

Ricerca del bosone di Higgs del Modello Standard a LHC

Matteo Sani University of California, San Diego

1)Il bosone di Higgs a LHC:

- a-sezione d'urto
- b-canali di decadimento
- 2)Massa del bosone di Higgs
- 3)Strategie di ricerca
- 4)Analisi e misura dei parametri
- 5)Conclusioni

→Perche` cercare il bosone di Higgs ?

- E` l'anello mancante del Modello Standard !
- La sua eventuale scoperta e lo studio delle sue proprieta` potrebbe portare alla comprensione dell'origine della massa delle particelle elementari.

ATLAS & CMS

La prima meta` di CMS e` stata calata a P5 dopo i soddisfacenti risultati del Magnet Test (raggiunti 4T).

ATLAS sta seguendo una diversa strategia: il rivelatore viene assemblato direttamente a P1.

12/04/2007 IFAE - Matteo Sani

Canali di decadimento

→ $M_{_{\rm H}}$ < 130 GeV/c²:

- decadimento in una coppia bb dominante
- → Fondo QCD troppo elevato:
 - nessuna speranza di estrarre uno stato finale completamente adronico
 - ricerca di stati finali con l (e, μ), γ
- → M_H > 180 GeV/c²: canali principali WW e ZZ.

Evidente diminuzione nel BR del canale ZZ quando M_H ~ 2M_W

- →Qual'e` la massa del bosone di Higgs ?
- Ricerche dirette a LEP hanno dato risultati negativi:
 - SM Higgs: M_H > 114.1 GeV/c² @ 95 % C.L.
- → Tevatron:
 - i risultati piu` recenti mostrano come ci si avvicini ad all'esclusione di un bosone di Higgs con massa tra 160 e 170 GeV/c².

Limiti indiretti

- → La richiesta che il potenziale di Higgs rimanga finito conduce al limite superiore di M_H < 1 TeV/c².
- → Nuova stima della massa del quark top 170.9 ± 1.8 GeV/c² e la nuova misura di M_w portano a nuovi limiti alla massa del bosone di Higgs:

• $M_{_{\rm H}} < 144 \text{ GeV/c}^2 @ 95\% \text{ C.L.}$ (182 GeV/c^2 se si include LEP).

^{12/04/2007} IFAE - Matteo Sani

Canali di ricerca dello SM Higgs

→Principali canali di scoperta:

- 100 GeV/c² < $M_{\rm H}$ < 150 GeV/c²:
 - $H \rightarrow \gamma \gamma$ (piccolo BR, $\sigma^* BR \sim 90$ fb per $M_{_H} \sim 120 \text{ GeV/c}^2$, ma segnale pulito)
 - ttH \rightarrow bb+X, Vector Boson Fusion (qqH \rightarrow \tau\tau, WW, $\gamma\gamma)$
 - $\ ^{-} \mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow \mathrm{4l}$
- 150 GeV/c² < $M_{_{\rm H}}$ < 180 GeV/c²:
 - $\ ^{-}\ H \rightarrow WW^{(*)} \rightarrow 2l2\nu$
 - Vector Boson Fusion (qqH $\rightarrow \tau\tau,$ WW)
- $M_{_{\rm H}} > 180 \text{ GeV/c}^2$:
 - $H \rightarrow ZZ \rightarrow 41$ (migliore sensibilita` fra 200 e 500 GeV/c², >500 GeV/c² piu` promettente 2l2v, BR x6)
 - $H \rightarrow WW \rightarrow 2l2\nu$ (masse elevate lv2j, segnale 50 volte superiore)

- Segnale: due fotoni di elevato p_T, chiaro picco sopra il fondo della produzione non risonante γγ.
- ➔ Fondo:
 - pp → γγ + X, continuo coppie di fotoni, irriducibile
 - riducibile: fotoni da jet e/o π^0 isolati
- Richiede eccellente risoluzione in energia, ottima discriminazione jet/γ.
- Vertice primario determinato dalla distribuzione in impulso delle tracce cariche, quelle dell'interazione primaria hanno spettro piu` duro (eff. 81%).

Ottima risoluzione in massa ~ 1%

- ➔ Sono state sviluppate due strategie di analisi:
 - cut-based, eventi divisi in categorie basate sulla qualita` della ricostruzione (R_9)
 - NN, cinematica e isolamento dei γ
- ➔ Precisa stima del fondo dalle sidebands:
 - incertezze segnale (20%, contributo solo al limite di esclusione):
 - sezione d'urto, luminosita`, material budget, energy scale, underlying event
 - incertezze "reali" (0.65%):
 - forma distrubuzione massa invariante, errore statistico del fit alle sidebands (dipendente da L)
- ➔ Esclusione dopo 5 fb⁻¹ dal limite di LEP fino a 140 GeV/c².
- → Analisi ottimizzata ~8 fb⁻¹ sono sufficienti per la scoperta per M_H~120 GeV/c².

