Status of Big Bang Nucleosynthesis F.L. Villante - Università di Ferrara and INFN

IFAE - 11-13 Aprile 2007

Introduction

Big Bang Nucleosynthesis (BBN) is one of the solid pillars of the Standard Cosmological model:

✓ BBN predicts the primordial abundances of light elements (⁴He, D, ³He, ⁷Li).

Predictions span 9 orders of magnitude.
 Good (reasonable) agreement with observational data.

Theory: well defined, very precise

Observations: two problems

- systematics
- evolutionary effects

The Physics of BBN

The abundances of ⁴He, D, ³He, ⁷Li produced by BBN depends on the following quantities:

- Essentially all neutrons surviving till the onset of BBN used to build ⁴He
- ♦ D, ³He, ⁷Li are determined by a complex nuclear reaction network.

Accuracy of theoretical calculations

Accuracy of ⁴He calculation at the level of 0.1%.

High precision codes (Lopez & Turner 1999, Esposito et al. 1999) take directly into account effects due to :

zero and finite temperature radiative processes;

• non equilibrium neutrino heating during e± annihilation;

finite nucleon masses;

•

These effects are included "a posteriori" in the "standard" code (Wagoner 1973, Kawano 1992).

Theoretical uncertainties

Reaction rate uncertainties translate into uncertainties in theoretical predictions:

Monte-Carlo evaluation of uncertainties Krauss & Romanelli 90, Smith et al 93, Kernan & Krauss 94

Semi-analytical evaluation of the error matrix Fiorentini et al 98 Lisi et al. 00

Re-analysis of nuclear data Nollet & Burles 00, Cyburt et al 01, Descouvement et al. 04, Cyburt et al. 04, Serpico et al. 04

Recent new data and compilations NACRE Coll. Database LUNA: $D(p,\gamma)^{3}He$, $^{3}He(a,\gamma)^{7}Be$

Sub-leading reactions (see Serpico et al. 04)

Recent LUNA results

•⁷Li is the decay product of ⁷Be;

•At high η ^7Be is mainly produced by:

