IFAE 2007

Napoli, 12 April 2007

- measuring g_{Hbb} at LHC : known facts
- ▶ pp → H (→bb) 2j + γ : a new handle on g_{Hbb}
- signal rates versus main bckgs at LHC

Gabrielli, Maltoni, B.M., M.Moretti, Piccinini, Pittau, hep-ph/0702119

HIGGS TOTAL CROSS SECTIONS

interesting O's are of the order of few fb's (after BR's + cuts for enhancing signal/bckg)

Constraining Hbb coupling at LHC

Series more promising channel :

 $pp \rightarrow t + H_{(H \rightarrow bb)}$

CMS PTDR 2006 → including detector simulation lowers previous expectations on its discovery potential !

 $pp \rightarrow H (\rightarrow bb) + 2j$ (VBF fusion)

potential <u>difficult</u> to assess (4 j final state ...)

light Jets with large invariant mass p_T(j) ≈ 40 GeV
 widely separated in rapidity (forward/backward)
 Higgs decay products lying at intermediate rapidity

Mangano, Moretti, Piccinini, Pittau, Polosa (2003)

ATLAS Trigger & Physics week, Higgs WG meeting, 22 March 2007 from talk on "Trigger studies for VBF H-->bb", by J. Yuan and S. Kotov

Signal and background events at 30 fb^{-1} (fast simulation)

Decay channel	N _{final events}		Efficiencies		$N_{normalized to \mathcal{L}= 30 fb^{-1}}$	
	Fast	Full	Fast	Full	Fast	Full
$qqH H \rightarrow b\overline{b}$	5354	365	4.5×10^{-3}	3.2×10^{-3}	328	243
single t	2689	-	9.0×10^{-5}	-	881	-
bb	25	-	2.5×10^{-8}	-	315000	-
W+jets	18	-	3.2×10^{-8}	-	331	-
Z+jets	311	-	1.2×10^{-6}	-	681	-
$t\overline{t} ightarrow WWb\overline{b}$	404	-	1.4×10^{-5}	-	203	-
Total Background					317096	-
S/\sqrt{B}					0.6	-

Expected $qqH, H \rightarrow b\bar{b}$ signal and background events in m_{bb} mass window of $\pm 30 GeV/c^2$

HLT efficiency after all reconstruction cut

Trigger menu	trigger efficiency(%)	
e25i	0.0	
2e15i	0.0	
μ 6	79.7(after prescale:4.0)*	
μ 20i	21.9	
1 <i>j</i> 400	1.6	
3 <i>j</i> 165	0.0	
4 <i>j</i> 110	0.0	
Any trigger	80.0(25.6)	

*Assuming the prescale factor of 20, from John Baines slide of the TAPM open meeting on 13th of February

▲口▶ ▲圖▶ ▲필▶ ▲필▶ - 厘 -

$$qq \rightarrow qq H + \gamma$$

q'

н

q'

н

from naive QED scaling :

 $(S/\sqrt{B})|_{H\gamma jj} \sim \sqrt{\alpha} \left(S/\sqrt{B}\right)|_{Hjj} \lesssim 1/10 \left(S/\sqrt{B}\right)|_{Hjj}$

but this is not the case ! S/JB much better than this !

IRREDUCIBLE BCKGD

+ destructive interf.s in central γ emissions off q_{in} and q_{fin} in a t-channel gluon diagram

Barbara Mele

switching off the ybb coupling in irr. bckg

basic cuts :

 $p_{\mathrm{T}}^{j} \geq 30 \,\mathrm{GeV}, \quad p_{\mathrm{T}}^{b} \geq 30 \,\mathrm{GeV}, \quad \Delta R_{ik} \geq 0.7,$ $|\eta_{\gamma}| \leq 2.5, \quad |\eta_{b}| \leq 2.5, \quad |\eta_{j}| \leq 5,$ $m_{jj} > 400 \,\mathrm{GeV}, \quad m_{H}(1 - 10\%) \leq m_{b\bar{b}} \leq m_{H}(1 + 10\%),$ $1) \quad p_{\mathrm{T}}^{\gamma} \geq 20 \,\mathrm{GeV},$ $2) \quad p_{\mathrm{T}}^{\gamma} \geq 30 \,\mathrm{GeV}, \qquad \text{then, look at distrib's :}$ $\frac{d\sigma}{dm_{ij}}, \quad \frac{d\sigma}{dp_{\mathrm{T}}^{j1}}, \quad \frac{d\sigma}{dp_{\mathrm{T}}^{b1}}, \quad \frac{d\sigma}{dm_{\gamma H}}, \quad \frac{d\sigma}{|\Delta\eta_{ij}|},$

→ add optimized cuts :

 $m_{jj} \ge 800 \,\text{GeV}, \quad p_{\text{T}}^{j1} \ge 60 \,\text{GeV}, \quad p_{\text{T}}^{b1} \ge 60 \,\text{GeV},$ $|\Delta \eta_{jj}| > 4, \quad m_{\gamma H} \ge 160 \,\text{GeV}, \quad \Delta R_{\gamma b/\gamma j} \ge 1.2.$

