

on behalf of the LHCb collaboration

The whole idea

Given the fact that

- Itempoint of the facility producing the largest number of b hadrons (of all types), by far, and for a long time
- the Tevatron experiments have demonstrated the feasibility of B physics at hadron machines

\rightarrow perform a dedicated B-physics experiment at the LHC,

but with a new challenge:

exploit the huge bb production in the not-well-known forward region, despite the unfriendly hadronic environment (multiplicity, ...) for B physics

> ~ 230 μb of bb production in one of the forward peaks (400 mrad), corresponding to nearly 10⁵ b hadrons per second at a low luminosity of 2×10³² cm⁻²s⁻¹

bb angular correlation in pp collisions at √s = 14 TeV (Pythia)

Pileup and luminosity

• LHC machine, pp collisions at $\sqrt{s} = 14$ TeV:

- e design luminosity L= 10^{34} cm⁻²s⁻¹, bunch crossing rate = 40 MHz
- e average non-empty bunch crossing rate f = 30 MHz (in LHCb)
- Pileup:

n = number of inelastic pp interactions occurring in the same bunch crossing

Poisson distribution with mean $\langle n \rangle = L\sigma_{inel}/f$, with $\sigma_{inel} = 80$ mb

 \Rightarrow <n> = 25 at 10³⁴ cm⁻²s⁻¹ \rightarrow not good for B physics

At LHCb:

Choose to run at <L> ~ 2×10³² cm⁻²s⁻¹ (max. 5×10³² cm⁻²s⁻¹)

Clean environment: <n> = 0.5

- Less radiation damage
- Expected to be available from first physics run

2 fb⁻¹ of data in 10⁷ s (= nominal year)

Tracking performance

High multiplicity environment:

In a bb event, ~30 charged particle traverse the whole spectrometer

Track finding:

- @ efficiency > 95%
 for long tracks from B decays
 (~ 4% ghosts for $p_T > 0.5$ GeV/c)

Average B-decay track resolution

- Impact parameter: ~30 μm
- Momentum: ~0.4%

Typical B resolutions:

- Proper time: ~40 fs (essential for B_s physics)
- @ Mass: 8–18 MeV/c²

	Mass resolution	
$B_s \rightarrow \mu\mu$	18 MeV/c ²	
$B_s \rightarrow D_s \pi$	14 MeV/c ²	
${\sf B}_s \to {\sf J}/\psi \ \varphi$	16 MeV/c ²	
$B_s \rightarrow J/\psi \phi$	8 MeV/c ²	
with low mass constraint		

Particle ID performance

Average efficiency:

 K id = 88%
 π mis-id = 3%

 Good K/π separation in 2–100 GeV/c range
 Low momentum
 kaon tagging
 High momentum
 clean separation of the different B_{d,s}→hh modes
 will be the best performance ever achieved at a hadron collider

Flavour tagging

Tag	εD ² =ε(1–2w) ²
Opposite µ	0.7%–1.8%
Opposite e	0.4%-0.6%
Opposite K	1.6%–2.4%
Opposite Q _{vtx}	0.9%–1.3%
Same side π (B ⁰)	0.8%–1.0%
Same side K (B_s)	2.7%-3.3%
Combined (B ⁰)	4%-5%
Combined (B _s)	7%-9%

- Performance assessed on full MC, after trigger and reconstruction
- If the most powerful, e.g. opposite K (from $b \rightarrow c \rightarrow s$)
- All tags combined with neural network
- Tagging performance depends on how the event is triggered !
 @ will be measured in data using control channels

Trigger performance & rates

Algorithms and performance:

- Level-0 trigger algorithms mature, 1 MHz output rate
- e High-Level Trigger (HLT) under development
 - Prototype available within time budget for a limited set of channels
- **@** L0*HLT efficiencies:
 - Determined using detailed MC simulation
 - Typically 30%–80% for offline-selected signal events, depending on channel

HLT output rates:

- Indicative rates
 (split between streams still to be determined)
- Large inclusive streams to be used to control calibration & systematics (trigger, tracking, PID, tagging)

Output rate	Event type	Physics
200 Hz	Exclusive B candidates	B (core program)
600 Hz	High mass di-muons	J/ψ, b→J/ψX (unbiased)
300 Hz	D* candidates	Charm
900 Hz	Inclusive b (e.g. $b \rightarrow \mu$)	B (data mining)

Integrated luminosity scenario

(before LHC problems of last weeks...)

