Produzione di b al Tevatron

Stefano Torre INFN-LNF Collaborazione CDF

Introduction

- CDF/D0 RUN I: b-quark production higher then expected from NLO theory
- Big theoretical effort to understand discrepancies:
 - **1.** NLO+resummation of $log(p_T/m_b)$ (NLL) -> FONLL
 - 2. PDF fit improvements (CTEQ6M, MRST, ...)
 - 3. New fragmentation functions from LEP and SLC
 - FONLL + PDF + Frag. Fun. -> New prediction for Tevatron in 2002 [1]
 - + Theory and measurement are now compatible
 - Predictions affected by large uncertainties on renormalization and factorization (~40%)

Still some discrepancies between different measurements

- Tevatron RUN II: huge production of b quarks
 - Precise measurement of the cross section in different modes
 - Check the pattern of the different experimental results

[1] M.Cacciari and P.Nason, PRL 89, 122003 (2002)

Heavy Flavor Production at pp

Leading Order Diagrams

 σ_{h} is inferred from the measurement of the production rate as a function of p_{T} of the B_{μ} hadrons or some of their decay products:

Next to Leading Order Diagrams

measured

 $dp_T\left(B,\overline{J/\psi,l}
ight)$

parton level calculation (NLO, FNLLO)

 $dp_{T}\left(b
ight)$

Single b production [2]

channel (ex.)		R for p_T^{min} (GeV/c) =					
		6	8-10	12-15	19-21	≈29	≈40
$J/\Psi K^+$	(CDF)		4.0±15%	(3.4)			
$J/\Psi K^+$	(CDF)		2.9±23%	(1.9)			
μX	(CDF)				2.5±26%	(1.9)	
eX	(CDF)			2.4±23%			
eDº	(CDF)				2.1±34%		
J/ΨX	(CDF)		4.0±10%	(3.4)			
J/ΨX	(CDF2)		3.1±9%	(2.7)			
μX	(DØ)	2.1±27%		(1.7)			
μX	(DØ)	2.5±25%		(3.5)			
b jets(μ) (DØ)					2.4±20%		(2.0)
		$\langle R \rangle = \sigma(c)$	data)/σ(N	LO = 2.8	8. <i>RMS</i> =	= 0.7	

Excluing $J/\Psi < R > = 2.33$, RMS = 0.19

[2] F.Happacher www-conf.kek.jp/dis06/doc/WG5/hfl20-happacher.ps

B⁺ -> J/ψ + K⁺ [3]

Very clean mode low uncertainties Exploit higher RUNII statistics + Reduce systematics as much as possible No L_{xv} cut systematics + calculate eff. & acc. with MC + correct with eff. & acc. measured on Data + Kinematical cuts $+ p_T(B^+) > 6 \text{ GeV/c I } p_T(\mu) > 2 \text{ GeV/c I } p_T(K) > 1.25 \text{ GeV/c}$ + Muon detector $\ln l < 0.8$ + Tracking $|\eta| < 1.3$ \Rightarrow B candidates have |y| < 1

[3] CDF Collaboration, PRD 75, 012010 (2007)

B candidates

B cand. = 8197 ± 239

Fit Systematics: 2% (evaluated by varying fit range and bkg shape)

Acceptance and efficiency +MC: NLO + MRSD0 + Divide sample in 5 $p_T(B^+)$ bins +In each bin correct efficiency and acceptance +Use samples of unbiased J/ψ to correct Muon detector acceptance and efficiency Trigger primitive generation efficiency +Correct for tracking efficiency Interaction of kaon with detector material +Systematics: 2.5% (Luminosity syst.: 6%)

Cross Section

$$\frac{d\sigma(B^+)}{dp_T} = \frac{N/2}{\Delta p_T \times \mathcal{L} \times \mathcal{A}_{\text{corr}} \times BR}$$

σ_B⁺(p_T ≥ 6 GeV/c, |y| < 1) = (2.78 ± 0.24) μb (4% stat)

 $R = 2.80 \pm 0.24$ (NLO)

In agreement with RUN II J/ψX measurement
Within values predicted by the FONLL calculation

bb correlations review

 Mostly b from Direct Production (LO) contribute to the measurement
 Disentangle LO and next-to-LO

channel	(experiment)	R_{2b} for p_T^{min} (GeV/c)=			
		6-7	10	15	~20
b+b jets	CDF			1.2±25%	
b+b jets	CDF				1.0±32%
μ+b jet	CDF		1.5±10%		
μ++μ-	CDF	3.0±20%			
μ++μ-	DØ	2.3±33%			
	<r<sub>2b</r<sub>	> 1.8 with	ר RMS =	0.8	

bb di-jet Production [4] +Use events selected from displaced track trigger + High statistics in no-prescaled triggers + Bias from the Silicon Vertex Trigger (SVT): Tight offline selection to remove trigger bias Measure trigger and b-tagging eff. in one single step in the MC Calculate efficiencies and acceptance using Pythia MC and correcting by scale factors

[4] http://www-cdf.fnal.gov/physics/new/qcd/bb_SVT_07/bbcross.html

Tagging efficiency

Contamination from b+q/g

- Use invariant mass of tracks associated to sec. vertex in the Jet
- Fit data with templates from MC

Integral Cross Section

Systematics: Luminosity: 6% Jet energy corrections: 13-20% Others SVT b-tagging efficiency B-jet purity determination: mass template sensitivity to tracking inefficiency

