Rare Beauty Decays with ATLAS and CMS Experiments at LHC

IFAE 2007

April 11-13, 2007 - Napoli

Antonio Policicchio Università della Calabria & INFN

Outline

- Introduction
- ATLAS and CMS experiments at LHC: a B-Physics point of view
- $B_s \rightarrow \mu^+ \mu^-$ in ATLAS and CMS
- Semileptonic DiMuon rare decay channels in ATLAS
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
 - $B_d \rightarrow K^{0*} \mu^+ \mu^-$
 - $B_s \rightarrow \phi \ \mu^+ \mu^-$
 - $\Lambda_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$
- Differences and comparison with LHCb (where possible)
- Conclusions

B-Physics in ATLAS and CMS

- LHC: proton-proton collisions at $\sqrt{s}=14$ TeV and bunch crossing rate 40MHz
- High *bb* production cross section: $\sigma(bb)=500\mu b$
 - $10^5 bb$ pairs/s at initial low luminosity ~ 10^{33} cm⁻²s⁻¹
- ATLAS and CMS design dedicated to high- p_{T} physics
 - majority of B-events has low p_{T} particles
 - a challenge for the trigger and the analysis
 - B-decays with muons in the final state are the most promising
- B-Physics programme
 - CP violation (low luminosity, e.g. $B \rightarrow J/\psi X$)
 - B_s oscillation (low luminosity, e.g. $B_s \rightarrow \pi D_s$)
 - rare decays (even with high luminosity, e.g. $b \to s \ \mu^+\mu^-$, $B \to \mu^+\mu^-$)

Rare B decays

- $b \rightarrow s \ \mu^+\mu^-$, $B \rightarrow \mu^+\mu^-$ (FCNC) transitions forbidden at the tree level, occur through loop diagrams
 - very low branching ratio
 - sensitive to new physics
- For semimuonic exclusive decays (the only accessible at LHC), theory authors suggest to measure variables describing dimuon system, function of $s=m_{\mu\mu}^{2}$
 - forward-backward asymmetry as a function of *s*
 - zero of the A_{FB} curve: $s_0 = 2C_f/C_g$
 - CP asymmetry
- For $B_s \to \mu^+ \mu^-$ some BSM models predict a larger branching ratio than SM
- Need very good precision measurements to find differences with SM predictions
 - excellent calibrations and efficient muon trigger and offline reconstruction

ATLAS and CMS detectors

- LHCb optimized for B-Physics
 - particle ID
 - designed to maximize acceptance for bb forward pair
 - low p_T trigger
- Antonio Policicchio Università della Calabria & INFN IFAE 2007– April 11-13, 2007 – Napoli (Italy)

- ATLAS and CMS are general purpose detector
 - IηI<2.5
 - B-physics using trigger with high p_T muons

Overview of ATLAS trigger

• Three level trigger

LVL1

- coarse granularity calorimeter and muon information
- identifies Region of Interest (RoI) for further processing
- LVL2
 - full granularity
 - confirm LVL1 trigger
 - precision muon chamber and inner detector measurements in LVL1 RoI
- Event Filter (EF)
 - refines LVL2 selection using offline-like algorithms
 - alignment and calibration data available
- B-Physics allowed 5-10% of total trigger resources: it must be fast, efficient and selective

Overview of CMS trigger

- Two level trigger
- LVL1 based on muon detector and calorimeter measurements
 - $40MHz \rightarrow \sim 100kHz$
 - latency 3.2µs
- High Level Trigger (HLT) with fast reconstruction
 - uses reconstruction code and informations similar to off-line
 - $100 \text{kHz} \rightarrow \sim 150 \text{Hz}$