 ${}^{3}\text{He+}{}^{4}\text{He} \rightarrow {}^{7}\text{Be+}\gamma$

Nuclear cross sections and BBN abundances

Based on Fiorentini et al, 1998

Relative errors on σ and			Des04		Cor	tributo all'errore	e totale (AYk//	Y)		
their relative contribution	k	Reaction	dR/R		He4	D		He3		
men relative contribution	1	n lifetime	0,0009		0,92	- 0.01	0,00	0,00		
to the theoretical	2	p(n,g)d	0,040	1	0,27	0,29	0,51	0,10		
uncontainty on PPN	3	d(p,g)3He	0,050		0,00	0,64	0,28	0,54		
uncertainty on DDIN	4	d(d,n)3He	0,030		0,25	0,61	0,19	0,15		
abundances	5	d(d,p)t	0,020		0,14	0,35	0,01	0,14		
	6	t(d,n)4He	0,020		0,00	-0,00	0,00	0,00		
	7	t(a,g)7Li	0,040		0,00	0,00	0,01	0,00		
	8	3He(n,p)t	0,015		0,00	0,01	0,04	0,07		
T	9	3He(d,p)4He	0,040		0,00	0,02	0.28	0,81		
Inputs can be taken from	10	3He(a,g)/Be	0,080		0,00	0,00	0,73	0,00		
different analysis of nuclear	11	7LI(p,a)4He	0,060		0,00	0,00	0,02	0,00		
un rei enti unurysis or nucleur	12	7Be(n,p)7LI	0,007		0,00	0,00	0,05	0,00		
data										
	-				Ei	rore Teorico Pe	ercentuale AY (%)		
					He4	D	Li	He3		
C					0,07	2,6	10,7	3,7		
Summarizing										
Theoretical uncentainties at										
ineorencui uncertuinnes ul										
the level of:										
the level of:					k	Reaction	SKM93	Cyburt01	Des04	Cyburt04
the level of:					k 1	Reaction n lifetime	SKM93	Cyburt01	Des04	Cyburt04
the level of: ⁴ He 0.1% - 0.2%					k 1 2	Reaction n lifetime p(n,g)d	SKM93	Cyburt01	Des04	Cyburt04
the level of: 4 He 0.1% - 0.2% 5 % - 10%					k 1 2 3	Reaction n lifetime p(n,g)d d(p,g)3He	SKM93 0,07 0,10	Cyburt01 0,0445 0,1320	Des04	Cyburt04 0,0250 0,0698
the level of: 4 He 0.1% - 0.2% D 5% - 10%					k 1 2 3 4	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He	SKM93 0,07 0,10 0,10	Cyburt01 0,0445 0,1320 0,0310	Des04 0,0400 0,0500 0,0300	Cyburt04 0,0250 0,0698 0,0545
the level of: 4 He 0.1% - 0.2% D 5% - 10% 3 He 5% - 10%					k 1 2 3 4 5	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,p)t	SKM93 0,07 0,10 0,10 0,10	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401	Des04 0,0400 0,0500 0,0300 0,0200	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516
the level of: 4 He 0.1% - 0.2% D 5% - 10% 3 He 5% - 10% 7 Li 15% 20%					k 1 2 3 4 5 6 7	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,p)t t(d,n)4He t(a, a)7L i	SKM93 0,07 0,10 0,10 0,10 0,08 0,08	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401	Des04 0,0400 0,0500 0,0300 0,0200 0,0200	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516 0,2313
the level of: 4 He 0.1% - 0.2% D 5% - 10% 3 He 5% - 10% 7 Li 15% - 30%					k 1 2 3 4 5 6 7 8	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,n)3He d(d,p)t t(d,n)4He t(a,g)7Li 3He(n p)t	SKM93 0,07 0,10 0,10 0,10 0,08 0,26 0,10	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401 0,0421 0,0352	Des04 0,0400 0,0500 0,0300 0,0200 0,0200 0,0400 0,0150	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516 0,2313 0,0440
the level of: ⁴ He $0.1\% - 0.2\%$ D $5\% - 10\%$ ³ He $5\% - 10\%$ ⁷ Li $15\% - 30\%$					k 1 2 3 4 5 6 7 8 9 9	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,p)t t(d,n)4He t(a,g)7Li 3He(n,p)t 3He(d,p)4He	SKM93 0,07 0,10 0,10 0,10 0,08 0,26 0,10 0,08	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401 0,0421 0,0352 0,0915	Des04 0,0400 0,0500 0,0300 0,0200 0,0200 0,0400 0,0150 0,0400	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516 0,2313 0,0440 0,0730
the level of: ⁴ He $0.1\% - 0.2\%$ D $5\% - 10\%$ ³ He $5\% - 10\%$ ⁷ Li $15\% - 30\%$					k 1 2 3 4 5 6 7 7 8 9 9 10	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,p)t t(d,n)4He t(a,g)7Li 3He(n,p)t 3He(d,p)4He 3He(a,q)7Be	SKM93 0,07 0,10 0,10 0,10 0,08 0,26 0,10 0,08 0,16	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401 0,0421 0,0352 0,0915 0,1060	Des04 0,0400 0,0500 0,0300 0,0200 0,0200 0,0400 0,0150 0,0400 0,0800	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516 0,2313 0,0440 0,0730 0,1692
the level of: ⁴ He $0.1\% - 0.2\%$ D $5\% - 10\%$ ³ He $5\% - 10\%$ ⁷ Li $15\% - 30\%$ depending on the analysis of					k 1 2 3 3 4 5 6 7 7 8 9 9 10 11	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,p)t t(d,n)4He t(d,g)7Li 3He(n,p)t 3He(d,p)4He 3He(a,g)7Be 7Li(p,a)4He	SKM93 0,07 0,10 0,10 0,10 0,08 0,26 0,10 0,08 0,16 0,08	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401 0,0421 0,0352 0,0915 0,1060 0,1140	Des04 0,0400 0,0500 0,0200 0,0200 0,0400 0,0150 0,0400 0,0800 0,0600	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516 0,2313 0,0440 0,0730 0,1692 0,0802
the level of: ⁴ He $0.1\% - 0.2\%$ D $5\% - 10\%$ ³ He $5\% - 10\%$ ⁷ Li $15\% - 30\%$ depending on the analysis of nuclear data.					k 1 2 3 4 5 6 7 7 8 8 9 9 10 11	Reaction n lifetime p(n,g)d d(p,g)3He d(d,n)3He d(d,p)t t(d,n)4He t(a,g)7Li 3He(n,p)t 3He(d,p)4He 3He(a,g)7Be 7Li(p,a)4He 7Be(n,p)7Li	SKM93 0,07 0,10 0,10 0,10 0,08 0,26 0,10 0,08 0,16 0,08 0,09	Cyburt01 0,0445 0,1320 0,0310 0,0159 0,0401 0,0421 0,0352 0,0915 0,1060 0,1140 0,0387	Des04 0,0400 0,0500 0,0300 0,0200 0,0200 0,0400 0,0400 0,0400 0,0800 0,0600 0,0070	Cyburt04 0,0250 0,0698 0,0545 0,0693 0,0516 0,2313 0,0440 0,0730 0,1692 0,0802 0,0802 0,0625