CDF Run II Preliminary	σ [pb]		
	$ \eta_{1,2} < 1.2, E_{T,1} > 35 \text{ GeV}, E_{T,2} > 32 \text{ GeV}$		
Data	$\sigma = 2360 \pm 70 \text{ (stat.)} \pm 530 \text{ (syst.)}$		
Pythia	$\sigma = 2140 \pm 22 \; (\mathrm{stat.})$		
Herwig	$\sigma = 2201 \pm 29 \; (\mathrm{stat.})$		
MC@NLO+Jimmy	$\sigma = 2259 \pm 44 \text{ (stat.)}$		

Summary

- b quark production measurement in RUN I found rates higher than theoretical expectations
- Interplay between theory and measurement fundamental to understand nature
- Different measurements provide different results, providing weak constraints to theory -> improving!
- New Tevatron measurements, thanks to higher statistics and better theory, will allow to clarify the general picture

New modes need to be checked

 Understand production rates at 2TeV will be a starting point for the upcoming 14TeV data

NLO - FONLL

+ NLO

◆ Uses Peterson fragmentation function (ε = 0.006)
◆ MRSD0 fits to the PDF
◆ FONLL
◆ NLO + NLL (20%)
◆ CTEQ6M fits to the PDF (20%)
◆ Fragmentation functions consistent with the accuracy of calculation (30-40%)

The players of the game

Theory (NLO, FONLL, PDF...)

MC@NLO, MNR And/or Detector simulation Shower Monte Carlo (HERWIG, Pythia) -BGenerator

Acceptance and efficiency Tune shower

MC Decay + Detector simulation

MC

- Generate events based on NLO calculation
- PDF: MRSD0
- Decay B using EvtGen for B decays
- GEANT simulation of CDF
- Simulation of L1 and L2 primitives and algorithms

Acceptances and efficiencies

p _T range (GeV)	<p<sub>T> (GeV)</p<sub>	Acc x ε (%) from MC	Acc x ε (%) Data corrected
6-9	7.37	1.53	1.73 ± 0.04
9-12	10.38	3.78	4.28 ± 0.11
12-15	13.39	5.94	6.74 ± 0.18
15-25	19.10	8.81	9.98 ± 0.26
≥25		13.20	14.96 ± 0.40

• Acc x ε obtained from MC for B with Pt>6 and |y|<1

• correction factor (DATA_{eff}/MC_{eff}) = 1.134 ± 0.034

• $\langle p_T \rangle$ is defined as $\sigma(\langle p_T \rangle)$ = average σ over p_T bin

Eff. & Acc. correction table

Source	Data	Data MC	
COT tracking	(0.996±0.006) ³	(0.998±0.002) ³	1.00 ± 0.02
CMU acc. & eff.	(0.625±0.007) ²	(0.6426±0.0004) ²	0.945 ± 0.022
CMU & XFT prim.	(0.9247±0.0004) ²	(0.8362±0.0004) ²	1.223 ± 0.002
L1 eff.	0.9925±0.0009	1	0.9925±0.0009
L2 eff.	0.9948±0.0001	1	0.9948±0.0001
L3 eff.	(0.997±0.002) ²	la=_ < 1	0.994±0.004
Total	0.324±0.009	0.2853 ± 0.001	1.134±0.034

Final scale factor (DATA_{eff}/MC_{eff}) = 1.134 ± 0.034

Correction to efficiencies (1)

COT track reconstruction efficiency

- MC 0.998 ± 0.002 (per track)
- Data: 0.996 ± 0.006 [J/ψ xsec paper: Phys. Rev. D71, 032001 (2005)]
 - MC hits embedding in J/ψ data

L3 efficiency (data only)
 0.997± 0.002 (per muon track) [J/ψ xsec paper]

Correction to CMU acc. time eff.

- CMU detector acceptance and eff. (for tracks w/ Pt> 2GeV & $|\eta| < 0.8$)
- MC 0.6426 ± 0.0004 (per muon)
- In μ +SVT data we count all J/ ψ made w/ trigger CMU & SVT track
 - $\boldsymbol{\cdot}$ then we count all J/ ψ that have a second offline CMU
 - events reweighed to reproduce MC distributions (next slide)
 - Data 0.625 ± 0.007 (no reweigh 0.632 ± 0.006)

Base distribution for CMU acc. times eff.

- Compare data vs MC eta/pt distributions of probe SVT track
- green is data: (μ +SVT) enter plot for unbiased leg only (bkg subtract.)
- black is MC: enter plot for both legs
- ratio of distributions is used to reweigh data

Correction to trigger efficiency

- CMU L1 primitive efficiency (for CMU muons w/ Pt> 2GeV & $|\eta| < 0.8$)
- MC 0.8362 ± 0.0004 (per muon)
- JPSI CMUP4 data: count J/ ψ with CMU&XFT primitive Pt>4GeV & CMU
 - then count J/ ψ with two primitives Pt>4 & Pt>2 GeV
 - events reweighed to reproduce MC distributions (next slide)
 - Data 0.9247 ± 0.0004 (no reweigh 0.9228 ± 0.0004)

Correction to CMU trigger eff.

- Compare data vs MC eta/pt distributions of probe CMU muon
- green is data: (JPSI_CMUP4) enter plot for unbiased leg (bkg subtract.)
- black is MC: enter plot for both CMU muons
- ratio of distributions is used to reweigh data

Uncertainties summary

Uncertanity source	Relative uncertanity (%)
Luminosity	6
BR	4.3
statistical	4.2
Acc. time eff. systematic	3.0
Total	9.0