Incontri di Fisica delle Alte Energie

Napoli – 11-13 Aprile 2007

Ricerca del bosone di Higgs (Standard Model) a CDF e D0

The state of the second se

Silvia Amerio

Universita' di Padova e INFN

Outline

SM Constraints on Higgs

- Direct searches at LEP have excluded the Higgs up to 114.4 GeV
- New Tevatron direct measurements M_{TOP} = 170.9±1.8 GeV and

M_w = 80.398±0.025 GeV constrain

Higgs Production at Tevatron $S = \sqrt{1.96} \text{ TeV}$ 1.0 **Production** gg→H • gg→H (0.2 – 1 pb) WH • WH – ZH (0.03 – 0.5 pb) 0.1 ZH bb WW Standard Mod BR(h_{SM}) 120 100 140 160 180 200 $m_{\rm H}$ (GeV/c²) 10 -1 - τ⁺τ⁻ gg **Dominant decay modes** ZZ Ē xcludec • MH < 135 GeV : $H \rightarrow bb$ cē 10 -2 • MH > 135 GeV : H \rightarrow WW 100 120 140 160 180 200 80 m_{H} (GeV/c²) Number of events expected at CDF (**1fb**⁻¹) • H→ WW : **20** (Mh = 160) • ZH \rightarrow llbb : 5 • ZH \rightarrow vvbb : **15** Mh = 115 GeV• WH → lvbb : **30**

4

Tevatron performance

CDF and D0 detectors

- Silicon microstrip $[|\eta| < 3]$
- central fiber tracker $[|\eta| < 2.5]$) within 2T magnet
- Liquid argon and uranium calorimeter ($|\eta| < 4.2$)
- Muon system ($|\eta| < 2$): muon chambers and scintillators before and after 1.8 T magnet

Tracking system

- Silicon microstrip $[|\eta| < 2]$
- Drift chamber $[|\eta| < 1]$) within 1.4T magnetic field
- Lead-scintillator em and iron-
- scintillator had **calorimeters** up to $|\eta|$ < 3.6

• Muon system: drift tube chambers and scintillators $(|\eta| < 2)$

Triggers

Both experiments: 3 level trigger system

- $\textbf{L1} \rightarrow \textbf{calorimetric}$ energy in towers, raw tracks and muons
- $L2 \rightarrow$ jets, electron, photons, Missing transverse energy, tracks and muons
- $\textbf{L3} \rightarrow \textbf{fully}$ reconstructed event

For Higgs analysis:

HighPT central lepton (ZH \rightarrow llbb, WH \rightarrow lvbb, H \rightarrow WW) Missing Et + 2 jets (ZH \rightarrow vvbb)

Single / dilepton trigger (H \rightarrow WW, ZH \rightarrow Ilbb) electron/muon + jet (WH \rightarrow lvbb) Missing Et + jet (ZH \rightarrow vvbb)

$H \rightarrow WW$

Cut based analysis

- 2 high Pt opposite sign leptons
- Met > 20 GeV to remove DY
- Ht < 70 GeV to remove top
- Exploit spin correlation to remove WW ($\Delta \varphi(II) < 2$)

$H {\rightarrow} WW$

Matrix element method to calculate event probability and build a likelihood ratio discriminator

LEPTONS

• 2 leptons with invariant mass in Z mass range, opposite charge

• D0: at least 2 b-tagged jets

JETS

2 high Pt Jets

BTAGGING

NN based b-tagging algorithm

CDF: 2D NN to further discriminate between ZH and tt/Z+jets bgnds

$ZH \rightarrow \nu \nu bb$

M_{ii} (GeV)

WH→lvbb

DO

Use full muon acceptance
(50% more signal)

• 2 loose b-tags / 1 tight b-tag

To reduce mistagging of c and light jets

CDF

- 1 b-tagged jet passing NN b tagging selection
- 2 b-tagged jets

WH→lvbb

15

WH→lvbb

Conclusions

Find or exclude Higgs at Tevatron is very challenging but possible. We need

- Luminosity -> Good Tevatron performance -> 8fb⁻¹ by 2009
- Increasing signal acceptance
 - Improved analysis techniques
 - → Upgrades

CDF upgrades

18

Needed to deal with triggers too hot at high luminosity Will become fundamental to increase signal acceptance

L2 cluster finder upgrade

Switch to Cone based jet clustering.

At L2: Met calculated with better resolution, dijet mass, $\Delta \phi$ between jets

and jets-Met, better jet-track matching for b-jets

Improvements under study

...more than just 1/√Lum increase!

Backup slides

Higgs sensitivity studies need to be updated to take into account all the work in progress...

CDF detector

CDF Tracking Volume

Physics at high luminosity

Electron ID efficiency

New lepton categories

 $H \rightarrow WW$ uses many of these lepton categories: signal yeld from 2.5 to 4 exp evts

Analysis	CDF limit (1fb ⁻¹)	D0 limit (1fb ⁻¹)
	factor above SM	factor above SM
	observed (expected)	observed (expected)
ZH → vv bb @ 115		
Technique: M _{jj}	16 (15)	40 (34)*
WH → Iv bb @ 115		
Technique: M _{ii}	26 (17)	★ 10 (9)
Technique: ME		★ 13 (10)
ZH → IIbb @ 115		
Technique: NN2D	★ 16 (16)	33 (34)
H → WW → Ivlv @ 160		
Technique: ΔΦ (I,I)	9 (6)	4 (5)
Technique: ME	★ 3.5 (5)	

B.Kilminster – Moriond 07