Decadimenti rari del mesone B alle B-factories

Diego Monorchio INFN Napoli

Incontri di Fisica delle Alte Energie Napoli 11-13 Aprile 2007

Sommario

- Decadimenti radiativi:
 - b→sγ
 - misure inclusive di BR
 - Asimmetria CP dipendente dal tempo
 - b→dγ
 - Misure esclusive $B \rightarrow \rho \gamma$, $B \rightarrow \omega \gamma$
 - Estrazione di |V_{td}/V_{ts}|
- Decadimenti leptonici
 - B→τν
 - B→e/μ ν
- Decadimenti semileptonici
 - B→K^(*)II
 - B→πII

Decadimenti radiativi del B

Processi Flavor Changing Neutral Current

Dominati dal diagramma a "pinguino"

- Sensibili a Fisica oltre il Modello Standard
 - Nuove particelle pesanti (Higgs carico, SUSY) possono partecipare al loop.
 - Nuova Fisica → innalzamento dei Branching Ratios e/o delle asimmetrie CP (dirette o time dependent).
 - Possibilità di discriminare tra le possibili estensioni del Modello Standard.
- Lo spettro del fotone emesso non è sensibile a Nuova Fisica
 - Utilizzato per deteminare i parametri della Heavy Quark Expansion che descrivono lo stato cinematico del quark b all'interno del mesone.
 - Riduce l'incertezza teorica su |V_{ub}|

$b \rightarrow s\gamma$: tecniche sperimentali

Analisi inclusiva

- Ricostruito un fotone di alta energia (1.8-2.8 GeV)
- Rimozione del fondo da continuo tramite identificazione di un leptone proveniente dall'altro B
- Principale sistematica dalla sottrazione del fondo da eventi BB

final selection preselection 10⁷ continuum expect **qq** + ττ MC BBbar expect signal expect $B_4 B_{4R}$ BB MC 10⁶ Signal MC $B_4 B_{4R}$ qq 10⁵ 10⁴ BB 10³ BB 10² B->Xsy 100 10 **B->X**s1 3.2 3. 1.6 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1.8 2.2 2.4 2.6 2.8 3.2 2 3 Reconstructed E*, - Simulation Reconstructed E*y (GeV)

Analisi semi-inclusiva

- 38 canali di decadimento ricostruiti55% del BR totale
- •Vincoli cinematici dal B completamente ricostruito utilizzati per la soppressione del fondo
- Miglior risoluzione sull'energia del fotoneSistematica principale dai modi non ricostruiti

Recenti calcoli al NNLO hanno ridotto il valore della predizione S.M.: [c.f. NLO prediction was $(3.57 \pm 0.30) \times 10^{-4}$] $B (B \rightarrow Xs\gamma) = (3.15 \pm 0.23) \times 10^{-4} \text{ PRL } 98,022002$ **CLEO** $B (B \rightarrow Xs\gamma) = (2.98 \pm 0.26) \times 10^{-4} \text{ PRL } 98,022003$ PRL87,251807(2001) BaBar PR072.052004(2005) Media delle misure sperimentali BaBar BR = $(3.55 \pm 0.24_{exp-0.10 shape}^{+0.09} \pm 0.03_{d\gamma}) \times 10^{-4}$ hep-ex/0507001 Belle PLB511.151(2001) Misure con più statistica e minori incertezze Belle PRL93,061803(2004) sistematiche sono attese per verificare se Average HFAG hep-ex/0603003 questa differenza può essere attribuita a Nuova Fisica

