NLO QCD corrections to Vector Boson Pair Production via Vector Boson Fusion

Giuseppe Bozzi

Institut für Theoretische Physik Universität Karlsruhe

IFAE 2007 Napoli, 12.4.2007

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007 1 / 25

(4) (5) (4) (5)

a 🕨

Outline

Motivation

Why Vector Boson Fusion?

Elements of the calculation

- Tree-level features
- NLO: real contributions
- NLO: virtual contributions

Selected results

Differential distributions at the LHC

Outline

Motivation

Why Vector Boson Fusion?

Elements of the calculation

- Tree-level features
- NLO: real contributions
- NLO: virtual contributions

B) Selected results

Differential distributions at the LHC

- $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC
- Clean experimental signature
 - $ightarrow \,$ two highly energetic outgoing jets
 - $ightarrow\,$ large rapidity interval between jets
 - ightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy, Oleari, Zeppenfeld (2003)]

A (1) > A (2) > A

• $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC

Clean experimental signature

- $ightarrow \,$ two highly energetic outgoing jets
- $ightarrow\,$ large rapidity interval between jets
- ightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy,Oleari,Zeppenfeld(2003)]

A (1) > A (2) > A

• $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC

• Clean experimental signature

- → two highly energetic outgoing jets
- ightarrow large rapidity interval between jets
- ightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy,Oleari,Zeppenfeld(2003)]

A (1) > A (2) > A

- $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC
- Clean experimental signature
 - \rightarrow two highly energetic outgoing jets
 - $ightarrow\,$ large rapidity interval between jets
 - ightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy,Oleari,Zeppenfeld(2003)]

A (1) > A (2) > A

- $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC
- Clean experimental signature
 - \rightarrow two highly energetic outgoing jets
 - $ightarrow \,$ large rapidity interval between jets
 - ightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy,Oleari,Zeppenfeld(2003)]

A (10) F (10)

- $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC
- Clean experimental signature
 - → two highly energetic outgoing jets
 - \rightarrow large rapidity interval between jets
 - \rightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han,Valencia,Willenbrock(1991)]

[Figy,Oleari,Zeppenfeld(2003)]

A (10) F (10)

- $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC
- Clean experimental signature
 - → two highly energetic outgoing jets
 - → large rapidity interval between jets
 - \rightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy, Oleari, Zeppenfeld (2003)]

 \rightarrow Very promising channel at the LHC

< ∃ ►

- $\sigma(qq \rightarrow qqH) \sim 0.2 \cdot \sigma(gg \rightarrow H)$ at the LHC
- Clean experimental signature
 - \rightarrow two highly energetic outgoing jets
 - → large rapidity interval between jets
 - \rightarrow no hadronic activity in the rapidity interval between jets
- NLO QCD corrections moderate (5-10%)

[Han, Valencia, Willenbrock (1991)]

[Figy, Oleari, Zeppenfeld (2003)]

Background to Higgs production via VBF

• $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer,Plehn,Rainwater,Zeppenfeld(2001)]

- similar features as H production → *irreducible* background
- New Physics
 - possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
 - subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

Background to Higgs production via VBF

• $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer,Plehn,Rainwater,Zeppenfeld(2001)]

similar features as H production → *irreducible* background

New Physics

- possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
- subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

Background to Higgs production via VBF

• $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer, Plehn, Rainwater, Zeppenfeld (2001)]

similar features as H production → *irreducible* background

New Physics

- possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
- subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

Background to Higgs production via VBF

• $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer,Plehn,Rainwater,Zeppenfeld(2001)]

• similar features as H production \rightarrow *irreducible* background

New Physics

- possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
- subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

- Background to Higgs production via VBF
 - $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer,Plehn,Rainwater,Zeppenfeld(2001)]

$\bullet\,$ similar features as H production \rightarrow irreducible background

- New Physics
 - possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
 - subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

- Background to Higgs production via VBF
 - $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer, Plehn, Rainwater, Zeppenfeld (2001)]

- similar features as H production \rightarrow *irreducible* background
- New Physics
 - possible signal: enhancement of $qq \to qqVV$ over SM predictions at high \sqrt{s}
 - subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

- Background to Higgs production via VBF
 - $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer, Plehn, Rainwater, Zeppenfeld (2001)]

- similar features as H production \rightarrow *irreducible* background
- New Physics
 - possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
 - subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

- Background to Higgs production via VBF
 - $\sigma(qq \rightarrow qqW^+W^-)$ between 3.5% and 15% of the Higgs signal for 115 GeV $\leq M_H \leq$ 160 GeV

[Kauer, Plehn, Rainwater, Zeppenfeld (2001)]

- similar features as H production \rightarrow *irreducible* background
- New Physics
 - possible signal: enhancement of $qq \rightarrow qqVV$ over SM predictions at high \sqrt{s}
 - subprocess $V_L V_L \rightarrow V_L V_L$ intimately related to EWSB
- → Need accurate predictions for EW VVjj production!

Multi-parton process: huge number of Feynman diagrams

- **2** \rightarrow **4** for $qq \rightarrow qqVV$
- 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
- \rightarrow how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - ightarrow how to solve numerical instabilities?

