

Risultati di Fisica dal Tevatron

Giovanni Punzi Universita' & INFN Pisa

IFAE 2007 11-13 Aprile 2007, Napoli, Italy

II Tevatron oggi

1000 1500 2000 2500 3000 3500

4000 4500 5000 Store Number

- p-pbar collisions at 1.96 TeV
- rate 1.7MHz (396 ns bunch spacing)
- Luminosita' in crescendo: record 2.9 x10³²cm⁻²s⁻¹ !!
- Prevista 3x10³²cm⁻²s⁻¹
- ~5-6 interazioni per bunch crossing

Luminosita' integrata

- > 2.5 fb⁻¹ delivered, ~2 fb⁻¹ on tape/experiment
- Entrambi gli esperimenti hanno analizzato ~1fb⁻¹
- Molti risultati nuovi, alcuni recentissimi (marzo 2007)
 - Grande varieta' di fisica: esperimenti davvero "general purpose"
- Overview in questo talk, dettagli nelle sessioni parallele:
 - P. Mastrandrea: W,Z
 - F. Margaroli: top
 - S. Amerio: Higgs
 - M. Rossi: New Physics
 - **S.** Pagan Griso: Δm_s and $\Delta \Gamma_s$
 - D. Tonelli: rari e charmless
 - S. Torre: B production

CDF Detector

- Strong central tracking in B=1.5 T
- Silicon vertex detector
- Good lepton identification
- Particle ID (TOF and dE/dx)
- Excellent mass resolution

High rate trigger/DAQ system
 Silicon vertex trigger on long-lived particles

CDF silicon detector installation

DØ Detector

- Excellent coverage of Tracking and Muon Systems
- Excellent calorimetry and electon ID
- 2 T Solenoid, polarity reversed weekly
- High efficiency muon trigger with muon p_T measurement at Level1 by toroids

Gli upgrades non finiscono mai...

QCD al Tevatron

- Tevatron covers a region of (x, Q²) higher than any other existing experiment
- It is part of the region that will be of interest at LHC.
- Important to measure, and can search for new phenomena (quark compositeness, new interactions, heavy objects...)

 Recent updates: L= 1fb-1 (5x run I) AND x5 increase of cross-section at 600GeV due to increase of √s to 1.96 TeV (from run I √s=1.8 TeV) ⇒ greater sensitivity

New Jet measurements

Latest updates (1fb⁻¹) in agreement with pQCD NLO over >8 orders of magnitude in x-section. Up to M_{ij} =1.3 TeV

Heavy flavor production

- Ricca produzione di quarks pesanti
- Nuove recenti misure
- Predizione quantitativa della produzione di heavy flavors rimane challenging
- See S. Torre talk on b-production

Flavor physics

Il sistema del Bs

 $\rm B_s$ transforms into $\rm \bar{B}_s$

$$i\frac{\partial}{\partial t} \left| \begin{array}{c} B_s \\ \bar{B}_s \end{array} \right\rangle = \left(\begin{array}{cc} m_{11} - \frac{i}{2}\Gamma_{11} & m_{12}e^{-i\phi} - \frac{i}{2}\Gamma_{12} \\ m_{21}e^{-i\phi} - \frac{i}{2}\Gamma_{21} & m_{11} - \frac{i}{2}\Gamma_{11} \end{array} \right) \left| \begin{array}{c} B_s \\ \bar{B}_s \end{array} \right.$$

- Autostati massa: B_H, B_L
- Autostati CP: B_{even} , B_{odd}
- Osservabili:

$$\begin{split} &\Delta\Gamma_{CP}=\Gamma_{even}-\Gamma_{odd}\sim 2\mid\Gamma_{12}\mid\quad(\text{non sensibile a NP})\\ &\Delta m_s=M_H-M_L\sim 2M_{12}\qquad\qquad(\text{sensibile a NP})\\ &\phi_s=arg\;(-M_{12}/\Gamma_{12\;)})\sim arg\;(M_{12})\;(\text{sensibile a NP})\\ &\Delta\Gamma_s=\Gamma_L-\Gamma_H=\Delta\Gamma_{CP}\mid\text{cos}\;\phi_s\mid\quad(\text{sensibile a NP})\\ &\phi_s^{SM}=(4.2\pm1.4)^*10^{-3}\;\text{ma puo' diventare grande in NP}\\ &(\text{es. }\phi_s=-0.5\;\text{to }-0.8\;[\text{Hou,Nagashima,Soddu: hep-ph/0610385}]\;) \end{split}$$