$b \rightarrow s\gamma$: time dependent CPV

- - Il fotone emesso è prevalentemente left-handed (polarizzato)
- Nel Modello Standard: $A_{CP}(t) \equiv \frac{N(B_{phys}^0(\Delta t) \to f_{CP}) N(B_{phys}^0(\Delta t) \to f_{CP})}{N(\overline{B}_{phys}^0(\Delta t) \to f_{CP}) + N(B_{phys}^0(\Delta t) \to f_{CP})}$ $= S_{f_{CP}} \sin (\Delta m \Delta t) - C_{f_{CP}} \cos (\Delta m \Delta t)$
 - Interferenza tra le ampiezze di decadimento diretta e via mixing è soppressa
 - $S \propto -2(m_s/m_b) \sin 2\beta = -0.04$
 - C~0.01
 - La previsione su S può arrivare a 0.1 a causa di effetti di interazione forte
- Misure di grosse asimmetrie di CP dipendenti dal tempo darebbero indicazione di Nuova Fisica

per elicità di un fattore m_s/m_b

$b \rightarrow s\gamma$: time dependent CPV

Necessità di aumentare la statistica per una misura al 10%

Transizioni b $\rightarrow d\gamma$: $\omega\gamma$, $\rho\gamma$

 $|V_{td}/V_{ts}|$ determinato anche attraverso le misure di mixing $B^0_{(s)}$ - $B^0_{(s)}$ Eventuali inconsistenze tra le due determinazioni indicherebbero Nuova Fisica

Transizioni b \rightarrow d γ : $\omega\gamma$, $\rho\gamma$

- Difficoltà sperimentali dovuti a bassa statistica (BR~10⁻⁶) ed ai fondi elevati
- Fondi principali dovuti a fotoni da:
 - π⁰ ed η in eventi di continuo (rimossi tramite veto)
 - eventi b \rightarrow s γ (veto su Kaoni)

•Yield di segnale estratto tramite un fit di likelihood multidimensionale

 Ottimo accordo tra le misure delle due collaborazioni

BaBar

$$\mathcal{B}(B \to \rho \gamma, \omega \gamma) = (1.25 \pm 0.25 \pm 0.09) \times 10^{-6}$$

Belle

 $\mathcal{B}(B \to \rho \gamma, \omega \gamma) = (1.32^{+0.34}_{-0.31} \pm 0.10) \times 10^{-6}$

- Dai rapporti BR($B \rightarrow \rho \gamma$)/BR($B \rightarrow K^* \gamma$) :
- $|V_{td}/V_{ts}|\rho^0\gamma = 0.23 \pm 0.02$
- $|V_{td}/V_{ts}|\rho^+\gamma = 0.17 \pm 0.03$
- Ottimo accordo col valore determinato dalle misure di mixing:

 $\left|\frac{V_{td}}{V_{ts}}\right|_{\Delta m_d/\Delta m_s} = 0.2060 \pm 0.0007^{+0.0081}_{-0.0060}$

CDF Phys.Rev.Lett.97:242003 (2006)

Decadimenti leptonici del B

Nel Modello Standard

•Canali puliti da un punto di vista teorico •La misura del BR permette di determinare la costante di decadimento f_B -•Forte soppressione di elicità per i canali µ/e

La previsione sul BR viene modificata in maniera semplice nell'estensione con due doppietti di Higgs.

•La misura fornisce un vincolo sul piano $(m_{H^+}, tan\beta)$

 II BR può essere innalzato o soppresso

$B \rightarrow \tau v$: difficoltà sperimentali

•τ ricostruito attraverso i suoi principali canali di decadimento:

- Stato finale contiene:
 - 1 o 3 tracce
 - 1 o nessun π^0
 - 2-3 neutrini
- Difficile estrarre il segnale da eventi multiadronici
- Necessità di "pulire" il campione di eventi da analizzare
- Ricostruzione dell'altro B dell'evento (tag B)

$B \rightarrow \tau v$: metodi di tag

Tag semileptonicoLikelihood ratio combina le probabilitàpoissoniane dei singoli canaliSegnale consistente con zero a 1.3σ $B = (0.88^{+0.68}_{-0.67} \pm 0.11) \times 10^{-4}$ $< 1.80 \times 10^{-4}$ @ 90% C.L.