→ Build a fully-flexible partonic Monte Carlo program allowing for

- computation of jet observables at NLO-QCD accuracy
- straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)] ZZ: [Jaeger,Oleari,Zeppenfeld(2006)] WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

- Multi-parton process: huge number of Feynman diagrams
 - **2** \rightarrow **4** for $qq \rightarrow qqVV$
 - 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
 - \rightarrow how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - ightarrow how to solve numerical instabilities?
- → Build a fully-flexible partonic Monte Carlo program allowing for
 - computation of jet observables at NLO-QCD accuracy
 - straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)] ZZ: [Jaeger,Oleari,Zeppenfeld(2006)] WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

- Multi-parton process: huge number of Feynman diagrams
 - **2** \rightarrow **4** for $qq \rightarrow qqVV$
 - 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
 - $\rightarrow\,$ how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - ightarrow how to solve numerical instabilities?
- → Build a fully-flexible partonic Monte Carlo program allowing for
 - computation of jet observables at NLO-QCD accuracy
 - straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)] ZZ: [Jaeger,Oleari,Zeppenfeld(2006)] WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

- Multi-parton process: huge number of Feynman diagrams
 - **2** \rightarrow **4** for $qq \rightarrow qqVV$
 - 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
 - → how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - → how to solve numerical instabilities?
- → Build a fully-flexible partonic Monte Carlo program allowing for
 - computation of jet observables at NLO-QCD accuracy
 - straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)] ZZ: [Jaeger,Oleari,Zeppenfeld(2006)] WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

- Multi-parton process: huge number of Feynman diagrams
 - **2** \rightarrow **4** for $qq \rightarrow qqVV$
 - 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
 - → how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - \rightarrow how to solve numerical instabilities?
- → Build a fully-flexible partonic Monte Carlo program allowing for
 - computation of jet observables at NLO-QCD accuracy
 - straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)] ZZ: [Jaeger,Oleari,Zeppenfeld(2006)] WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

- Multi-parton process: huge number of Feynman diagrams
 - **2** \rightarrow **4** for $qq \rightarrow qqVV$
 - 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
 - → how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - \rightarrow how to solve numerical instabilities?
- → Build a fully-flexible partonic Monte Carlo program allowing for
 - computation of jet observables at NLO-QCD accuracy
 - straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)] ZZ: [Jaeger,Oleari,Zeppenfeld(2006)] WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

- Multi-parton process: huge number of Feynman diagrams
 - **2** \rightarrow **4** for $qq \rightarrow qqVV$
 - 2 \rightarrow 6 for $qq \rightarrow qql^+l^-\nu_l\bar{\nu}_l, qql^+l^-l^+l^-, qql^+l^-l^+\nu_l$
 - → how to speed up the evaluation?
- Suitable treatment of pentagon contributions
 - \rightarrow how to solve numerical instabilities?
- → Build a fully-flexible partonic Monte Carlo program allowing for
 - computation of jet observables at NLO-QCD accuracy
 - straightforward implementation of cuts

WW: [Jaeger,Oleari,Zeppenfeld(2006)]
ZZ: [Jaeger,Oleari,Zeppenfeld(2006)]
WZ: [gb,Jaeger,Oleari,Zeppenfeld(2007)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Motivation

Why Vector Boson Fusion?

Elements of the calculation

- Tree-level features
- NLO: real contributions
- NLO: virtual contributions

Selected results

Differential distributions at the LHC

• Up to 200 diagrams at LO!

- only $us \rightarrow ds$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- a) same quark line
- (b) different quark lines
- c) quark line + leptonic tensor T_{VV}
- l) quark line + *leptonic tensor T_{WV}*
- e) *leptonic tensor* L_{WV} VBF topology

f) leptonic tensor Γ_W

Giuseppe Bozzi (ITP Karlsruhe)

- Up to 200 diagrams at LO!
- only $\textit{us} \rightarrow \textit{ds}$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007 8 / 25

(a)

- Up to 200 diagrams at LO!
- only $\textit{us} \rightarrow \textit{ds}$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- (a) same quark line
 - b) different quark lines
 - c) quark line +
 -) quark line + *leptonic tensor T_{WV}*
 - e) *leptonic tensor* L_{WV} VBF topology

f) leptonic tensor Γ_W

Giuseppe Bozzi (ITP Karlsruhe)

(f)

- Up to 200 diagrams at LO!
- only $\textit{us} \rightarrow \textit{ds}$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- (a) same quark line
- (b) different quark lines
 - c) quark line + leptonic tensor T_{VV.u}
 -) quark line + *leptonic tensor T_{wv}*
 - e) *leptonic tensor* L_{WV} VBF topology
 - f) leptonic tensor Γ_W

< 6 b

Giuseppe Bozzi (ITP Karlsruhe)

(a)

 $T_{VV}^{\alpha\beta}$

(c)

- Up to 200 diagrams at LO!
- only $us \rightarrow ds$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- (a) same quark line
- (b) different quark lines
- (c) quark line + leptonic tensor $T_{VV,\mu}$
 - quark line + *leptonic tensor T_{WV,e}*
 -) *leptonic tensor* L_{WV} VBF topology
 - f) leptonic tensor Γ_W

< 6 b

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007 8 / 25

(a)

(f)

- Up to 200 diagrams at LO!
- only $us \rightarrow ds$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- (a) same quark line
- (b) different quark lines
- (c) quark line + *leptonic tensor* T_{VV,µ}
- (d) quark line + leptonic tensor T_{WV,e}
 - *leptonic tensor* L_{WV} VBF topology

) leptonic tensor Γ_W

4 A N

Giuseppe Bozzi (ITP Karlsruhe)

(a)

(f)

- Up to 200 diagrams at LO!
- only $us \rightarrow ds$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- (a) same quark line
- (b) different quark lines
- (c) quark line + *leptonic tensor* T_{VV,µ}
- (d) quark line + *leptonic tensor* T_{WV,e}
- (e) *leptonic tensor* L_{WV} VBF topology

f) leptonic tensor Γ_W

Giuseppe Bozzi (ITP Karlsruhe)