🕑 2007 (end):

- Short pilot run at 450 GeV per beam with full detector installed
- e Establish running procedures, time and space alignment of the detectors
- Integrated luminosity for physics ~ 0 fb⁻¹

2008:

- e LHC reaches design energy
- **@** Complete commissioning of detector and trigger at $\sqrt{s}=14$ TeV
- Calibration of momentum, energy and particle ID
- Start of first physics data taking, assume ~ 0.5 fb⁻¹

• 2009–:

- Availability of physics results:
 - **@** with 0.5 fb^{−1} in ~2009
 - **@** with 2 fb^{−1} in ~2010
 - **@** with 10 fb^{−1} in ~2014

sin(2 β) with B⁰ \rightarrow J/ ψ K_S

Expected to be one of the first CP measurements: B⁰
 Demonstrate (already with 0.5 fb⁻¹) that we can keep under control the main ingredients of a CP analysis
 in particular tagging extraction from control channels
 Sensitivity (from TDR, improved since):

 \Rightarrow ~ 216k signal events/2 fb⁻¹, B/S ~ 0.8

 $\Rightarrow \sigma_{\text{stat}}(\sin(2\beta)) = 0.02$

$\int_{a}^{\overline{b}} \underbrace{\chi}_{d}^{\overline{c}} \frac{\overline{c}}{M} \frac{J}{\psi} \frac{\overline{c}}{\overline{s}} J/\psi$

 $A_{CP}(t) = \frac{N(\overline{B}^{0} \to J / \psi K_{s}) - N(B^{0} \to J / \psi K_{s})}{N(\overline{B}^{0} \to J / \psi K_{s}) + N(B^{0} \to J / \psi K_{s})}$ t) 0.2 -0.2 -0.4 -0.6 background subtracted, 2 fb⁻¹ (toy MC -0.8 Proper time (ps)

With 10 fb⁻¹:

 Should be able to reach σ(sin(2β)) ~ 0.010
 to be compared with 0.017 from final BaBar+Belle statistics
 Can also push further the search for direct CP violating term ∝ cos(Δm_dt)

W.M.Bonivento, Apr. 15th, 2007

$B_s \rightarrow D_s^{-}\pi^+$ sample and B_s mixing

Measurement of ∆m_s:

- **©** CDF observed B_s oscillations in 2006:
 - $Am_s = 17.77$ 0.10 0.07 ps⁻¹ compatible with SM

@ LHCb expectation with 0.5 fb⁻¹:

- ~35k B_s → D_s⁻π⁺ signal events with average σ_t ~ 40 fs and B_{bb}/S < 0.05 at 90% CL ⇒ σ_{stat}(Δm_s) = 0.012 ps⁻¹, i.e. 0.07%
- will be completely dominated by systematics on proper time scale, but at most $\sigma(\tau(B^0))/\tau(B^0) = 0.5\%$

• Importance of $B_s \rightarrow D_s^- \pi^+$ sample:

♣ First absolute measurement from Belle, BR(B_s→D_s⁻π⁺) = (0.68 0.22 0.16)%, expect soon ~10% measurement

- Control channel for all time-dependent analyses with B_s decays
 - * Measurement of dilution on $cos(\Delta m_s t)$ and $sin(\Delta m_s t)$ terms
- Important step towards measurement of other B_s mixing parameters
 - e.g. mixing phase or CP violation in mixing

B_s mixing phase ϕ_s with b $\rightarrow c\bar{c}cs$

• ϕ_s is the strange counterpart of $\phi_d = 2\beta$:

- \bullet ϕ_s very small in SM
- $\phi_s^{SM} = -\arg(V_{ts}^2) = -2\lambda\eta^2 = -0.036$ 0.003 (CKMfitter)
- Could be much larger if New Physics runs in the box