ATLAS/CMS trigger for rare decays

ATLAS dimuon trigger

- LVL1
 - $2\mu \text{ RoI with } p_{(\mu)} > 6 \text{GeV} (500 \text{Hz} @ L=10^{33} \text{ cm}^{-2} \text{s}^{-1})$
- LVL2
 - confirm each μ RoI with precision muon chamber and inner detector measurements
 - mass cut > 2GeV
- EF
 - refit inner detector tracks in LVL2 RoI
 - decay vertex reconstruction
 - proper time cut
 - angular distribution cuts
- Output rate <10Hz
- Efficiency estimated after EF
 - 70% for $B \to \mu^+ \mu^-$
 - 60% for $B \to K^{(*)} \mu^+ \mu^-$

CMS dimuon trigger

- Level1
 - 2μ with $p_T(\mu) > 3 GeV$

- primary vertex reconstruction with pixel detector
 - use the three most probable vertex
- track reconstruction in cones around Level1-muon candidates
 - partial reconstruction using ≤ 6 hits
- vertex fit
 - $\chi^2 < 20$
 - decay flight length > $150\mu m$
- mass windows for signal
- Output rate <1.7Hz

Tracking performance

- Proper time resolution
 - a good proper time resolution is necessary for time dependent asymmetry and oscillation measurements

	$\sigma_{t}^{}$ (fs)
ATLAS	~95
CMS	~100
LHCb	~40

• Mass width in MeV/c^2

	ATLAS	CMS	LHCb
$B \rightarrow \mu^+ \mu^-$	~80	~40	~18
$B\to K^*\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	~40		~15
$\Lambda b \to \Lambda^0 \; \mu^+ \mu^-$	~47		

$B_s \rightarrow \mu^+ \mu^-$ in CMS

- Low branching ratio $(3.5 \times 10^{-9} \text{ in SM})$ requires a good background rejection
 - combinatorial with muons mainly from *b* decays
 - rare B decays
 - mis-identified hadrons e.g. $B \rightarrow \pi\pi$, $K\pi$, KK
- Analysis variables in CMS
 - decay flight length significance on transverse plane $l_{xy}/\sigma_{xy} > 18$
 - muon separation $\Delta R(\mu\mu) = \sqrt{(\eta_{\mu_1} \eta_{\mu_2})^2 + (\phi_{\mu_1} \phi_{\mu_2})^2} \quad 0.3 < \Delta R(\mu\mu) < 1.2$
 - isolation of the muon pair in a cone with R=1 (and $p_{\tau}>0.9GeV$)

$$I = \frac{p_{\perp}(B_s)}{p_{\perp}(B_s) + \sum_{trk} |p_{\perp}|} > 0.85$$

- secondary vertex: pointing angle $\cos(\alpha) > 0.995$ and vertex fit with $\chi^2 < 1$
- mass cut $|M(\mu\mu) M(B_s)| < 40 \text{MeV}$ for separation with B_d
- 6.1±0.6 signal events and $13.8^{+22.0}_{-13.8}$ background events in 10fb⁻¹
- Upper limit on branching ratio 1.4×10^{-8} @ 90% CL (CDF+D0 with 1fb⁻¹, ~7x10⁻⁸)
- Rare B decays to be included

$B_s \rightarrow \mu^+ \mu^-$ in ATLAS

- Analysis variables in ATLAS
 - Muon separation $\Delta R(\mu\mu) < 0.9$
 - Isolation cut: no charged tracks with $p_T > 0.8$ in a cone with $\theta = 15^{\circ}$
 - Decay flight length significance on transverse plane > 15
 - Matching between the direction from the primary to secondary vertex and the dimuon momentum (pointing angle) $\alpha < 1^{\circ}$
 - vertex fit with $\chi^2 < 15$
 - Mass cut $M(\mu\mu) = M(B_s)^{+140}_{-70} MeV$
- 7 signal events and 20 background events expected in 10fb⁻¹
- Upper limit on branching ratio 7x10⁻⁹ @ 90% CL
- ATLAS expects to reach the sensitivity of the level of SM prediction with 30fb⁻¹ (3 years of data taking)