(a)

- Up to 200 diagrams at LO!
- only $us \rightarrow ds$ shown
- \rightarrow add $u\bar{s} \rightarrow d\bar{s}, \ldots$
- (a) same quark line
- (b) different quark lines
 - c) quark line + leptonic tensor $T_{VV,\mu}$
 - d) quark line + *leptonic tensor* T_{WV,e}
 - leptonic tensor L_{WV}
 VBF topology
 - (f) leptonic tensor Γ_W

Giuseppe Bozzi (ITP Karlsruhe)

Leptonic tensors

Example: T_{WV} built up from

• Sum of sub-amplitudes involving EW bosons and leptons only

- Use them for diagrams with same topology but differences in quark propagators
- Develop modular structure to speed up the calculation:
 - → compute common building blocks of several diagrams only once per phase-space point
 - → straightforward (future) implementation of new-physics effects in the bosonic/leptonic sector
Example: T_{WV} built up from

- Sum of sub-amplitudes involving EW bosons and leptons only
- Use them for diagrams with same topology but differences in quark propagators
- Develop modular structure to speed up the calculation:
 - → compute common building blocks of several diagrams only once per phase-space point
 - → straightforward (future) implementation of new-physics effects in the bosonic/leptonic sector

Example: T_{WV} built up from

- Sum of sub-amplitudes involving EW bosons and leptons only
- Use them for diagrams with same topology but differences in quark propagators
- Develop modular structure to speed up the calculation:
 - → compute common building blocks of several diagrams only once per phase-space point
 - → straightforward (future) implementation of new-physics effects in the bosonic/leptonic sector

Example: T_{WV} built up from

- Sum of sub-amplitudes involving EW bosons and leptons only
- Use them for diagrams with same topology but differences in quark propagators
- Develop modular structure to speed up the calculation:
 - → compute common building blocks of several diagrams only once per phase-space point
 - → straightforward (future) implementation of new-physics effects in the bosonic/leptonic sector

Example: T_{WV} built up from

- Sum of sub-amplitudes involving EW bosons and leptons only
- Use them for diagrams with same topology but differences in quark propagators
- Develop modular structure to speed up the calculation:
 - → compute common building blocks of several diagrams only once per phase-space point
 - → straightforward (future) implementation of new-physics effects in the bosonic/leptonic sector

Outline

Motivation

Why Vector Boson Fusion?

Elements of the calculation

- Tree-level features
- NLO: real contributions
- NLO: virtual contributions

3 Selected results

Differential distributions at the LHC

Attach a gluon to the quark lines in all possible ways

- Crossing diagrams: initial gluon splitting in a qq
 q
 pair
- Soft and collinear singularities
 - → standard Catani-Seymour dipole subtraction

```
[Catani, Seymour (1997)]
```

- Divergences only depend on the colour structure of the external partons
 - → subtraction terms *identical* to Higgs production via VBF

$$< I(\epsilon) >= |M_B|^2 \frac{\alpha_s(\mu_R)}{2\pi} C_F \left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \Gamma(1+\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 9 - \frac{4}{3}\pi^2\right]$$

[Figy,Oleari,Zeppenfeld(2003)]

Q=momentum transfer between initial and final state quark)

11/25

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

- Attach a gluon to the quark lines in all possible ways
- Crossing diagrams: initial gluon splitting in a $q\bar{q}$ pair
- Soft and collinear singularities
 - → standard Catani-Seymour dipole subtraction

[Catani, Seymour(1997)]

 Divergences only depend on the colour structure of the external partons

→ subtraction terms *identical* to Higgs production via VBF

$$< I(\epsilon) >= |M_B|^2 \frac{\alpha_s(\mu_R)}{2\pi} C_F \left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \Gamma(1+\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 9 - \frac{4}{3}\pi^2\right]$$

[Figy,Oleari,Zeppenfeld(2003)]

Q=momentum transfer between initial and final state quark)

11/25

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Attach a gluon to the quark lines in all possible ways
- Crossing diagrams: initial gluon splitting in a $q\bar{q}$ pair
- Soft and collinear singularities
 - → standard Catani-Seymour dipole subtraction

[Catani, Seymour(1997)]

 Divergences only depend on the colour structure of the external partons

→ subtraction terms *identical* to Higgs production via VBF

$$< I(\epsilon) >= |M_B|^2 \frac{\alpha_s(\mu_R)}{2\pi} C_F\left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \Gamma(1+\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 9 - \frac{4}{3}\pi^2\right]$$

[Figy,Oleari,Zeppenfeld(2003)]

Q=momentum transfer between initial and final state quark)

11/25

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

- Attach a gluon to the quark lines in all possible ways
- Crossing diagrams: initial gluon splitting in a qq̄ pair
- Soft and collinear singularities
 - → standard Catani-Seymour dipole subtraction

```
[Catani, Seymour (1997)]
```

 Divergences only depend on the colour structure of the external partons

→ subtraction terms *identical* to Higgs production via VBF

$$< I(\epsilon) >= |M_B|^2 \frac{\alpha_s(\mu_R)}{2\pi} C_F\left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \Gamma(1+\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 9 - \frac{4}{3}\pi^2\right]$$

[Figy,Oleari,Zeppenfeld(2003)]

Q=momentum transfer between initial and final state quark)

11/25

- Attach a gluon to the quark lines in all possible ways
- Crossing diagrams: initial gluon splitting in a $q\bar{q}$ pair
- Soft and collinear singularities
 - → standard Catani-Seymour dipole subtraction

```
[Catani, Seymour (1997)]
```