• Golden b \rightarrow ccs mode is B_s \rightarrow J/ $\psi \phi$:

- Angular analysis needed to separate **CP-even and CP-odd contributions**
- **@** Expect ~130k B_s \rightarrow J/ $\psi(\mu\mu)\phi$ signal events/2fb⁻¹ (before tagging), S/B_{bb}= 8

Sector Add also pure CP modes such as J/ ψ η⁽⁾, η_cφ, D_cD_c

Image: No angular analysis needed, but smaller statistics

Combined sensitivity after 10 fb⁻¹: $\sigma_{\text{stat}}(\phi_{\text{s}}) = 0.010$

dominated by $B_s \rightarrow J/\psi \phi$

hopefully >3 σ evidence of non-zero ϕ_{s} , even if only SM

Statistical sensitivities on ϕ_s for 2 fb ⁻¹
--

Channels	$\sigma(\phi_s)$ [rad]
$B_{s} \to J/\psi ~\eta(\pi^+ ~\pi^- ~\pi^0)$	0.142
$B_s \to D_s D_s$	0.133
$B_s o J/\psi \; \eta(\gamma \; \gamma)$	0.109
$B_{s} o \eta_c \phi$	0.108
Combined (pure CP eigenstates)	0.060
$B_s \rightarrow J/\psi \phi$	0.023
Combined (all CP eigenstates)	0.022

b→sss hadronic penguin decays

Time-dependent CP analysis of penguin decays to CP eigenstates

 $B^0 \rightarrow \phi K_s :$

- 0 800 signal events per 2 fb⁻¹, B/S < 2.4 at 90% CL
- @ After 10 fb⁻¹: $\sigma_{stat}(sin(2\beta_{eff})) = 0.14$
- Similar to a B factory experiment

• $\mathsf{B}_{\mathsf{s}} \to \phi\phi$:

- OP violation < 1% in SM</p>
 - (V_{ts} enters both in mixing and decay amplitudes)
 - \rightarrow significant CP-violating phase ϕ^{NP} would be due to New Physics
- Angular analysis required
- **@** 4k signal events per 2 fb⁻¹ (if BR= 1.4×10^{-5}), 0.4 < B/S < 2.1 at 90%CL
- @ After 10 fb⁻¹: $\sigma_{stat}(\phi^{NP}) = 0.042$

$B_s \rightarrow \mu^+ \mu^-$

Very rare loop decay, sensitive to new physics:

- BR ~3.5×10⁻⁹ in SM, can be strongly enhanced in SUSY
- Current 90% CL limit from CDF+D0 with 1 fb⁻¹ is ~20 times SM

Main issue is background rejection

- **@** with limited MC statistics, indication that main background is $b \rightarrow \mu$, $b \rightarrow \mu$
- **@** assume background is dominated by $b \rightarrow \mu$, $b \rightarrow \mu$

W.M.Bonivento, Apr. 15th, 2007

$B^0 \to K^{*0} \mu^+ \mu^-$

Suppressed loop decay, BR ~1.2×10⁻⁶

- Forward-backward asymmetry A_{FB}(s) in the μμ rest-frame is sensitive probe of New Physics:
 - Predicted zero of A_{FB}(s) depends on Wilson coefficients C₇^{eff}/C₉^{eff}
- Other sensitive observables based on transversi angles are accessible

Sensitivity

(ignoring non-resonant $K\pi\mu\mu$ evts for the time being)

- @ 7.7k signal events/2fb⁻¹, $B_{bb}/S = 0.4$ 0.1
- **@** After 10 fb⁻¹:

zero of $A_{FB}(s)$ located to 0.28 GeV²

 \rightarrow determine C₇^{eff}/C₉^{eff} with 7% stat error (SM)

Other rare decays

- - **@** $\mu\mu$ /ee ratio equal to 1 in SM:
 - New Physics can have O(10%) effect
 - @ After 10 fb⁻¹: $\sigma_{stat}(R_{\kappa}) = 0.043$

Radiative decays:

- 🥝 K*γ:
 - \Rightarrow A_{CP} < 1% in SM, up to 40% in SUSY
 - Can measure at <% level</p>
- 🥝 φγ:
 - No mixing-induced CP asymmetry in SM, up to 50% in SUSY
- 🤨 Λγ:
 - Right-handed component of photon polarization O(10%) in SM
 - Can get 3σ evidence down to 15% (10 fb⁻¹)
- LFV decays e.g. B_{d,s}→eµ

Decay	2 fb ^{−1} yield	B _{bb} /S
$B^+ \rightarrow K^+ \mu \mu$	3.8k	~1
$B^+ \rightarrow K^+ ee$	1.9k	~5
$B_d \rightarrow K^* \gamma$	35k	< 0.7
$B_d \rightarrow \omega \gamma$	40	< 3.5
$B_s \rightarrow \phi \gamma$	9k	< 2.4
$\Lambda_{\rm b} \rightarrow \Lambda(1115)\gamma$	0.75k	< 42
$\Lambda_{\rm b} \to \Lambda(1520)\gamma$	4.2k	< 10
$\Lambda_{\rm b} \to \Lambda(1670)\gamma$	2.5k	< 18
$\Lambda_{\rm b} \to \Lambda(1690)\gamma$	2.2k	< 18

$\gamma \, \text{from} \, B_s \to D_s K$

Iwo tree decays (b→c and b→u), which interfere via B_s mixing:

- **(a)** can determine $\phi_s + \gamma$, hence γ in a very clean way
- **(a)** similar to $2\beta + \gamma$ extraction with $B^0 \rightarrow D^*\pi$, but with the advantage that the two decay amplitudes are similar ($\sim \lambda^3$) and that their ratio can be extracted from data

 $B_s \rightarrow D_s^-\pi^+$ background (with ~ 15 × larger BR) suppressed using PID: \rightarrow residual contamination only ~ 10%

$\gamma \, \text{from} \; B_s \to D_s K$

Fit the 4 tagged time-dependent rates:

- Extract $\phi_s + \gamma$, strong phase difference Δ, amplitude ratio
- B_s→ D_sπ also used in the fit to constrain other parameters (mistag rate, Δm_s, ΔΓ_s...)

• σ(γ) ~ 13° with 2 fb⁻¹

expected to be statistically limited

$\gamma \text{ from } B^{\pm} \rightarrow D^0 K^{\pm}$

$$B^{-}\left\{\begin{array}{c}b\\\overline{u}\end{array}\right\}K^{-}\\ C\\\overline{u}\end{array}\right\}D^{0}$$

Weak phase difference =

Magnitude ratio = $r_B \sim 0.08$

"ADS+GLW" strategy:

- Measure the relative rates of B[−] → DK[−] and B⁺ → DK⁺ decays with neutral D's observed in final states such as: K[−]π⁺ and K⁺π[−], K[−]π⁺π[−]π⁺ and K⁺π[−]π⁺π[−], K⁺K[−]
- These depend on:
 - \circledast Relative magnitude, weak phase and strong phase between $B^- \to D^0 K^-$ and $B^- \to D^0 K^-$

Relative magnitudes (known) and strong phases between $D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow K^-\pi^+$,

IFAE, Napoli

	and between $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ and $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$	D
ତ	Can solve for all unknowns, including the weak phase v	B
	$\sigma(\gamma) = 5-15^{\circ} \text{ with 2 fb}^{-1}$	В
0	Use of $B \rightarrow D^*K$ under study	B
		D

Decay	2 fb ^{−1} yield	B _{bb} /S
$B^- ightarrow (K^- \pi^+)_D K^-$	28k	~0.6
${\sf B}^{\scriptscriptstyle +} ightarrow \left({\sf K}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -} ight)_{\sf D}{\sf K}^{\scriptscriptstyle +}$	28k	~0.6
${ m B}^- ightarrow ({ m K}^+ \pi^-)_{ m D} { m K}^-$	180	4.3
$B^+ \rightarrow (K^- \pi^+)_D K^+$	530	1.5