Accesso sperimentale

Δm_s

Oscillazioni in stati a flavor definito $\Delta\Gamma_{s}$ Vita media autostati di CP (Bs->KK) BR in autostati di CP (D_s D_s) : 2 BR_{even} = $(\Delta\Gamma_{CP}/\Gamma_{s})/(1 + \Delta\Gamma_{CP}/2\Gamma_{s})$

φ_s

asimmetria semileptonica $A_{SL} = \frac{N(\overline{B}_s \rightarrow l^+X) - N(B_s \rightarrow l^-X)}{N(\overline{B}_s \rightarrow l^+X) + N(B_s \rightarrow l^-X)} = \Delta\Gamma_s / \Delta m_s \tan(\phi_s)$

Misure simultanee nel sistema del $B_s \rightarrow J/\psi \phi$:

$$\Gamma(t) \propto e^{-\Gamma_s t} \left\{ \cosh \frac{\Delta \Gamma_s t}{2} - \eta_f \cos \phi_s \sinh \frac{\Delta \Gamma_s t}{2} + \eta_f q D \sin \phi_s \sin(\Delta M_s t) \right\}$$

 η_f autovalore CP, q carica alla produzione, D diluizione del tag Misura dal terzo termine richiede il tagging

... to 5-sigma observation

Stessa luminosita', analisi migliorata:

- Selezione basata su NN e PID
- Aggiunta modi parzialmente ricostruiti
- Migliore combinazione di b-taggers
- Oscillazioni del Bs definitivamente stabilite:

$$\label{eq:lambda} \begin{split} \Delta m_s &= 17.77 \pm 0.10 \pm 0.07 \ \text{ps}^{\text{-1}} \\ \text{IV}_{\text{td}} \text{I/V}_{\text{ts}} \text{I} &= 0.2060 \pm 0.0007 (\text{exp}) \begin{array}{c} +0.0081 \\ -0.0060 \end{array} (\text{th}) \end{split}$$

 La parola ai teorici: Risultato non migliorabile finche' l'incertezza teorica non diminuira' notevolmente (lattice QCD)

JLQCD 03 $\Delta m_s = 16.1 \pm 2.8 \text{ ps}^{-1}$ HPQCD 03 $\Delta m_s = 21.3 \pm 3.2 \text{ ps}^{-1}$

A_{CP} in charmless B modes

(As of BEAUTY 2006)

- Grandi campioni di B charmless dal trigger su parametro d'impatto a CDF
 1 fb⁻¹ update di A_{CP}(B⁰→K⁺π⁻): 0.086 ± 0.023 ± 0.009
 ⇒ stessa precisione di e⁺e⁻. Aumenta significativita' di media mondiale.
- Sistematica piccola Estrapola a risoluzione 1% in run II
 - \Rightarrow CDF probabile migliore singola misura in futuro

oltre il B⁰ e B⁺

 CDF molto lontano dall'efficienza di Babar e Belle sui neutri. In compenso sensibile a canali inaccessibili a Y(4s): 3 nuovi modi charmless osservati:

$$B_{s} \rightarrow K^{-}\pi^{+}$$
 , $\Lambda^{0}{}_{b} \rightarrow p\pi^{-}$, $\Lambda^{0}{}_{b} \rightarrow pK^{-}$

■ IF
$$A_{CP}(B_d \rightarrow K^+\pi^-)$$
 is SM
 $\Rightarrow A_{CP}(B_s \rightarrow K^-\pi^+) = 40\%$ (large !)

Prima DCPV del Bs "facilmente osservabile":

 $A_{CP}(B_s \rightarrow K\pi) = 0.39 \pm 0.15 \pm 0.08$ \Rightarrow no evidence for non-SM CPV

Much better test with more data: observe a large DCPV **or** find NP

Observation of Σ_{b} , Σ_{b}^{*}

Λ_b (*udb*) **only** established *b* baryon
 Next accessible baryons: *uub* and *ddb* with J^P =1/2(Σ_b) and 3/2 (Σ_b*)

■ Look at Λ_b + track: Observe signals consistent with lowest lying Σ_b states

 $m(\Sigma_b^-) = 5815.2 \pm 1.0 \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$ $m(\Sigma_b^+) = 5807.7^{+2.0}_{-2.3} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$ $m(\Sigma_b^{*-}) = 5836.5^{+2.1}_{-1.9} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$ $m(\Sigma_b^{*+}) = 5829.0^{+1.6}_{-1.8} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$

Collezione di BR del B_s ...

