy threshold

Primary proton spectrum reconstructed from unaccompanied hadrons

High Altitude Cosmic Ray Laboratory @ YangBaJing Site Altitude: 4300 m a.s.l., ~ 600 g/cm² Site Coordinates: longitude 90° 31' 50" E, latitude 30° 06' 38" N

ARGO-YBJ layout

A unique way to study EAS

- Full space-time reconstruction
- Shower topology
- Structure of the shower front

▶.....

First preliminary

results on:

- EAS phenomenology
- CR spectrum
- primary interaction
- Moon shadow ,

-2.5

-5

0

-2.5

-5

0

80

- Measure the particle distributions at ground
- Use the air Cherenkov signal produced in along the shower development

Many possible explanations for the knee

- Change of acceleration mechanism
- Energy dependent diffusion coefficient
- Escape from the Galaxy
- New interactions during shower development

Uncertainties due to particle interaction models

- Accelerator data needed in order to cover the very forward direction
- Use of phenomenological interaction models
- Different predictions do not get completely smeared during the shower development

Composition analyses and energy spectra needed

KASKADE + KASKADE-Grande

It measures :

- n. of electrons
- n. of muons
- core position
- arrival direction

IFAE 2007

Use differences in muon yeld for different primaries + unfolding methods

The "knee" summary (at first order)

- "<u>All-particle</u>" energy spectra are reasonably under control
- Individual energy spectra are <u>sensitive to the interaction models</u>
- <u>New inputs needed</u> by running and future CR experiments and by accelerator data (low p_t particles, ...)

- SNR maximun acceleration energy and/or galactic diffusion provide a good possible explanation of the knee
- Transition from light to heavy elements (Z dependent cutoff) ...
- ...till the onset of the extragalactic component (ankle)

The ankle region

- Measure the particle distributions at ground with huge arrays

- Use the atmosphere as a scintillator by detecting the fluorescence light

- Understand the ankle and GZK features (galactic/extragalactic, matter distribution,..)
- Study particle physics at c.m. energy 1000 TeV (x-sections, Lorentz invariance, ...)
- Map extragalactic sources (Active Galactic Nuclei, ...)
- Study acceleration processes (electromagnetic, hadronic, ...)
- Test Top-down models (topological defects, ..) and other exotic mechanisms

IFAE 2007

CR Composition:

- Increasing average mass from the knee to the ankle
- Decreasing after the ankle (onset of extragalactic components) ?

IFAE 2007

AUGER

Fluorescence Detector (FD)

- Longitudinal development of the shower
- Calorimetric measurement of the energy

Calibration of the energy scale

Direction of the shower

12% duty cycle !

Surface Detector (SD)

- Front of shower at ground
- Direction of the shower
- "High" statistics

IFAE 2007

Events . . . a bit bigger one

IFAE 2007

First AUGER science results

Updated energy spectrum coming soon

AGASA and Sugar excess from the galactic center was not confirmed (with much larger stats)

Strong limit on the primary γ flux

The "ankle" summary (at first order)

- GZK feature not yet understood
- Systematics in energy scales for different techniques (SD vs FD)
- Use the "dip" to calibrate different detectors ?

- The observed spectra (and compositions) are consistent with a transition from galactic to extra-galactic components
- Need more exposure and reduced systematics (AUGER)

Conclusions

- The "cosmic ray beam" is reasonably understood but far from well known
- Underlying physical processes, involving both particle physics and high energy astrophysics need to be better investigated (fragmentation region, Active Galactic Nuclei,...)
- Unique possibility for discoveries and/or for testing standard physics in "extreme conditions"
- Many experiments all around the Earth trying solve the puzzle(s). Sorry for not reporting on all of them.
- A more than exiciting future ahead
 (Difficult predictions !)

The New York Times Dec 30, 1934 COSMIC RAY PUZZ DUE TO BE SOLVED Millikan Expects Nature Dr. of Contents to Be Known Within a Year. CAUTIONS SCIENTISTS HE Theories and Offers New Articles of Faith for a Credo. tal In THE NEW YORK TIME PITTSBURGH, Dec. 29 .-- Dr. Robert A. Mulikan, Nobel Prize winner and pioneer in cosmic ray research, told a gathering of science teachers and physicists here today that he expected a definite settlement "within a twelvemonth" of one of the

greatest controversies in modern

cience.