BaBar ha anche pubblicato una misura di U.L. con tag adronico su un campione di ~90M BB B ($B \rightarrow \tau \nu$) < 4.2 × 10⁻⁴ @ 90% CL L'update di questa misura ad un campione di più elevata statistica è atteso a breve.

B→τv: vincolo nel piano (tanβ, m_{H+})

Nel contesto dell'estensione a due doppietti di Higgs dello S.M. La misura di BR($B \rightarrow \tau v$) si traduce in un vincolo sul piano (tan β , m_{H+})

$$BR\!\left(B^+ \to \tau^+ \nu\right) = BR_{SM}\left(B^+ \to \tau^+ \nu\right) \times \left(1 - \tan^2 \beta \frac{m_{B^\pm}^2}{m_{H^\pm}^2}\right)^2$$

Regione di esclusione determinata utilizzando la media delle misure di Belle e BaBar:

 $BR_{exp}(B \rightarrow \tau v) = (1.31 \pm 0.48) \times 10^{-4}$

e la previsione del BR_{SM} dalla collaborazione UTFit:

 $BF_{SM}(B \rightarrow \tau v) = (0.85 \pm 0.13) \times 10^{-4}$

Vincolo complementare a quello determinato dalla ricerca diretta dell'Higgs carico al LEP (>79.3 GeV)

$B \rightarrow \mu(e) v$

- Stesse motivazioni di $B \rightarrow \tau v$
- BR soppressi dal termine di elicità
 - $BR_{SM}(\mu\nu)=(4.7\pm0.7)\times10-7$
 - BR_{SM}(ev)=(11.1 ± 0.1)x10-11

ev 1.7×10^{-6} 7.9×10^{-6}

- Nesssuna evidenza di segnale→stabiliti U.L.
- Risultati consistenti con lo SM
- Il miglior U.L. raggiunto differisce dalla prevsione SM di un fattore 2

Decadimenti semileptonici: $B \rightarrow K^{(*)}ll$

FCNC Possibiltà di nuova fisica nei loop

A_{CP}= 0 nel Modello Standard

Può essere innalzata da effetti di NP

$$R_{K} = \frac{\Gamma(B \to K \mu \mu)}{\Gamma(B \to K ee)} = 1.0000 \pm 0.0001 \text{ (SM)}^{\overline{q}}$$

$$R_{K^{*}} = \frac{\Gamma(B \to K^{*} \mu \mu)}{\Gamma(B \to K^{*} ee)} \approx 0.75 \text{ to } 1.0 \text{ depending on } q^{2} \text{ region (SM)}$$

 $R_{K(*)}$ può essere modificato per due doppietti di Higgs con tan β grande

Possibilità di scoprire Nuova Fisica attraverso deviazioni dalla predizione SM dell'asimmetra Forward Backward in funzione del momento scambiato q²

$$l^-$$

 θ_l
 l^+
 B
 \overline{q}
 K^*

$$A_{FB}(q^2) = \frac{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) - \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) + \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}$$

$B \rightarrow K^{(*)}$ ll:Asimmetria Forward Backward

PRD73 (2006) 092001

- Shape di A_{FB}(q²) determinata dall'interferenza di 3 ampiezze che corrispondono ai coefficienti di Wilson
- $\begin{array}{lll} C_7 & & -\gamma \text{ electroweak penguin} \\ C_9 & & -Z^0 \text{ electroweak penguin} \\ C_{10} & & -\text{ box diagram} \end{array}$

 In K*II un'altra osservabile che può mettere in evidenza discrepanze rispetto allo S.M. è F_L(q²) frazione di eventi polarizzati longitudinalmente

$B \rightarrow K^{(*)}$ ll: risultati

Fino ad oggi i più piccoli BR del mesone B misurati

$B \rightarrow K^*$ ll: risultati $A_{FB}(q^2)$

- Prime misure dell'asimmetria Forward Backward
- consistenti con Modello Standard
- Accordo peggiore a bassi q²

- Anche la misura di F_L(q²) consistente con SM
- Misure limitate dall'errore statistico