Precision charm measurements

PUBLISHED

D⁰→Kπ DCS fraction 2000 eventi / 350 pb⁻¹ Sensitivity to D⁰ oscillations)

Molte altre misure di precisione eseguite solo su piccoli campioni:

- v $A_{CP}(D^0 \rightarrow hh) (0.12 fb^{-1})$
- v BR(D⁰ $\rightarrow \mu\mu$) (0.07fb⁻¹)

Top quark

Improved measurements of m_{top}

Metodi di analisi piu' potenti:

- Matrix-Element method: assegna a ogni evento una Likelihood invece di una stima individuale di m_{top}
- In-situ jet calibration: fit Jet Energy Scale and m_{top} simultaneamente
- ME assisted Templates
- Buoni risultati persino per all-hadronic
- Il canale migliore e' pero' lepton+jets

Combined Likelihood JES (or 1/IES) vs M_{top} CDF Preliminary 940 pb⁻¹ CDF,0.9 fb⁻¹ Simultaneous fit of m_{top}, JES, and f_{top:} 1.05 CDF :M_{top}=170.9±2.2(stat.+JES)±1.4(syst.)GeV/c² ∆In L=0.5 ∆ln L=2.0 untagged ↓ $\Delta \ln L = 4.5$ 0.95 ∆ln L=8.0 :M_{top}=170.5±2.5 (stat.+JES)±1.4 (syst.)GeV/c² 160 DØ :M_{top}=170.5±2.4 (stat.+JES)±1.2 (syst.)GeV/c² 170 180 M_{top} (GeV/c²)

CDF Runll preliminary L=943pb⁻¹

top quark mass (new 3/07) New Tevatron average (1 fb⁻¹) $m_{top} = 170.9 \pm 1.1 \pm 1.5$ GeV/c

...and can still improve with more data

IFAE 2005: the goal was "2 – 3 GeV/exp. by *end* of Run II"

3.4σ evidence for single-top

 W^+

insufficient evidence at CDF

 $\sigma(1-top) = 4.9 \pm 1.4 \text{ pb}$ from Boosted Trees Method (2 other methods agree, but only BTM shows sufficient evidence)

⇒ Direct measurement of CKM element V_{tb} (expected 0.99) $0.68 < |V_{tb}| \le 1$ (95% Bayesian prob.)

12 anni dopo la scoperta, vari test dicono di si'

Gauge bosons: W, Z

Gauge bosons: W, Z

Clear signature at Tevatron: hi-p_t leptons, MET

Study couplings -> precision EWK test, find BSM effects

Double-boson production particularly interesting

High rate of single production allows studying properties

Z well known from LEP, but: no better place than Tevatron to study the W

Several new results

2-boson production: test of 3-boson couplings (TGC)

Tevatron Run II pp at \sqrt{s} = 1.96 TeV/c² Cross-Section [pb] W 10⁴ z SM Expectation 10³ 10² wγ **7**v 10 ww WΖ 1 ΖZ M_H=160 10 Ζ Wγ Ζγ ww WΖ ΖZ $H \rightarrow WW$ w note: this is σ , not $\sigma \times BR$

- Different s and different configurations from LEP
 - Es WZ: tests WWZ coupling separately from WWγ
- ZZ final state tests SM-forbidden
 ZZZ and ZZγ (only proceeds in t-channel)

$ZZ \rightarrow 4$ leptons candidate

Run 208854 Evt 35162371 The candidate event from DØ:

Probing even deeper: Higgs ,SUSY, ...?..

Loop contributions to m_w

W Boson Mass

Given precise measurements of m_z and $\alpha_{_{EM}}(m_z)$, we can predict m_W :

 $m_{W}^{2} = \frac{\pi \alpha_{EM}}{\sqrt{2G_{E}(1 - m_{W}^{2}/m_{Z}^{2})(1 - \Delta \mathbf{r})}}$ ("on-shell scheme")

 Δr : O(3%) radiative corrections dominated by *tb* and Higgs loops

A precision business

Quark-antiquark annihilation dominates (80%)

precise charged lepton measurement is the key (achieved ~0.03%)

Combine information into transverse mass: $m_T = \sqrt{2p_T^{\ l} p_T^{\ v} (1 - \cos \phi_{lv})}$

Use $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ events to derive recoil model

Momentum scale calibration

New W mass results (03/07)

W mass prospects

New projection with **1.5** fb^{-1} *of data:* $\delta m_W < 25$ MeV with CDF

New W width result (03/07)

Best single measurement (0.35fb⁻¹) $\Gamma_W = 2032 \pm 71 \text{ MeV/c}$ (World Average ±60 to ±47 MeV/c)

Previous: $m_H = 85^{+39}_{-28}$ (<166@95%CL)

Hint of MSSM ?