See also: Serpico et al. 04 - Sub-leading reactions contributions to uncertainties

Observations

Observations: deuterium

Deuterium = baryometer

No astrophysical sources of deuterium \rightarrow Any D/H measurement provide a lower limit for (D/H)_p. \rightarrow Upper limit for η .

Local ISM value for D/H : $(1.5 \pm 0.1) * 10^5$ Linsky et al. 1998

In recent years, deuterium has been observed in the high resolution spectra of QSO absorption systems at high redshift:

Lyman Limit systems (LLS):

Neutral hydrogen clouds with column density N(HI) > 10¹⁷ cm⁻²

Damped Lyman α systems (DLA):

Neutral hydrogen clouds with column density N(HI) > 10²⁰ cm⁻² Possible advantages: more precise H abundance, metallicity more accurate, "interloper" less probable.

Note: D isotope shift = -82 km/s \rightarrow Clouds with simple velocity structure are needed.

Observations: Helium-4

 Y_p is determined by extrapolating to Z=0 the (Y,Z) relation or by averaging Y in extremely metal poor objects (N and O used as metallicity tracers). In particular:

✓ ⁴He is observed in clouds of ionized hydrogen (HII regions).

✓ The most metal poor HII regions are in Dwarf Blue Compact Galaxies (BCGs).

Present situation:

```
\checkmark Individual determinations of Y_p at the level of 1%
```

✓ Disagreement at the level of 1-2%

✓ Several physical mechanism acting in HII regions still not completely understood (ionization correction factor, underlying stellar absorption, temperature structure ...).

Observations: Helium-4

0.249 ± 0.009 Olive et al. 2004 0.2472 ± 0.0012 Izotov et al. 2007 0.2516 ± 0.0011 0.2474 + 0.0028 Peimbert et al 2007 Re-analysis of a subsample of Izotov et al. 1998 Regression using 86 extra-galactic HII regions

5 metal poor extra-galactic HII regions

```
Y<sub>p</sub> = 0.249 ± 0.009 (syst) Fields & Sarkar - PDG 2006
```

 $N_v^{eff} = 3.1 \pm 1.3$ (95% C.L.) BBN

 $N_v^{eff} = 5.2 \pm 2.4$ (95% C.L.) CMB + LSS

Slight tension (2σ) between the relativistic content at early (BBN) and late (CMB+LSS) epochs. See: Mangano et al. 2007, Seljak et al. 2006

Observations: Lithium-7 and Helium-3

Lithium-7

Observations in metal poor stars in the Halo of our galaxy (Z ~ $10^{-4} - 10^{-5} Z_{o}$)

Spite plateau: Li abundance does not vary significantly for Z < $1/30 Z_{o}$:

⁷ Li/H =	$(1.23 \pm 0.06) 10^{-10}$ $(2.19 \pm 0.28) 10^{-10}$ $(2.34 \pm 0.06) 10^{-10}$	Ryan et al. 00 Bonifacio et al. 02 Melendez et al. 04
⁷ Li/H =	(1.7 ± 0.02 ^{+1.1} -0) 10 ⁻¹⁰	Field e Sarkar - PDG06

SBBN (N_v^{eff} =3) and CMB data would require: ⁷Li/H ~ 4.5 10⁻¹⁰ (depletion?)