W.M.Bonivento, Apr. 15th, 2007

γ from B⁰ \rightarrow D⁰K^{*0}

 \mathbf{B}^0

me coloursuppressed

Weak phase difference $= \gamma$ Magnitude ratio = $r_B \sim$ 0.4

Treat with same ADS+GLW method

@ So far used only D decays to $K^-\pi^+$, $K^+\pi^-$, K^+K^- and $\pi^+\pi^-$ final states

Decay mode (+cc)	2 fb ^{−1} yield	B _{bb} / S
$B^0 ightarrow (K^+\pi^-)_{\mathrm{D}}K^{*0}$	3400	<0.3
$B^0 ightarrow (K^- \pi^+)_D K^{*0}$	500	<1.7
$egin{array}{l} B^0 ightarrow (K^+K^-,\pi^+\pi^-)_{D}\ K^{*0} \end{array}$	600	<1.4

γ from B \rightarrow DK Dalitz analyses

• B \rightarrow D(K_S $\pi^+\pi^-$)K :

 D⁰ and anti-D⁰ contributions interfere in Dalitz plot
 If good online K_S reconstruction: 5k signal events in 2 fb⁻¹, B/S < 1
 Assuming signal only and flat acceptance across Dalitz plot: σ(γ) = 8° with 2 fb⁻¹

B⁰ \rightarrow D(K_S $\pi^+\pi^-$)K^{*0}:
Output
Ou

• B \rightarrow D(KK $\pi\pi$)K :

- Four-body "Dalitz" analysis
- I.7 k signal events in 2 fb⁻¹
- Assuming signal only and flat acceptance across Dalitz plot: $\sigma(\gamma) = 15^{\circ} \text{ with } 2 \text{ fb}^{-1}$

W.M.Bonivento, Apr. 15th, 2007

Sensitivities to γ from B \rightarrow DK decays

B mode	D mode	Method	σ (γ), 2 fb ⁻¹	
$B^+ \rightarrow DK^+$	Κπ + ΚΚ/ππ + Κ3π	ADS+GLW	5°15°	K
$B^+ \rightarrow D^*K^+$	Κπ	ADS+GLW	Under study	
$B^+ \rightarrow DK^+$	Κ _S ππ	Dalitz	8°	$\left\{ \cdot\right\}$
$B^+ \rightarrow DK^+$	ΚΚππ	4-body "Dalitz"	15°	∫r
$B^+ \rightarrow DK^+$	Κπππ	4-body "Dalitz"	Under study	
$B^0 \rightarrow DK^{*0}$	Κπ + KK + ππ	ADS+GLW	7°–10°	
$B^0 \rightarrow DK^{*0}$	Κ _S ππ	Dalitz	Under study	
$B_s \rightarrow D_s K$	ΚΚπ	tagged, A(t)	13°	

Signal only, no accept. effect

All channels combined (educated guess):

- **(a)** $\sigma(\gamma) = 4.2^{\circ}$ with 2 fb⁻¹
- **e** $\sigma(\gamma) = 2.4^{\circ}$ with 10 fb⁻¹

γ from $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

Penguin decays, sensitive to New Physic
Measure CP asymmetry in each mode:

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

A_{dir} and A_{mix} depend on mixing phase, angle γ , and ratio of penguin to tree amplitudes = d e^{iθ}

Exploit U-spin symmetry (Fleischer):

- **e** Assume $d_{\pi\pi} = d_{KK}$ and $\theta_{\pi\pi} = \theta_{KK}$
- 4 measurements and 3 unknowns (taking mixing phases from other modes) \rightarrow can solve for γ

With 2 fb⁻¹:

- 36k B⁰→π⁺π⁻, B/S ~ 0.54 36k B_s→K⁺K⁻, B/S < 0.14
 </p>
- Sensitivity to A_{dir} and A_{mix}
 twice better than current world average