100 120 180 200 140 160 m_H (GeV/c²) Al Tevatron i canali piu' sensibili sono:

haded by LEP 10-2 Zγ γγ 10 100 120 140 160 180 m_H (GeV/c²)

200

CC

- $m_H < 135 \text{ GeV}: (W/Z) H \rightarrow (W/Z)b\overline{b}$
 - $m_H > 135 \text{ GeV}: gg \rightarrow H \rightarrow WW$
- Sezioni d'urto < 1pb</p>

ZH

Ingredienti sperimentali: in continua evoluzione

b-jet tagging

Cruciale per basse M_H. Uso di NN per migliorare separazione S/B

Trigger

- Leptoni: estensione accettanza (Si-only tracking)
- Jets, MET: CDF electronics upgrade \Rightarrow miglioramento soglie, efficienza
- b-jet trigger development
- Sforzo globale di ottimizzazione algoritmi

Tecniche di analisi:

- Matrix Element, splitting into subsamples
- Discriminant variables: LR, NN, Fischer, trees

Conseguenze di notevole aumento di attenzione e di sforzo...

...impossibile al momento predire le prestazioni finali

3 very recent results !

Sfruttano tecniche di analisi piu' sofisticate
Risultati migliorano molto piu' rapidamente che 1/Sqrt(L) !
See S. Amerio talk for details

Expected 95% C.L. Limit/ σ_{SM}

Summary table

	Analysis	CDF limit (1fb ⁻¹)	D0 limit (1fb ⁻¹)
		factor above SM	factor above SM
		observed (expected)	observed (expected)
	$ZH \rightarrow vv bb @ 115$		
	Technique: M _{jj}	16 (15)	40 (34)*
	WH → I _V bb @ 115		
	Technique: M _{ii}	26 (17)	★ 10 (9)
	Technique: MÉ		★ 13 (10)
	ZH → Ilbb @ 115		
	Technique: NN2D	★ 16 (16)	33 (34)
	H → WW → Ivlv @ 160		
	Technique: $\Delta\Phi$ (I,I)	9 (6)	4 (5)
	Technique: ME	★(3.5)(5)	
CDF Run II Preliminary Ob 0 ² Me	L dt = 1.1 fb ⁻¹ served dian Expectation		
Closest to SM			
10			
110 120 130 140 150 160 170 180 190 200 Higgs Mass [GeV/c ²]			

Mancano alla combinazione i risultati recentissimi (stars)

 Meno di un ordine di grandezza dallo SM in tutto il range 100÷200 GeV (Intanto a CDF lo "Higgs working group" cambia nome in "Higgs discovery group")

Higgs & SUSY

Non-SM searches

$\phi \rightarrow \tau \tau$ search

Il leggero eccesso a 160 GeV non e' significativo (per ora)

Quello che *e' significativo* e' che occorre farsi questo tipo di domande

Exclusion regions

E dall'altra parte dell'anello ?

- (es. A \rightarrow bb, sensibilita' simile a $\tau\tau$)
- Gruppo di lavoro per produrre risultati combinati Tevatron

Sensitive to SUSY as tan(β)⁶

B_s \rightarrow µµ puo' vedere un effetto SUSY prima delle direct searches (ma e' insensibile per grandi µ, quindi entrambe sono necessarie)

Direct SUSY search

 New limits from MET+jets analysis at D0:

 $M(\tilde{g}) > 309 \text{ GeV}; M(\tilde{q}) > 391 \text{ GeV}$ $M(\tilde{g}) > 402 \text{ GeV} (\text{when } M(\tilde{g}) \sim M(\tilde{q}))$

(mSUGRA)

 Similar update from CDF soon

 Molte altre searches sono o stanno per essere aggiornate: Z', W', stop, CHAMPS, ecc...

Run II prospects

II Tevatron ha prodotto grande ricchezza di fisica con 1 fb⁻¹:

- Discovery of the top quark
- Observation of Bs oscillation
- Observation of Σ_b, B_c, charmless modes of B_s and baryons
- CP violation measurements
- Most precise W mass
- Highest QCD limits
- Studies of the X(3872)
- Double bosons
- Limits on Higgs production 10xSM
- Rare B and D modes
- SUSY limits
- Forntier exploration: compositeness, leptoquarks, W' Z'.....

Un buon inizio per il Run II. Ma la luminosita' integrata nei prossimi due anni sara' 8x quella dei precedenti 20 anni

...what next ?