- Divergences only depend on the colour structure of the external partons
 - → subtraction terms *identical* to Higgs production via VBF

$$< l(\epsilon) >= |M_B|^2 \frac{\alpha_s(\mu_R)}{2\pi} C_F\left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \Gamma(1+\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 9 - \frac{4}{3}\pi^2\right]$$

[Figy,Oleari,Zeppenfeld(2003)]

(Q=momentum transfer between initial and final state quark)

11/25

- Attach a gluon to the quark lines in all possible ways
- Crossing diagrams: initial gluon splitting in a $q\bar{q}$ pair
- Soft and collinear singularities
 - → standard Catani-Seymour dipole subtraction

```
[Catani, Seymour (1997)]
```

- Divergences only depend on the colour structure of the external partons
 - → subtraction terms *identical* to Higgs production via VBF

$$< I(\epsilon) >= |M_B|^2 rac{lpha_s(\mu_R)}{2\pi} C_F \left(rac{4\pi\mu_R^2}{Q^2}
ight)^\epsilon \Gamma(1+\epsilon) \left[rac{2}{\epsilon^2} + rac{3}{\epsilon} + 9 - rac{4}{3}\pi^2
ight]$$

[Figy,Oleari,Zeppenfeld(2003)]

(Q=momentum transfer between initial and final state quark)

Outline

Motivatior

Why Vector Boson Fusion?

Elements of the calculation

- Tree-level features
- NLO: real contributions
- NLO: virtual contributions

Selected results

Differential distributions at the LHC

Add interference between Born and virtual amplitudes

- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - \rightarrow algebra of γ , *p*, ϵ performed in *d* = 4 dimensions

[Siegel(1979)]

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

A (10) × A (10) × A (10)

- Add interference between Born and virtual amplitudes
- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - ightarrow algebra of γ , p, ϵ performed in d= 4 dimensions

[Siegel(1979)]

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

A (10) × A (10) × A (10)

- Add interference between Born and virtual amplitudes
- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - \rightarrow algebra of γ , *p*, ϵ performed in *d* = 4 dimensions

[Siegel(1979)]

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

A (10) A (10) A (10)

- Add interference between Born and virtual amplitudes
- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - ightarrow algebra of γ , p, ϵ performed in d = 4 dimensions

[Siegel(1979)]

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

A (10) × A (10) × A (10)

- Add interference between Born and virtual amplitudes
- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - \rightarrow algebra of γ , p, ϵ performed in d = 4 dimensions

[Siegel(1979)]

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

A (10) × A (10) × A (10) ×

- Add interference between Born and virtual amplitudes
- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - \rightarrow algebra of γ , p, ϵ performed in d = 4 dimensions

[Siegel(1979)]

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

A (10) A (10) A (10)

- Add interference between Born and virtual amplitudes
- EW bosons exchanged in the *t*-channel are colour-singlet
 - → no contributions from gluons attached both to upper and lower quark lines!
 - ightarrow consider radiative corrections to single quark line only
- Regularization performed in the Dimensional Reduction scheme
 - \rightarrow PV reduction performed in $d = 4 2\epsilon$ dimensions
 - \rightarrow algebra of γ , p, ϵ performed in d = 4 dimensions

[Siegel(1979)]

13/25

 Three classes of contributions: virtual corrections along a quark line with 1,2,3 vector boson(s) attached → up to pentagons!

- self-energies
- triangles
- boxes

- self-energies
- triangles
- boxes

pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

- self-energies
- triangles
- boxes

pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

- self-energies
- triangles
- boxes

pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

- self-energies
- triangles
- boxes

pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

۲

۲

quark line with 3 bosons attached

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

quark line with 3 bosons attached

- self-energies
- triangles
- boxes

pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

quark line with 3 bosons attached

- self-energies
- triangles
- boxes
- pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

quark line with 3 bosons attached

- self-energies
- triangles
- boxes

pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

٥

۲

۲

quark line with 3 bosons attached

- self-energies
- triangles
- boxes
- pentagons

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

Summing up:

$$\mathcal{M}_{V} = \mathcal{M}_{B} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + c_{\text{virt}}\right] + \widetilde{\mathcal{M}}_{V}$$

• divergent part proportional to Born amplitude

- ightarrow exactly cancels the phase-space integral of the dipole terms
- finite term porportional to Born amplitude
- finite *non-universal* term \mathcal{M}_V
 - \rightarrow can be computed in d = 4 dimensions
 - → given in terms of the finite parts of the Passarino-Veltman $B_{ij}, C_{ij}, D_{ij}, E_{ij}$ coefficient functions

A (10) A (10) A (10)

Summing up:

$$\mathcal{M}_{V} = \mathcal{M}_{B} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + c_{\text{virt}}\right] + \widetilde{\mathcal{M}}_{V}$$

- divergent part proportional to Born amplitude
 - \rightarrow exactly cancels the phase-space integral of the dipole terms
- finite term porportional to Born amplitude
- finite non-universal term \mathcal{M}_V
 - \rightarrow can be computed in d = 4 dimensions
 - \rightarrow given in terms of the finite parts of the Passarino-Veltman $B_{ij}, C_{ij}, D_{ij}, E_{ij}$ coefficient functions

< 回 > < 三 > < 三 >

Summing up:

$$\mathcal{M}_{V} = \mathcal{M}_{B} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + c_{\text{virt}}\right] + \widetilde{\mathcal{M}}_{V}$$

- divergent part proportional to Born amplitude
 - \rightarrow exactly cancels the phase-space integral of the dipole terms
- finite term porportional to Born amplitude
- finite *non-universal* term \mathcal{M}_V
 - \rightarrow can be computed in d = 4 dimensions
 - \rightarrow given in terms of the finite parts of the Passarino-Veltman $B_{ij}, C_{ij}, D_{ij}, E_{ij}$ coefficient functions

A (10) A (10)

Summing up:

$$\mathcal{M}_{V} = \mathcal{M}_{B} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + c_{\text{virt}}\right] + \widetilde{\mathcal{M}}_{V}$$

- divergent part proportional to Born amplitude
 - \rightarrow exactly cancels the phase-space integral of the dipole terms
- finite term porportional to Born amplitude
- finite *non-universal* term $\overline{\mathcal{M}}_V$
 - \rightarrow can be computed in d = 4 dimensions
 - → given in terms of the finite parts of the Passarino-Veltman $B_{ii}, C_{ii}, D_{ii}, E_{ii}$ coefficient functions

A .