Charm physics

Eoresee dedicated D* triager:	Potentially usable statistics in 10 fb ⁻¹	
I breaked dedicated D trigger. We have a sample of $D^0 \rightarrow h^+h^-$ decays	$D^* \rightarrow D^0(hh)\pi$	500M
Tag D ⁰ or anti-D ⁰ flavor with sign of pion from D* \rightarrow D ⁰	D [*] -tagged D ⁰ →K ⁺ K [–] from b-hadrons	25M
Performance studies not as detailed as for B physics @ just started	D [*] -tagged WS D ⁰ →K ⁺ π [–] from b- hadrons	1M
Interesting (sensitive to NP) & promising searches/measurements:		
Time-dependent D ⁰ mixing with wrong-	sign D⁰→K⁺π⁻ decays	
Ø Direct CP violation in D ⁰ →K ⁺ K ⁻		
$ACP \le 10^{-3}$ in SM, up to 1% (~curi	rent limit) with New Physic	CS
\Rightarrow Expect $\sigma_{\text{stat}}(A_{CP}) \sim O(10^{-3})$ with 2 fb ⁻¹		

 $\textcircled{0} D^{0} \rightarrow \mu^{+} \mu^{-}$

- \Rightarrow BR \leq 10⁻¹² in SM, up to 10⁻⁶ (~current limit) with New Physics
- \Rightarrow Expect to reach down to $\sim 5 \times 10^{-8}$ with 2 fb⁻¹

Summary

LHCb can chase New Physics in loop decays:

- O couple superb highly-sensitive b \rightarrow s observables
 - $B_s \rightarrow \mu \mu$, B_s mixing phase
 - expect interesting results with 0.5 fb⁻¹ and 2 fb⁻¹ already
 - can measure down to SM with 10 fb⁻¹ (in case of no New Physics)
- e several other exciting windows of opportunity:
 - \Rightarrow Exclusive b \rightarrow sss Penguin decays (limited, even with 10 fb⁻¹
 - Exclusive b \rightarrow sll and b \rightarrow s γ
 - \Rightarrow B \rightarrow hh Penguins
 - High statistics charm physics

LHCb can improve significantly on γ from tree decays:
<u>use together with other UT observables</u> to test CKM even more

But ...

this is only MC, performance not demonstrated in real life yet \rightarrow another 2 years to go !

S

Impact of LHCb on UT

W.M.Bonivento, Apr. 15th, 2007

IFAE, Napoli

2006

29

MC studies

Technical proposal (1998):

- Rough detector description
- No trigger simulation
- No pattern recognition in tracking
- Parametrized PID performance
- Re-opt. Technical Design Report (2003)
 - Final detector design
 - Simulation of L0 and L1 trigger only
 - First version of full pattern recognition

"DC04" MC datasets (2004–2005):

- Optimized material description
- First simulation of High-Level Trigger
- "DC06" MC datasets (2006–2007):
 - @ "Final" geometry and material description
 - **@** Redesigned High-Level Trigger
 - "Final" reconstruction algorithms
 "

REMINDER of important requirements for B physics

- Flexible and efficient trigger final states with leptons
 - fully hadronic final states
- Excellent tracking:
- - Track finding efficiency
 - Momentum and mass resolution
 - Vertexing, proper time resolution
- **@** Particle identification (p/K/ $\pi/\mu/e$)

Background estimates:

- based on a sample of inclusive bb events equivalent to a few minutes of data taking !
- sometimes can only set limits

oday's numbers: mostly from DC04 MC, at $<L> = 2 \times 10^{32}$ cm⁻²s⁻

W.M.Bonivento, Apr. 15th, 2007

Physics performance vs L

Rough and quick study:

small MC samples generated at <L> = 5×10³² cm⁻²s⁻¹ for a few representative signal channels

le backgrounds not investigated yet (but will be possible with DC06 samples)

Preliminary overall conclusion (for L = $2-5 \times 10^{32}$ cm⁻²s⁻¹):

- Significant gain for dimuon channels
 ⇒ yield ∝ L
- Status quo" for hadronic channels
 yield ~ constant
- I agging performance seems ~constant (at least for $B_s \rightarrow D_s K$)

Sensitivity to α

Constraints on New Physics in B_s mixing from ϕ_s measurement

New physics in B_s mixing parametrized with h_s and σ_s : M₁₂ = (1+h_s exp(2i σ_s)) M₁₂SM