Helium-3

Observations available in Solar System and high metallicity HII regions in our galaxy

Stellar nucleosynthesis models in conflict with observations

Upper bound for primordial abundance: $3He/H < (1.1 \pm 0.2) 10^{-5}$ Bania et al. 02 May be relevant for N_v^{eff} (Mangano et al. 07).

BBN as a probe of the early Universe

$$\begin{split} \delta Y_i(\eta, \delta H(T)) &= 2 \int \varrho_i(\eta, T) \, \delta H(T) \, \frac{dT}{T} \\ \delta H(T) &\equiv \text{variation of Universe exp. rate} \end{split}$$

BBN is sensitive to a variety of non standard effects:

- Variations of "fundamental" constants: new light particles;

...

ν_e and ν_{µτ} degeneracy;
 Active-Sterile neutrino oscillations;

T~1 MeV - Hubble/Weak rate

$$\frac{H}{\Gamma_{\rm W}} \sim \frac{\sqrt{g_* G_{\rm N}} T^2}{G_{\rm F}^2 T^5}$$

T~ 0.1 MeV Hubble/Nuclear rate

$$\frac{H}{\Gamma_{\rm nuc}} \propto \frac{\sqrt{g_*G_{\rm N}}\,T^2}{\eta n_\gamma \langle \sigma v \rangle}$$

Active-sterile v-oscillations

 $v_{act} - v_s$ oscillations before chemical decoupling $\rightarrow v_s$ brought into equilibrium \rightarrow boost the Universe exp. rate

 $v_e - v_s$ oscillations after chemical decoupling $\rightarrow v_e$ number density reduction \rightarrow affect n/p interconversion rate.

 $v_e - v_s$ oscillations after kinetic decoupling $\rightarrow v_e$ spectral distorsion \rightarrow affect n/p interconversion rate.

See Dolgov 03 for a recent review and for references

Neutrino oscillations: 3 active + 1 sterile

Active neutrinos are now known to be mixed. Their mixing should be taken into account together with $v_{act} - v_s$ mixing:

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \\ v_s \end{pmatrix} = \begin{pmatrix} & \eta_1 \\ U_{ACT} & \eta_2 \\ & & \eta_3 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

$$\vec{\eta} = -\vec{U}_{ACT} \cdot \vec{\varepsilon}$$

$$4 - (\delta m^2)_{14} = \text{variable}$$

$$3 - (\delta m^2)_{23} = (\delta m^2)_{atmo}$$

$$2 - (\delta m^2)_{12} = (\delta m^2)_{solar}$$

 v_s mixing with one flavour eigenstate (e.g. $η_1 ≠ 0$, $η_2,η_3 = 0$) → three different δm^2 ($ε_1,ε_2,ε_3 ≠ 0$), new resonances

 v_s mixing with one mass eigenstate (e.g. $ε_1 ≠ 0$, $ε_2,ε_3 = 0$) → one δm², oscillation into mixed flavours (η₁,η₂,η₃ ≠ 0)

All results in
Dolgov and Villante 2003
See also:
Cirelli et al. 2004

N.B. Mixing among active neutrinos cannot be rotated away, because BBN is flavour sensitive.

Conclusions

Standard BBN:	Very accurate, very precise Costant progress in the last decade
BBN and AstroParticle:	BBN is a unique window to early universe. Sensitive to a variety of non-standard effects • Variations of "fundamental" constants; • new light particles; • v_e and $v_{\mu\tau}$ degeneracy; • Active-Sterile neutrino oscillations; •
Observations:	Progress in (D/H) determination; Necessary to improve $Y_p = (\delta Y_p / Y_p \sim 0.02 \rightarrow \Delta Nv \sim 1 \text{ at } 2\sigma)$ Necessary to understand ³ He and ⁷ Li