COSMOLOGY AND FUNDAMENTAL PHYSICS WITH THE INTERGALACTIC MEDIUM

MATTEO VIEL

INAF-OATS and INFN-TS

20 Mpc/h

IFAE - Naples (Italy) - 12th April 2007

PLAN OF THE TALK

The Lyman- α forest

\star Lyman- α forest and cosmological parameters

 σ_8 - n (amplitude and slope of the power spectrum) WMAP and large scale structure (Weak Lensing)

\star Lyman- α forest and fundamental physics

active neutrinos (hot dark matter - radiation) sterile neutrinos (warm dark matter)

INTRO

Physics of the simulations is simple: dark matter, Gas cooling, photoionization heating, star formation

80 % of the baryons at z=3 are in the Lyman-α forest Bi & Davidsen (1997), Rauch (1998)

baryons as tracer of the dark matter density field

 $\delta_{\text{ IGM}} \thicksim \delta_{\text{ DM}} \quad \text{ at scales larger than the } \\ \text{ Jeans length} \thicksim 1 \text{ com Mpc}$

Photon counts

 $\tau \sim (\delta_{\rm IGM})^{1.6} \ {\rm T}$ -0.7

Modelling Lyman- α absorptions:

<u>Dark matter evolution</u>: linear theory of density perturbation + Jeans length $L_J \sim sqrt(T/\rho) + mildly$ non linear evolution

<u>Hydrodynamical processes</u>: mainly gas cooling cooling by adiabatic expansion of the universe heating of gaseous structures (reionization)

- photoionization by a uniform Ultraviolet Background
- Hydrostatic equilibrium of gas clouds

dynamical time = $1/sqrt(G \rho) \sim sound crossing time= size / gas sound speed$

Size of the cloud: > 100 kpc Temperature: ~ 10^4 K Mass in the cloud: ~ 10^9 M sun Neutral hydrogen fraction: 10^{-5}

In practice, since the process is mildly non linear you need numerical simulations To get convergence of the simulated flux at the percent level (observed)

<u>GOAL: the primordial dark matter power spectrum</u> <u>from the observed flux spectrum</u>

DATA

THEORY

 $\label{eq:Gamma} \Omega_m = 0.26 \ \Omega_\Lambda = 0.74 \ \Omega_b = 0.0463 \quad H_0 = 72 \ \text{km/sec/Mpc} \quad \ \ - \ \ 60 \ \text{Mpc/h} \ 2x400^3 \ \text{GAS+DM} \\ \text{2.5 com. kpc/h softening length}$

GADGET –II code COSMOS computer – DAMTP (Cambridge)

DM

STARS

NEUTRAL HYDROGEN

GAS

COSMOLOGICAL PARAMETERS

Lyman- α forest + Weak Lensing + WMAP3

VHS: high res Ly-a from Viel, Haehnelt, Springel 2004 SDSS: low res Ly-a from McDonald, Seljak et al. 2006 WL: COSMOS survey Weak Lensing (Massey et al. 2007)

Viel , Haehnelt, Lewis, 2006, MNRAS, 370, 51L Lesgourgues, MV, et al. 2007, in preparation

<u>Lyman- α forest + Weak Lensing + WMAP3-II</u>

VHS: high res Ly-a from Viel, Haehnelt, Springel 2004 WL: COSMOS survey Weak Lensing (Massey et al. 2007)

Viel , Haehnelt, Lewis, 2006, MNRAS, 370, 51L Lesgourgues, MV, et al. 2007, in preparation

AMPLITUDE

Lyman- α forest + CMB - II

Signature of gravitational waves (tensors) And inflation

n, r and dn/dlnk are related to the inflaton potential and its derivatives

∑mv (eV) < 0.68 (95 %C.L.) r < 0.55 (95 % C.L.) running = -0.055 ± 0.03 WMAP3 only

Seljak, Slosar. McDonald, 2006, JCAP, 0610, 014

WARN DARK MATTER

(Some) Motivations

Some problems for cold dark matter at the small scales: 1- too **cuspy cores**, 2- too **many satellites**, 3- **dwarf galaxies** less clustered than bright ones (e.g. Bode, Ostriker, Turok 2001)

Although be aware that 1- astrophysical processes can act as well to alleviate these problems (feedback); 2- number of observed satellites is increasing (SDSS data); 3- galaxies along filaments in warm dark matter sims is probably a numerical artifact

Minimal extension of the Standard Model for particle physics that accommodates neutrino oscillations naturally

Hints of a steppe sector: LSND experiment prefers a sterile neutrino m $_v$ < 1 eV but Lyman- α data m $_v$ < 0. 26 eV and best fit N eff (active) = 5.3

Although be aware that LSND results are controversial and that Lyman- α data that wish to probe the subeV limits are prone to systematic effects

Lyman- α and Warm Dark Matter

30 comoving Mpc/h z=3

In general k FS ~ 5(Tv/Tx (m x/1keV) Mpc⁻¹ See Bode, Ostriker, Turok 2001 Abazajian, Fuller, Patel 2001

Set by relativistic degrees of freedom at decoupling

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD, 2005, 71, 063534

METHOD

p: astrophysical and cosmological parameters

but even resolution and/or box size effects if you want to save CPU time

RESULTS

STERILES

Warm dark matter

Lyman- α and Warm Dark Matter

Ly α -WDM: new analysis of the SDSS data

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto, Phys.Rev.Lett., 2006, 97, 071301

X-RAY DETECTABILITY

Fabian, Sanders and coworkers.....

Decaying channel into photons and active neutrinos line with $E=m_s/2$ (X-band)

Line flux ~ 5 x 10⁻¹⁸ erg cm $^{-2}$ s $^{-1}$ (D_L/1Mpc) $^{-2}$ (M _{DM}/10¹¹ M _{sun}) (sin 2 2 θ /10⁻¹⁰) (m_s/1kev)⁵

ratio

 $\Delta E_{line} = v_{virial} E/c$ ~ 50 eV for a galaxy cluster 5 eV for a galaxy for E=5keV

Note that the **EDGE (NASA proposal)** Low Energy Telescope will be at < 3(1.6) keV with a resolution of 1 eV So if the sterile neutrino is more massive than 10 keV it might not be seen by EDGE

 ΔE _{Xraybackground} ~ E

SENSITIVITY of DETECTION ~ 1/ $J(\Delta E)$, J(A eff), J FOV,

Note that both clusters and dwarf galaxies are about $1deg^2$ in the sky having a larger field of view will not improve things dramatically

See Boyarsky, den Herder, Neronov, Ruchayskiy, 2006, astro-ph/0612219

RESULTS

ACTIVE

Active neutrinos - I

<u>Active neutrinos and Lyman- α VHS</u>

Σmv (eV) < 1 eV (95 % C.L.) WMAP1 + 2dF + LYα

Good agreement with the latest Tegmark et al. results.....

Active neutrinos and Lyman- α SDSS - III

Goobar et al. (aph/0602155) get upper limits 2-3 times larger.....

SUMMARY

Lyman-α forest is a complementary measurement of the matter power spectrum and can be use to constrain cosmology together with the CMB There are no other observables at the forest scales and redshifts

<u>Sterile neutrino</u> probably ruled out in the standard production mechanism Tight constraints on active neutrinos

All(?) the possible systematics are under control: there is really significant Power at these scales and redshifts (Weak lensing data support this)