Evaluation of $\widetilde{\mathcal{M}}_V$

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - → keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari, Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - → computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

Dennar,Dittmaier(2005)]

Evaluation of \mathcal{M}_V

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

[Oleari,Zeppenfeld(2003)]

- Two-, Three-, Four-point tensor integrals
 - → computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

[Dennar,Dittmaier(2005)]

Evaluation of \mathcal{M}_V

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari,Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

[Dennar,Dittmaier(2005)]

Evaluation of \mathcal{M}_V

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari,Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - → computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

Dennar,Dittmaier(2005)]
Evaluation of \mathcal{M}_V

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari,Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - → computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

[Dennar,Dittmaier(2005)]

Evaluation of \mathcal{M}_V

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari,Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - → computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

[Dennar,Dittmaier(2005)]

Evaluation of \mathcal{M}_V

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari,Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - \rightarrow computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - → numerical instabilities if kinematical invariants (Gram determinant) become small
 - → use Dennar-Dittmaier reduction formalism

[Dennar,Dittmaier(2005)]

Evaluation of $\widetilde{\mathcal{M}}_V$

- Divergent contributions in the expression of scalar integrals can generate finite terms by multiplying tensor coefficients with a (d - 4) in the numerator
 - $\rightarrow\,$ keep track of how the divergent contributions feed into the expression of tensor coefficients

```
[Oleari,Zeppenfeld(2003)]
```

- Two-, Three-, Four-point tensor integrals
 - \rightarrow computed through Passarino-Veltman reduction procedure
 - ightarrow numerically stable in phase-space regions relevant for VBF

```
[Passarino, Veltman(1979)]
```

- Five-point tensor integrals
 - numerical instabilities if kinematical invariants (Gram determinant) become small
 - \rightarrow use Dennar-Dittmaier reduction formalism

```
[Dennar, Dittmaier (2005)]
```

Gauge invariance: a pentagon can be reduced to box integrals

$$\mathcal{E}_{\mu_1\mu_2\mu_3}(k_1, q_1, q_2, q_3) \equiv \int \frac{d^d I}{(2\pi)^d} \gamma^{\alpha} \frac{1}{I + k_1 + g_{123}} \gamma_{\mu_3} \frac{1}{I + k_1 + g_{12}} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1}$$

$$\begin{split} q_1^{\mu_1} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_2 \mu_3}(k_1, q_1 + q_2, q_3) - \mathcal{D}_{\mu_2 \mu_3}(k_1 + q_1, q_2, q_3) \\ q_2^{\mu_2} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_1 \mu_3}(k_1, q_1, q_2 + q_3) - \mathcal{D}_{\mu_1 \mu_3}(k_1, q_1 + q_2, q_3) \\ q_3^{\mu_3} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_1 \mu_2}(k_1, q_1, q_2) - \mathcal{D}_{\mu_1 \mu_2}(k_1, q_1, q_2 + q_3) \end{split}$$

Express $\mathcal{E}_{\mu_1\mu_2\mu_3}$ ($\mathcal{D}_{\mu_1\mu_2}$) as a sum of coefficients up to E_{ij} (D_{ij}) and verify the Ward identities \rightarrow strong check of the code

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

Gauge invariance: a pentagon can be reduced to box integrals

$$\mathcal{E}_{\mu_1\mu_2\mu_3}(k_1, q_1, q_2, q_3) \equiv \int \frac{d^d I}{(2\pi)^d} \gamma^{\alpha} \frac{1}{I + k_1 + g_{123}} \gamma_{\mu_3} \frac{1}{I + k_1 + g_{12}} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_2} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_2} \frac{1}{I + k_1} \gamma_{\mu_$$

$$\begin{aligned} q_1^{\mu_1} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_2 \mu_3}(k_1, q_1 + q_2, q_3) - \mathcal{D}_{\mu_2 \mu_3}(k_1 + q_1, q_2, q_3) \\ q_2^{\mu_2} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_1 \mu_3}(k_1, q_1, q_2 + q_3) - \mathcal{D}_{\mu_1 \mu_3}(k_1, q_1 + q_2, q_3) \\ q_3^{\mu_3} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_1 \mu_2}(k_1, q_1, q_2) - \mathcal{D}_{\mu_1 \mu_2}(k_1, q_1, q_2 + q_3) \end{aligned}$$

Express $\mathcal{E}_{\mu_1\mu_2\mu_3}$ ($\mathcal{D}_{\mu_1\mu_2}$) as a sum of coefficients up to E_{ij} (D_{ij}) and verify the Ward identities \rightarrow strong check of the code

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

Gauge invariance: a pentagon can be reduced to box integrals

$$\mathcal{E}_{\mu_1\mu_2\mu_3}(k_1, q_1, q_2, q_3) \equiv \int \frac{d^d I}{(2\pi)^d} \gamma^{\alpha} \frac{1}{I + k_1 + g_{123}} \gamma_{\mu_3} \frac{1}{I + k_1 + g_{12}} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_1} \frac{1}{I + k_1 + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac$$