Events/GeV

170 M_ (GeV

160

- → Segnale: 2 leptoni isolati di elevato p_{T} e MET.
- Nessun picco in massa invariante puo` essere ricostruito in questo caso:
 - necessario un buon rapporto segnale su fondo
- ➔ Fondi principali: WW (irriducibile), tt and Drell-Yan:
 - correlazione angolare dei leptoni
 - nessun jet nella regione centrale del rivelatore (tt)
 - MET (Drell-Yan)

→ Correzioni agli ordini superiori dipendenti dal p_T per segnale e fondo WW.

 $\frac{BR(H \rightarrow WW) \sim 1}{per M_{H} \sim 160 \text{ GeV/}c^{2}}$

- utilizzate diverse regioni di controllo ($\Delta B \sim 13\%$)
- la stima del fondo WW e` complicata perche` difficilmente separabile dagli altri contributi
- → Per M_H ~ 165 GeV/c² scoperta con solo 1 fb⁻¹: dopo qualche settimana di presa dati a bassa lumunosita`.

- → Segnale: 4 leptoni isolati di elevato p_{T} .
- ➔ Fondo irriducibile: ZZ
 - stesse caratteristiche del segnale
- ➔ Altri fondi: tt, Zbb
 - riducibili rchiedendo leptoni isolati

Ottima risoluzione nella determinazione della massa del bosone di Higgs: ~1%.

Incertezze sistematiche: CMS

- PDF+QCD scale, contributi NLO
- Material budget, calibrazione dell'energia, efficienza ricostruzione μ...
- Controllo del fondo ZZ:
 - $\mathbf{Z} \rightarrow 2\mathbf{l}$ o con le sidebands.
- incertezza stimata compresa fra 5 e 10%.
- → Esclusione al 95% C.L. per $M_{_{\rm H}} \sim 200 \text{ GeV/c}^2 \text{ con soli 2 fb}^{-1}$.
- Scoperta a 5σ possibile con ~ 10 fb⁻¹ negli intervalli 140 ÷ 150 and 190 ÷ 400 GeV/c².
 12/04/2007 IFAE Matteo Sani

Produzione associata: ttH

- fondo QCD troppo elevato
- Se il bosone di Higgs e` prodotto in associazione con una coppia tt il fondo e` sensibilmente ridotto.
 - ricostruzione della massa non precisa (risoluzione 20%), combinatorio dei 4 jet
- → Principali fondi: ttjj, ttbb, ttZ (Z→bb).
- b-tagging e` la componente fondamentale dell'analisi: likelihood btag discriminant per i 4 jet.
- → bjet pairing per ricostruire M_H: efficienza 31 %.

- Errori sistematici: jes (3÷10%), risoluzione jet (10%), b-jet and c-jet tagging (4%), uds-tagging (10%), luminosita`(3%).
- Elevate incertezze teoriche nella normalizzazione del fondo, specialmente per ttjj.
- Difficile prevedere con quale precisione riusciremo a conoscere il fondo.

- Contrariamente a studi precedenti, le prospettive sono piu` pessimistiche a causa del maggiore realismo della simulazione:
 - mis-tagging dei light jets in eventi ttjj problema piu` serio del previsto.

Vector Boson Fusion (VBF): qqH

- L'utilizzo di VBF aumenta il potenziale di scoperta, permette di migliorare la misura dei parametri del bosone di Higgs (coupling, valori di CP).
- Segnatura della VBF: 2 jets nella regione in avanti.
 - elevato $\Delta\eta$ dei jet a causa dell'assenza di scambio di colore, spazio "libero" per i prodotti di decadimento dell'Higgs.

Decadimento dell'Higgs

Segnale VBF

- ➔ Segnale: VBF jets + leptoni e/o jet + MET.
- Fondo: produzione QCD e EW Z(ττ)+jets, W+jets e tt (riducibile).
- Veto su jet centrali di QCD, taglio sulla qualita` del jet per ridurre il numero di fake dall'underlying event.
- → Ns and Nb determinati dal fit di m_π che e` dunque l'unico contributo all'incertezza. Stima dell'errore determinata tramite esperimenti MC (6%).
- 5σ per masse al di sotto di 140 GeV/c² con 60 fb⁻¹, sopra a 145 GeV/c² il BR e` troppo piccolo.
- ➔ Canale competitivo per basse masse.

- → Gia` studiato per masse elevate (M_H>300 GeV/c²), adesso anche nell'intervallo di masse basse.
- Principali difficolta` in questo intervallo di massa:
 - molti fondi (tt+jets, W+Njets, Z+Njets) con elevata σ e medesimo stato finale
 - bassa $E_{_{\rm T}}^{_{\rm miss}}$ e $E_{_{\rm T}}^{_{\rm jet}}$ peggiorano la risoluzione in massa (~10%)
- → Maggiore incertezza dall'efficienza di selezione dei jet rispetto alla soglia piu` bassa in E_T (incertezza totale: 16%).
- Tale rate puo` essere misurato dai dati per calibrare il MC (<6% incertezza jes).</p>
- → Significanza a 5σ con circa 30 fb⁻¹ (140<M_H<180 GeV/c²).