BaBar: 229×10⁶ B pairs Belle: 386×10⁶ B pairs

$B \rightarrow \pi ll$

■Il B.R. B→ π ll è soppresso rispetto a B→Kll del termine |V_{td}/V_{ts}| _《

- $\mathcal{B}_{\rm SM} \to \pi \ell \ell) = 3.3 \times 10^{-8}$
- Effetti di nuova fisica possono aumentarlo
 Misura più difficile rispetto a
- $B \rightarrow K(*)$ ll
 - Meno eventi di segnale
 - Più eventi di fondo
- Combinazione di canali π^+ ll e π^0 ll usando la simmetria di isospin

Determinati U.L. entro un fattore 3 dalla previsione S.M.

Conclusioni

- I decadimenti rari del B costituiscono un ottimo banco di prova per il Modello Standard
- Forniscono osservabili sensibili a diversi scenari di Nuova Fisica
- Informazioni complementari alle ricerche dirette degli acceleratori "energy frontier"
- Ad oggi risultati consistenti con il Modello Standard
- Alla fine del 2008 il campione di dati disponibile alle B-factories sarà più che raddoppiato
 - 2 miliardi di coppie BB
 - I vincoli sulle possibili estensioni del Modello Standard saranno molto più stringenti
 - Saremo in grado di osservare Nuova Fisica?

Backup

Table 2: Reported branching fraction, minimum photon energy, branching fraction at minimum photon energy and converted branching fraction for the decay $b \rightarrow s\gamma$. All the branching fractions are in units of 10^{-6} . See text for an explanation of the errors.

Mode	Reported \mathcal{B}	E_{\min}	${\cal B}$ at E_{\min}	Modified \mathcal{B} ($E_{\min} = 1.6$)
CLEO Inc. [3]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306\pm41\pm26$	$329 \pm 44 \pm 28 \pm 6 \pm 6$
Belle Semi.[4]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	-	$369\pm58\pm46^{+56}_{-60}$
Belle Inc.[5]	$355 \pm 32^{+30+11}_{-31-7}$	1.8	$351\pm32\pm29$	$350\pm32^{+30}_{-31}\pm2\pm2$
BABAR Semi.[6]	$335 \pm 19^{+56+4}_{-41-9}$	1.9	$327 \pm 18^{+55+4}_{-43-9}$	$349 \pm 20^{+59+4}_{-46-3}$
BABAR Inc.[7]	—	1.9	$367\pm29\pm34\pm29$	$392 \pm 31 \pm 36 \pm 30 \pm 4 \pm 6$

$b \rightarrow s\gamma$: time dep CPV

$$H_{eff} = -\sqrt{8}G_F \frac{em_b}{16\pi^2} F_{\mu\nu} \left[\frac{1}{2}F_L^q \ \bar{q}\sigma^{\mu\nu}(1+\gamma_5)b + \frac{1}{2}F_R^q \ \bar{q}\sigma^{\mu\nu}(1-\gamma_5)b\right] . \tag{1}$$

 F_L^q is the amplitude for the emission of *left* polarized photons in *b* (i.e. \overline{B} -meson) decay, and F_L^{q*} is the amplitude for the emission of *right* polarized photons in \overline{b} (i.e. *B*-meson) decay. Similarly, F_R^q is the amplitude for the emission of *right* polarized photons in *b* decay and F_R^{q*} is the amplitude for the emission of *left* polarized photons in \overline{b} decay. In the SM

$$\frac{F_R^q}{F_L^q} \approx \frac{m_q}{m_b} , \qquad (2)$$

where the masses are current masses. Thus the photons emitted from these *b* decays are predominantly left-handed. This feature, which is a key point in our argument, can be easily understood. The term proportional to F_L^q has the helicity structure $b_R \to q_L \gamma_L$ while the F_R^q term describes $b_L \to q_R \gamma_R$. In the SM penguin diagram with *W* exchange, only the left-handed components of the external fermions couple to the W; therefore helicity flip must occur on an external leg. Helicity flip on the *b*-quark leg is proportional to m_b and contributes to F_L^q , while helicity flip on the *q*-quark leg is proportional to m_q and contributes to F_R^q . This argument holds to all orders in strong interactions since the QCD interaction preserves quark helicities.