 $\begin{aligned} q_{1}^{\mu_{1}} \mathcal{E}_{\mu_{1}\mu_{2}\mu_{3}}(k_{1},q_{1},q_{2},q_{3}) &= \mathcal{D}_{\mu_{2}\mu_{3}}(k_{1},q_{1}+q_{2},q_{3}) - \mathcal{D}_{\mu_{2}\mu_{3}}(k_{1}+q_{1},q_{2},q_{3}) \\ q_{2}^{\mu_{2}} \mathcal{E}_{\mu_{1}\mu_{2}\mu_{3}}(k_{1},q_{1},q_{2},q_{3}) &= \mathcal{D}_{\mu_{1}\mu_{3}}(k_{1},q_{1},q_{2}+q_{3}) - \mathcal{D}_{\mu_{1}\mu_{3}}(k_{1},q_{1}+q_{2},q_{3}) \\ q_{3}^{\mu_{3}} \mathcal{E}_{\mu_{1}\mu_{2}\mu_{3}}(k_{1},q_{1},q_{2},q_{3}) &= \mathcal{D}_{\mu_{1}\mu_{2}}(k_{1},q_{1},q_{2}) - \mathcal{D}_{\mu_{1}\mu_{2}}(k_{1},q_{1},q_{2}+q_{3}) \end{aligned}$

Express $\mathcal{E}_{\mu_1\mu_2\mu_3}$ ($\mathcal{D}_{\mu_1\mu_2}$) as a sum of coefficients up to E_{ij} (D_{ij}) and verify the Ward identities \rightarrow strong check of the code

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

Gauge invariance: a pentagon can be reduced to box integrals

$$\mathcal{E}_{\mu_1\mu_2\mu_3}(k_1, q_1, q_2, q_3) \equiv \int \frac{d^d I}{(2\pi)^d} \gamma^{\alpha} \frac{1}{I + k_1 + g_{123}} \gamma_{\mu_3} \frac{1}{I + k_1 + g_{12}} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_1} \frac{1}{I + k_1} \gamma_{\mu_2} \frac{1}{I + k_1 + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1} \gamma_{\mu_1} \frac{1}{I + g_1} \gamma_{\mu_2} \frac{1}{I + g_1}$$

 $\begin{aligned} q_1^{\mu_1} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_2 \mu_3}(k_1, q_1 + q_2, q_3) - \mathcal{D}_{\mu_2 \mu_3}(k_1 + q_1, q_2, q_3) \\ q_2^{\mu_2} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_1 \mu_3}(k_1, q_1, q_2 + q_3) - \mathcal{D}_{\mu_1 \mu_3}(k_1, q_1 + q_2, q_3) \\ q_3^{\mu_3} & \mathcal{E}_{\mu_1 \mu_2 \mu_3}(k_1, q_1, q_2, q_3) &= \mathcal{D}_{\mu_1 \mu_2}(k_1, q_1, q_2) - \mathcal{D}_{\mu_1 \mu_2}(k_1, q_1, q_2 + q_3) \end{aligned}$

Express $\mathcal{E}_{\mu_1\mu_2\mu_3}$ ($\mathcal{D}_{\mu_1\mu_2}$) as a sum of coefficients up to E_{ij} (D_{ij}) and verify the Ward identities \rightarrow strong check of the code!

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

<u>"True</u>" pentagons

- Loop amplitudes eventually contracted with leptonic currents
- Example: $W^+(q_+), W^-(q_-), \gamma/Z(q_0)$

•
$$M_5 = J_+^{\mu_1} J_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3}(k_1, q_+, q_-, q_0)$$

• Project J_+ on the respective momenta

$$(r_{\pm}\cdot(q_++q_-)=0)$$

contribution to cross section = > 18/25

VV via VBF @ NLO

- Loop amplitudes eventually contracted with leptonic currents
- Example: $W^+(q_+)$, $W^-(q_-)$, $\gamma/Z(q_0)$ with leptonic decays J_+, J_-
- $M_5 = J_+^{\mu_1} J_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3}(k_1, q_+, q_-, q_0)$
 - Project J_{\pm} on the respective momenta $(J_{\pm}^{\mu} = x_{\pm} q_{\pm}^{\mu} + r_{\pm}^{\mu})$, so that the vectors r_{\pm} , in the center-of-mass system of the W pair, have zero time component

$$(r_{\pm}\cdot(q_++q_-)=0)$$

- $\rightarrow M_5 = r_+^{\mu_1} r_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3} + \text{boxes}$
- → Ward Identities reduce magnitude of coefficients multiplying pentagon loops and thus, the overall pentagon

contribution to eros section = > = > >

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

<u>"True</u>" pentagons

- Loop amplitudes eventually contracted with leptonic currents
- Example: $W^+(q_+), W^-(q_-), \gamma/Z(q_0)$ with leptonic decays J_+, J_-

•
$$M_5 = J^{\mu_1}_+ J^{\mu_2}_- \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3}(k_1, q_+, q_-, q_0)$$

• Project J_{+} on the respective momenta

$$(r_{\pm}\cdot(q_++q_-)=0)$$

contribution to gross section => 18/25

VV via VBF @ NLO

- Loop amplitudes eventually contracted with leptonic currents
- Example: $W^+(q_+)$, $W^-(q_-)$, $\gamma/Z(q_0)$ with leptonic decays J_+, J_-

•
$$M_5 = J_+^{\mu_1} J_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3}(k_1, q_+, q_-, q_0)$$