- CMS e ATLAS possono sondare l'intero intervallo di massa dal limite di LEP fino a ~1 TeV/c².
- → Tutte le masse accessibili a 5 σ con soli 10 fb⁻¹.
- ➔ Importante il contributo di VBF a bassa massa.
- → Con pochi fb⁻¹ possibile la scoperta del bosone di Higgs per M_H~ 160 GeV/c² sfruttando il decadimento in WW. 12/04/2007 IFAE - Matteo Sani

Parametri del bosone di Higgs

- La massa del bosone di Higgs puo` essere misurata con una precisione < 1%:</p>
 - calibrazione del rivelatore, scoperta risonanza con H $\rightarrow \gamma\gamma$ o H $\rightarrow ZZ \rightarrow 4l$, fit del picco (poca luminosita` integrata ~ 10%, L > 30 fb⁻¹ ~0.1%)
- ➔ Accoppiamento ai bosoni o ai fermioni:

$$\sigma_{YY \to H} \bullet BR(H \to XX) \sim \Gamma_Y \frac{\Gamma_X}{\Gamma_H}$$

- $\Gamma_{_{\rm H}}$ non puo` essere determinata se $M_{_{\rm H}}$ < 200 GeV/c²:
 - misura di rapporti di accoppiamenti (normalizazione a Γ_w)
 - misura di accoppiamenti assoluti (assunzioni teoriche)
- → Tutti gli accoppiamenti relativi possono essere misurati con una precisione del 15-45% (con 300 fb⁻¹). Top coupling al 25% (125 ≤ M_H ≤ 190 GeV/c², L = 30 fb⁻¹).

Parametri del bosone di Higgs

- → La distribuzione angolare dei leptoni nel canale
 H → ZZ → 4l dipende dalle proprieta` di spin e CP:
 - $G(\vartheta) = T * (1 + \cos^2 \vartheta) + L * \sin^2 \vartheta \rightarrow R = \frac{(L-T)}{(L+T)}$
- → Per M_H>200 GeV/c² un Higgs spin 0 odd e spin 1 (even, odd) puo`essere escluso a 2σ (L=100 fb⁻¹), per M_H>230 GeV/c² a livello di 5σ.
- → La misura di CP per M_H < 200 GeV/c² e` a livello di studio preliminare con VBF.

- Sia ATLAS che CMS sono in grado di scoprire lo SM Higgs nell'intervallo di massa compreso fra il limite di LEP e ~ TeV/c².
- Le due collaborazioni hanno effettuato studi per tutti i piu` importanti canali di decadimento (simulazione completa dei rivelatori, pileup, misura del fondo dai dati...).
- Con dei rivelatori "maturi" ed una luminosita` ragionevole: la scoperta a 5σ e` possibile con pochi mesi di presa dati.
- → La misura della massa con risoluzione di poche centinaia di MeV/c^2 e` possibile con i canali H → $\gamma\gamma$ e H → ZZ → 4l (per masse basse o intermedie).
- Inoltre le proprieta` del bosone di Higgs (coupling, CP/Spin) possono essere misurate con 100 fb⁻¹.

- → H → $\gamma\gamma$: CMS-NOTE 2006/, ATL-PHYS-PUB 2006/016
- → H → WW inclusivo: ATLAS-PHYS-2002-010
- → H → ZZ → 4l: CMS-NOTE 2006/106, 112, 136, 115
- → ttH: H → bb CMS-NOTE 2006/119, ATL-PHYS-2004-031
- → VBF: Czech. J. Phys. 55:B109-B116, 2005
 - H \rightarrow WW CMS-NOTE 2006/092, ATL-PHYS-2004-019
 - $H \rightarrow \tau \tau$ CMS-NOTE 2006/088
- → Parametri: CMS-NOTE 2006/94, hep-ex/0505022, ATL-PHYS-2004-030

Ricordiamoci che...

Thu Apr 12 11:08:22 GMT+0200 2007 232 days:13:51:37 to first LHC collision

BACK UP

12/04/2007 IFAE - Matteo Sani

→ VBF vs gluon fusion

- rate piu` basso, maggior rapporto segnale/fondo, minori K-factor
- necessaria una migliore comprensione del rivelatore
- significativita` dipendente dal canale e da $M_{_{\rm H}}$

- → Higgs self-coupling: gg → HH → WW WW → lv jj lv jj
 - small signal cross sections, large backgrounds from WWWjj,
 WWjjjj... ⇒ so far, no measurement known at the LHC,
 sensitivity possible at SLHC

- Distribution of plane angle : F(φ)=1+α cos(φ)+β cos(2φ)
 Distribution of polar angle : G(θ)=T*(1+cos²θ)+L*sin²θ
 - : R=(L-T)/(L+T)

ttH: btagging