- Rare decays as background: studies limited to particle level show that the background is small in comparison with signal and negligible comparing to combinatorial background
- LHCb expects to reach the sensitivity of the SM prediction in 2fb⁻¹ (1 year of data taking)

Semileptonic rare decays of B meson in ATLAS (1)

- $B^+ \to K^+ \mu^+ \mu^-$, $B^+ \to K^{*+} \mu^+ \mu^-$, $B_d \to K^{0*} \mu^+ \mu^-$, $B_s \to \phi \ \mu^+ \mu^-$
- Background sources
 - Channels with J/ Ψ and $\Psi(2S)$ resonances: irreducible background
 - cut on dimuon invariant mass
 - Combinatorial background
 - Semileptonic decays of both *b* and *b*-bar quarks
 - Double semileptonic decay of *b* quark $(b \rightarrow c\mu\nu, c \rightarrow s\mu\nu)$
 - topological and vertex requirements to eliminate this background
 - kaons and pions misidentification as muons (mainly at low P_T) still missed in the present results
 - as example for $B^+ \to K^+ \mu^+ \mu^-$, channel $B^+ \to (D^0 \to K^+ \pi^-) \mu^+ \nu_{\mu}$ where pion is misidentified as muon and neutrino is missed
 - their contribution is expected poor with respect to combinatorial background

Semileptonic rare decays of B meson in ATLAS (2)

Analysis variables

- Good dimuon vertex with $\chi^2/NDF < 3$
- Dimuon mass in kinematical allowed window and J/ Ψ and $\Psi(2S)$ areas excluded $m_{\mu\nu} \notin [m_{\psi} \pm 3\sigma]$
- Secondary hadron reconstruction with vertex $\chi^2/NDF < 2$, $p_T > 3$ GeV and mass in $m_L \pm 3\sigma$
- Good B meson vertex with $\chi^2/NDF < 2$
- B meson mass in $m_{\rm B} \pm 3\sigma$ and proper time > 0.5ps

Semileptonic rare decays of B meson in ATLAS (3)

Signature after 30fb⁻¹

Decay Channel	Signal	Background
$\mathbf{B}^{\scriptscriptstyle +} \to \mathbf{K}^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	4000	<10000
$\mathbf{B}^{\scriptscriptstyle +} \to \mathbf{K}^{\scriptscriptstyle *+} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	2300	<10000
$B_{_{d}}\to \mathrm{K}^{0*}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	2500	<10000
${\sf B}_{_{\rm S}} \to \phi \; \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	900	<10000

- Good sensitivity to forward backward asymmetry measurements for $B \to K^* \mu^+ \mu^-$ decay
- Statistical error on $B \rightarrow K\mu^+\mu^-$ and $B \rightarrow K^*\mu^+\mu^-$ branching ratio measurements ~3.5% and ~6.5% respectively
- Study limited by the size of background MC sample
- LHCb: S/B=0.5±0.2 and good sensitivity on A_{FB} measurements after 2fb⁻¹

Semileptonic decays $\Lambda_{\mu} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$ in ATLAS

- background sources and analysis strategy similar to meson decays
- 800 signal events and upper limit of 4000 background events @90%CL expected after 30 fb⁻¹
 Forward-Backward Asymmetry
- After 3 years @ 10^{33} cm⁻²s⁻¹ ATLAS can distinguish MSSM (C_{7eff} >0) from SM in low values of dimuon mass

ATLAS expected events after 3 years @ 10³³cm⁻²s⁻¹
ATLAS MC events generated with SM after trigger and reconstruction analysis
ATLAS MC events generated with MSSM (C_{7eff}>0)

Conclusions

- LHC potential for flavor physics is enormous
 - high luminosity allows to study very rare decays
- ATLAS and CMS will use this potential for precise measurements of quantities sensible to New Physics
 - after 3 years of data taking at L=10³³cm⁻²s⁻¹ there will be enough statistic to find deviations from SM predictions and to set strong limits on possible physics beyond SM
 - continue measurements on rare decays even at high luminosity thanks to muons in the final state