- Project J_{\pm} on the respective momenta $(J_{\pm}^{\mu} = x_{\pm} q_{\pm}^{\mu} + r_{\pm}^{\mu})$, so that the vectors r_{\pm} , in the center-of-mass system of the W pair, have zero time component $(r_{\pm} \cdot (q_{+} + q_{-}) = 0)$
- $\rightarrow M_5 = r_+^{\mu_1} r_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3} + \text{boxes}$
- → Ward Identities reduce magnitude of coefficients multiplying pentagon loops and thus, the overall pentagon

contribution to cross section = •

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

- Loop amplitudes eventually contracted with leptonic currents
- Example: $W^+(q_+)$, $W^-(q_-)$, $\gamma/Z(q_0)$ with leptonic decays J_+, J_-

•
$$M_5 = J_+^{\mu_1} J_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3}(k_1, q_+, q_-, q_0)$$

• Project J_{\pm} on the respective momenta $(J_{\pm}^{\mu} = x_{\pm} q_{\pm}^{\mu} + r_{\pm}^{\mu})$, so that the vectors r_{\pm} , in the center-of-mass system of the W pair, have zero time component $(r_{\pm} - (r_{\pm} + r_{\pm})) = 0$

$$(r_{\pm}\cdot(q_++q_-)=0)$$

- $\rightarrow M_5 = r_+^{\mu_1} r_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3} + \text{boxes}$
- → Ward Identities reduce magnitude of coefficients multiplying pentagon loops and thus, the overall pentagon

contribution to cross section = >

VV via VBF @ NLO

- Loop amplitudes eventually contracted with leptonic currents
- Example: $W^+(q_+)$, $W^-(q_-)$, $\gamma/Z(q_0)$ with leptonic decays J_+, J_-

•
$$M_5 = J_+^{\mu_1} J_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3}(k_1, q_+, q_-, q_0)$$

• Project J_{\pm} on the respective momenta $(J_{\pm}^{\mu} = x_{\pm} q_{\pm}^{\mu} + r_{\pm}^{\mu})$, so that the vectors r_{\pm} , in the center-of-mass system of the W pair, have zero time component

$$(r_{\pm}\cdot(q_++q_-)=0)$$

$$\rightarrow M_5 = r_+^{\mu_1} r_-^{\mu_2} \tilde{\mathcal{P}}_{\mu_1 \mu_2 \mu_3} + \text{boxes}$$

→ Ward Identities reduce magnitude of coefficients multiplying pentagon loops and thus, the overall pentagon

contribution to cross section

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1 f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

• Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%

- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1 f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1-f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Orrect the remaining pentagon contributions by a factor 1/(1 − f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1 f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1 f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1 f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Gauge-check procedure

- Identify the fraction *f* of events for which numerical pentagon reduction violates Ward identity by more than 10%
- Discard these points for the calculation of the finite parts
- Correct the remaining pentagon contributions by a factor 1/(1 f)
- Error induced by this approximation: far below numerical accuracy of Monte Carlo program
- PV formalism: $f \sim 15\%$
- DD formalism: $f \sim 0.1\%$
- → Pentagons under control using DD formalism!

Outline

Motivation

Why Vector Boson Fusion?

Elements of the calculation

- Tree-level features
- NLO: real contributions
- NLO: virtual contributions

Selected results

3

Differential distributions at the LHC

VBF cuts

Tagging Jets	$p_{Tj} \ge$ 20 GeV, $ y_j \le$ 4.5
	$ \qquad \Delta y_{jj} = y_{j_1} - y_{j_2} > 4,$
	$y_{j_1} \cdot y_{j_2} < 0$
Charged Leptons	$ ho_{TI}>$ 20 GeV, $ \eta_I \leq$ 2.5
	$y_{j,min} < \eta_I < y_{j,max}$
	$\Delta R_{jl} \geq 0.4$
Higgs on/off	$M_{VV} > M_H + 10 \text{ GeV}$
	(WW,ZZ continuum only)

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

IFAE 2007 - Napoli, 12.4.2007 21

Э.

イロト イヨト イヨト イヨト

Two possible scales

- $m_V = (m_Z + m_W)/2$
- Q=momentum-transfer of exchanged vector boson in VBF graphs
- K-factor \sim 1 (± few percent) in both cases
- LO depends on μ_F only $\rightarrow \sim$ 10% dependence (0.5< ξ <2)
- NLO improvement $\rightarrow \sim 2\%$ dependence (0.5< ξ <2)

Two possible scales

• $m_V = (m_Z + m_W)/2$

- Q=momentum-transfer of exchanged vector boson in VBF graphs
- K-factor ~1 (± few percent) in both cases
- LO depends on μ_F only $\rightarrow \sim$ 10% dependence (0.5< ξ <2)
- NLO improvement $\rightarrow \sim 2\%$ dependence (0.5< ξ <2

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

Two possible scales

- $m_V = (m_Z + m_W)/2$
- Q=momentum-transfer of exchanged vector boson in VBF graphs
- K-factor \sim 1 (± few percent) in both cases
- LO depends on μ_F only $\rightarrow \sim 10\%$ dependence (0.5< ξ <2)
- NLO improvement $\rightarrow \sim 2\%$ dependence (0.5< $\xi < 2$

Two possible scales

- $m_V = (m_Z + m_W)/2$
- Q=momentum-transfer of exchanged vector boson in VBF graphs
- K-factor \sim 1 (± few percent) in both cases
- LO depends on μ_F only $\rightarrow \sim 10\%$ dependence (0.5< ξ <2)
- NLO improvement $\rightarrow \sim 2\%$ dependence (0.5< ξ

Giuseppe Bozzi (ITP Karlsruhe)