EVENT

m_{jj} distribution critical to enhance S/B

Barbara Mele

irreducible b	ockgr O's	(optimized	d cuts) $p_{ m T}^{\gamma}$	$\geq 20 \mathrm{GeV}$
sub-processes	σ_i (pb)	σ_i/σ	σ_i^{γ} (fb)	$\sigma_i^\gamma/\sigma^\gamma$
$gq \to b\bar{b}gq(\gamma)$	57.2(1)	55.3~%	17.3(1)	51.6~%
$gg \to b\bar{b}gg\left(\gamma\right)$	25.2(1)	24.4~%	3.93(3)	11.7~%
$qq' \to b\bar{b}qq'(\gamma)$	7.76(3)	7.5 %	4.04(2)	12.1~%
$qq \rightarrow b\bar{b}qq(\gamma)$	6.52(2)	6.3~%	4.49(3)	13.4~%
$q\bar{q}' \to b\bar{b} q\bar{q}' (\gamma)$	4.60(2)	4.4 %	2.28(2)	6.8~%
$q\bar{q} \to b\bar{b}q\bar{q}(\gamma)$	2.13(2)	2.1~%	1.21(2)	3.6~%
$gg \to b\bar{b}q\bar{q}(\gamma)$	0.0332(7)	0.03~%	0.124(3)	0.37~%
$q\bar{q} \rightarrow b\bar{b}gg(\gamma)$	0.0137(2)	0.01 %	0.094(2)	0.28~%
$q\bar{q} \to b\bar{b} q'\bar{q}' (\gamma)$	0.000080(3)	$0.00007 \ \%$	0.00080(8)	0.002 %

bckg(y)/bckg ~ 33 fb / 103 pb ~ 1/3000

cf. signal(γ)/signal ~ 1/100

\mathbf{O} 's: pp \rightarrow H γ j j vs irrid. bckgr

(ALPGEN + MADEVENT)

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 140 \text{ GeV}$
$\sigma[H(\to b\bar{b})\gamma jj]$	$20 { m GeV}$	3.59(7) fb	2.92(4) fb	1.98(3) fb
	$30~{\rm GeV}$	2.62(3) fb	2.10(2) fb	1.50(3) fb
$\sigma[bar{b}\gamma jj]$	$20~{\rm GeV}$	33.5(1) fb	37.8(2) fb	40.2(1) fb
	$30~{\rm GeV}$	25.7(1) fb	27.7(1) fb	28.9(2) fb
$\sigma[H(\to b\bar{b})jj]$		320(1) fb	254.8(6) fb	167.7(3) fb
$\sigma[bar{b}jj]$		103.4(2) pb	$102.0(2) { m ~pb}$	98.4(2) pb

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 140 \text{ GeV}$
$S/\sqrt{B} _{H\gammajj}$	$20~{ m GeV}$	2.6	2.0	1.3
$S/\sqrt{B} _{H\gammajj}$	$30 { m ~GeV}$	2.2	1.7	1.2
$S/\sqrt{B} _{Hjj}$		3.5	2.8	1.9

L=100 fb⁻¹ E(b) = 60% PDF : CTEQ5L

Nevents for reducible bckgs (mH=120 GeV)

L=100 fb⁻¹

	$p_{\rm T}^{\gamma} \ge 20 {\rm ~GeV}$	$p_{\rm T}^{\gamma} \ge 30 { m ~GeV}$
$pp \to \gamma H(\to b\bar{b}) + 2j$	90	66
$pp \rightarrow \gamma b\bar{b} + 2j$	1206	925
$pp \rightarrow \gamma + 4j$	23	17
$pp \rightarrow b\bar{b} + 3j$	440	324
$pp \rightarrow 5j$	14	11
S/\sqrt{B}	2.2	1.8

$$\epsilon_{fake} = 1\%$$

 $\epsilon_{fake} \rightarrow mistagging$
light-jet as a b-jet

CMS can do better than this !

Barbara Mele

Napoli, 13/2/2007

 $\varepsilon_{\gamma j} = 1/5000$

	Parton shower effect central jet veto hel	ts and p S/E	3			
⊌ be	no color exchanged in the signal tween up and down fermionic lines	q w Ş	q'			
	on the contrary, in bckg t-channel virtual gluons	(q , g)	(q , g)			
9	higher-order QCD radiation much more relevant for bckg than for signal !					
9	in bckg, m_{jj} and $ \Delta \eta_{jj} $ for light tagging jets expected to decrease with respect to partonic configuration	15				

<u>ALPGEN + HERWIG</u>

jet cone as in GETJET $p_{\rm T}^j > 20 \,{ m GeV} \quad |\eta_j| < 5$ R = 0.7

Identification of light tagging jets not uniquely defined, due to extra QCD radiation

tried 2 different algorithms for jets :

a1-highest and second highest pT with pT(j1)> 60 GeV pT(j2)> 30 GeV

a2-pair of jets with highest invariant mass, pT(j1)> 60 GeV pT(j2)> 30 GeV

distributions after parton shower

jet 1-2 rapidity difference distribution

pT1 > 60, pT2 > 30

what if $\gamma \rightarrow W$? pp $\rightarrow HW$ jj Rainwater (2001) $v \ell = e, \mu$

- Could also help in constraining bbH coupling
- accurate studies for bckg and parton shower effects are missing
- Θ cross section smaller than for pp -> H γ 2j
 - for optimized event selection $(pT(\gamma) > 20 \text{ GeV})$ (with photon constraints applied to charged lepton) and for mH=120 GeV, we get :

$$\sigma(H\gamma jj) \sim 4.4 \times \sigma(HW jj)$$

 $\gamma \ell = e, \mu$

Summary

- measure of gHbb challenging at LHC new promising channel in VBF pp \rightarrow H jj + γ
- 🕴 main advantages versus Hjj in VBF
 - trigger on γ
 - much less active bckg after requiring a central γ
- signf ~ 3 at parton level (x 2 expected from parton shower effects) , for L=100 fb⁻¹, mH= 120 GeV
- could provide a new independent test of Hbb and HWW couplings (sensitivity to HZZ drops) !