$B \rightarrow \tau v$: vincolo su nuova fisica

2HDM of W.S. Hou, PRD 48, 2342 (199

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\rm SM} \times r_H$$
$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$$

Contribution of charged Higg enhance the B.F. by $r_{\rm H}$

$B \rightarrow \tau v$: prospettive

Attesa una riduzione dell'incertezza sul Branching ratio da $\sim 0.65 \times 10^{-4}$ a $\sim 0.4 \times 10^{-4}$ per ciascun esperimento con 10^9 B⁺ (assumendo nessun miglioramento nella tecnica sperimentale)

BaBar ha anche un'analisi con tag adronico paragonabile con Belle che consentirà di raddoppiare il numero di B e ridurre l'errore ulteriormente statistico a 0.48 (0.3) con l'attuale (futuro 10⁹) campione di mesoni B⁺.

$B \rightarrow e/\mu \nu$ (Babar)

BABAR hadronic tagged analysis based on 229 x 10⁶ BB pairs (hep-ex/0607110) (0)

• observed 0 events in each of e and μ_{sig} channels with expected backgrounds of 0.23 and 0.12 events respectively N_{t}

B(B⁺→e⁺
$$\nu$$
)<7.9 x 10⁻⁶
B(B⁺→ $\mu^+\nu$) < 6.2 x 10⁻⁶ at 90% CL

iantity	$B \rightarrow \mu^+ \nu_{\mu}$	$B \rightarrow e^+ \nu_e$
_{ag} (%)	$0.239 \pm 0.013 \pm 0.004$	$0.247 \pm 0.013 \pm 0.004$
g (%)	$60.5\pm4.0\pm1.0$	$49.4\pm3.8\pm0.8$
ରୁf(ଷ୍ଟ)	$0.145 \pm 0.013 \pm 0.003$	$0.122 \pm 0.012 \pm 0.003$
$N_{\rm bg}$	$0.229^{+0.167}_{-0.142}\pm0.007$	$0.115^{+0.131}_{-0.075} \pm 0.304$
N _{SM}	~ 0.03	$\sim 3 \times 10^{-7}$
Nobs	0	0

- Method free from experimental issues relating to background modeling and estimation, but currently statistically limited
- complementary approach to "inclusive" analysis method...

$B \rightarrow e/\mu \nu$ (Belle)

Reconstruct accompanying B by 4-vector sum of particles recoiling against a high momentum lepton

Belle analysis based on 253 fb⁻¹ of data

(hep-ex/0611045):

- Efficiencies much higher than exclusive method, but also higher backgrounds:

 ε_μ=(2.18 ± 0.06)% ε_e=(2.39 ± 0.06)%
- Extract signal from fit to M_{bc} distribution in region: 5.1< M_{bc} < 5.29; -0.8 (-1.0) < ΔE <0.4 GeV for $\mu(e)$
- Experimental sensitivity within a factor of ~2 of SM rate!
 - Similar method used by BABAR analysis (Phys.Rev.Lett.92:221803,2004.) based on 80fb⁻¹ reported B(B⁺→µ⁺v) < 6.6 x 10⁻⁶ at 90% CL

B→K*ll

- \mathbf{B} → $\mathbf{K}^{(*)}l^{+}l^{-}l^{+}l^{-}$ receives contributions from C₇ (photon penguin), C₉ (vector EW) and C₁₀ (axial-vector EW)
 - Also substantial long-distance contributions (J/Ψ K and Ψ(2s)K)

Interference between contributing amplitudes produces asymmetries in lepton angular distribution

> A_{FB} sensitive to non-SM values of Wilson coefficients