Two possible scales

• $m_V = (m_Z + m_W)/2$

- Q=momentum-transfer of exchanged vector boson in VBF graphs
- K-factor \sim 1 (± few percent) in both cases
- LO depends on μ_F only $\rightarrow \sim 10\%$ dependence (0.5< ξ <2)
- NLO improvement $\rightarrow \sim 2\%$ dependence (0.5<8

Two possible scales

•
$$m_V = (m_Z + m_W)/2$$

- Q=momentum-transfer of exchanged vector boson in VBF graphs
- K-factor \sim 1 (± few percent) in both cases
- LO depends on μ_F only $\rightarrow \sim 10\%$ dependence (0.5< ξ <2)
- NLO improvement $\rightarrow \sim 2\%$ dependence (0.5< ξ <2)

• Strong change in shape \rightarrow shift to smaller p_T at NLO

- Mainly due to extra parton from real emission
- K-factor varying between 1.2 and 0.8 (20 GeV < p_T < 400 GeV)

• Strong change in shape \rightarrow shift to smaller p_T at NLO

Mainly due to extra parton from real emission

• K-factor varying between 1.2 and 0.8 (20 GeV < p_T < 400 GeV)

- Strong change in shape \rightarrow shift to smaller p_T at NLO
- Mainly due to extra parton from real emission
- K-factor varying between 1.2 and 0.8 (20 GeV < p_T < 400 GeV)

- Strong change in shape \rightarrow shift to smaller p_T at NLO
- Mainly due to extra parton from real emission
- K-factor varying between 1.2 and 0.8 (20 GeV $< p_T < 400$ GeV)

Invariant mass - lepton pairs (ZZ case)

• Continuum ZZ (left) vs. Higgs contribution (right): $\mu_0 = M_Z$

- Pronounced resonance behaviour for $M_H < 800 \text{ GeV}$
- LO and NLO virtually indistinguishable → excellent stability!

Giuseppe Bozzi (ITP Karlsruhe)

3

Invariant mass - lepton pairs (ZZ case)

• Continuum ZZ (left) vs. Higgs contribution (right): $\mu_0 = M_Z$

• Pronounced resonance behaviour for $M_H < 800$ GeV

■ LO and NLO virtually indistinguishable → excellent stability!

Giuseppe Bozzi (ITP Karlsruhe)

VV via VBF @ NLO

3
Invariant mass - lepton pairs (ZZ case)

• Continuum ZZ (left) vs. Higgs contribution (right): $\mu_0 = M_Z$

- Pronounced resonance behaviour for $M_H < 800 \text{ GeV}$
- LO and NLO virtually indistinguishable → excellent stability!

Giuseppe Bozzi (ITP Karlsruhe)

Invariant mass - lepton pairs (ZZ case)

• Continuum ZZ (left) vs. Higgs contribution (right): $\mu_0 = M_Z$

- Pronounced resonance behaviour for $M_H < 800 \text{ GeV}$
- LO and NLO virtually indistinguishable → excellent stability!

24/25

Fully-flexible parton-level Monte Carlo program with NLO QCD cross sections and distributions for

 $pp \rightarrow W^+W^-jj$ $pp \rightarrow ZZjj$ $pp \rightarrow W^{\pm}Zjj$ including leptonic decays

- Modular structure: separate (one-time) computation of leptonic tensors and decay width
- Fast evaluation and good numerical stability
- NLO corrections under excellent control (modest K-factors and scale dependence)

 Outlook: VBFNLO Monte Carlo program of relevant VBF processes at NLO QCD

Fully-flexible parton-level Monte Carlo program with NLO QCD cross sections and distributions for

 $pp \rightarrow W^+ W^- jj \quad pp \rightarrow ZZjj \quad pp \rightarrow W^{\pm}Zjj$

including leptonic decays

- Modular structure: separate (one-time) computation of leptonic tensors and decay width
- Fast evaluation and good numerical stability
- NLO corrections under excellent control (modest K-factors and scale dependence)

 Outlook: VBFNLO Monte Carlo program of relevant VBF processes at NLO QCD

Fully-flexible parton-level Monte Carlo program with NLO QCD cross sections and distributions for

 $pp \rightarrow W^+W^-jj$ $pp \rightarrow ZZjj$ $pp \rightarrow W^{\pm}Zjj$ including leptonic decays

- Modular structure: separate (one-time) computation of leptonic tensors and decay width
- Fast evaluation and good numerical stability
- NLO corrections under excellent control (modest K-factors and scale dependence)

 Outlook: VBFNLO Monte Carlo program of relevant VBF processes at NLO QCD

Fully-flexible parton-level Monte Carlo program with NLO QCD cross sections and distributions for

 $pp \rightarrow W^+W^-jj$ $pp \rightarrow ZZjj$ $pp \rightarrow W^{\pm}Zjj$ including leptonic decays

- Modular structure: separate (one-time) computation of leptonic tensors and decay width
- Fast evaluation and good numerical stability
- NLO corrections under excellent control (modest K-factors and scale dependence)

Outlook: VBFNLO Monte Carlo program of relevant VBF processes at NLO QCD

Fully-flexible parton-level Monte Carlo program with NLO QCD cross sections and distributions for

 $pp \rightarrow W^+W^-jj$ $pp \rightarrow ZZjj$ $pp \rightarrow W^{\pm}Zjj$

- including leptonic decays
- Modular structure: separate (one-time) computation of leptonic tensors and decay width
- Fast evaluation and good numerical stability
- NLO corrections under excellent control (modest K-factors and scale dependence)

 Outlook: VBFNLO Monte Carlo program of relevant VBF processes at NLO QCD

25/25