IFAE07 - Napoli 11/04/2007

DAFNE2: prospettive di fisica e⁺e⁻ a Frascati

Cesare Bini

Sapienza Università di Roma e INFN Roma

- 1. Il progetto DAFNE2
- 2. Programma scientifico
- 3. Stato della macchina
- 4. Studi di rivelatore

1. Il progetto DAFNE2

- Macchina e⁺e⁻ con 1 < √s < 2.5 GeV, luminosità fino a 10³³ cm⁻²s⁻¹ (a 1 GeV) e > 10³²cm⁻²s⁻¹ (alle altre energie);
- 3 Eol sono state elaborate e presentate ai laboratori:
 - KLOE2 (continuation of the KLOE program at DAΦNE upgraded in luminosity and in energy)
 - DANTE (measurement of the nucleon form factors in the time-like region at DAFNE2)
 - AMADEUS (study of deeply bound kaonic nuclear states at DAΦNE2)
- Idea di base: unico rivelatore (basato su KLOE) con diverse regioni di interazione per run diversi. (vedi http://www.lnf.infn.it/lnfadmin/direzione/roadmap/roadmap.html)

2. Programma scientifico

- **1. Fisica dei mesoni K alla** φ: matrice CKM, simmetrie CP e CPT, universalità leptonica, teorie chirali;
- 2. Struttura dei mesoni leggeri: η , η ', f₀(980), a₀(980), σ (+ spettroscopia di mesoni 1 < m < 2.5 GeV);
- 3. Sezione d'urto adronica da $2m_{\pi}$ a 2.5 GeV: calcolo correzioni adroniche a g-2 e a α_{em} running ;
- 4. Fattori di forma time-like dei barioni (p, n, Λ , Σ): misura delle fasi dalla polarizzazione;
- 5. Esistenza di nuclei kaonici fortemente legati e sistematica interazioni KN;

2.1 Fisica dei mesoni K ad una ϕ -factory

~10⁶ K neutri per pb⁻¹ stato antisimmetrico _____ con J^{PC} = 1⁻⁻

$$|i\rangle = \frac{1}{\sqrt{2}} \left[\left| K^{0}(+\vec{p}) \right\rangle \right| \overline{K}^{0}(-\vec{p}) \rangle - \left| \overline{K}^{0}(+\vec{p}) \right\rangle \right] K^{0}(-\vec{p}) \rangle$$
$$= \frac{N}{\sqrt{2}} \left[\left| K_{s}(+\vec{p}) \right\rangle \right| K_{L}(-\vec{p}) \rangle - \left| K_{L}(+\vec{p}) \right\rangle \right] K_{s}(-\vec{p}) \rangle$$

(1) Fasci puri di K_S e K_L: *tagging* \rightarrow B.R. assoluti (K_S e K_L) \rightarrow decadimenti rari del K_S (*CP* nei decadimenti del K_S: (a) K_S $\rightarrow \pi^0 \pi^0 \pi^0$ (b) asimmetria semileptonica)

(2) Stato coerente → fenomeni di *interferometria quantistica* → sistematica sui parametri dei K (Δm, Γ, ε, ε'/ε,...)
 → ricerca di fenomeni "esotici": possibilità "unica" nel sistema K⁰K⁰

Esempio: $\phi \rightarrow K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$, test di coerenza quantistica

Differenza di tempo tra i 2 vertici: \rightarrow Effetti di decoerenza (ζ) \rightarrow Violazione di CPT indotta da effetti di gravità quantistica (ω) $|i\rangle \propto (K_{S}K_{L} - K_{L}K_{S}) + \omega K_{S}K_{S} - K_{L}K_{L})$ $|\omega|^{2} = O\left(\frac{E^{2}/M_{PLANCK}}{\Delta\Gamma}\right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3}$

(vedi • www.roma1.infn.it/people/didomenico /roadmap/kaoninterferometry.html)

Questioni sperimentali:

- ottima risoluzione di vertice, no materiale nei primi 10 ÷15 cm,...

KLOE ha già migliorato i limiti precedenti.

(KLOE coll. Phys.Lett.B642 (2006) 315)

5

2.2 Misura della sezione d'urto e⁺e⁻ in adroni

6

2.3 Fattori di forma time-like dei barioni

```
Misura di e<sup>+</sup>e<sup>-</sup> \rightarrow p\overline{p}
\rightarrow n\overline{n}
\rightarrow \Lambda\overline{\Lambda}
\rightarrow \Sigma\overline{\Sigma}
```

- Sezione d'urto
- Distribuzione angolare
- Polarizzazione del barione uscente
- Asimmetria FB

 $=> |G|^{2}$ $=> |G_{E}|/|G_{M}|$ $=> \delta \phi = \phi_{E} - \phi_{M}$ $==> Grafico a 2 \gamma$

Protone: misura di precisione con prima osservazione della fase e del contributo del grafico a 2 fotoni (rilevante per la comprensione dei risultati nello space-like); **Neutrone**: quasi "prima" misura (FENICE x 1000); **Iperoni**: prime misure.

N.B. Anche qui "competizione" con B-factories e VEP-2000 (BABAR $e^+e^- \rightarrow \Lambda \Lambda$)

2.4 Ricerca di nuclei kaonici profondamente legati

Osservazione di FINUDA: K⁻ (pp) $\rightarrow \Lambda$ p, $\Lambda \rightarrow p\pi^{-}$: stato legato ?

AMADEUS: studio sistematico della formazione (spettri di n e p) e del decadimento di questi stati: esempio del "tribarione". $K^- + {}^{4}He \rightarrow (K^{-}ppn) + n \quad oppure \rightarrow (K^{-}pnn) + p$ $(K^{-}ppn) \rightarrow \Lambda + d \quad (K^{-}pnn) \rightarrow \Lambda + n n$ $\rightarrow \Sigma^- + pp \qquad \rightarrow \Sigma^- + d$ $\rightarrow \Sigma^0 + d \qquad \rightarrow \Sigma^0 + n n$ Richieste per la macchina e per il rivelatore

Luminosità: (attuale: 1.5×10³² cm⁻² s⁻¹ KLOE = 2.5 fb⁻¹) (1) ok per il programma di alta energia (2) quasi ok per il programma nucleare alla ϕ $(3) \rightarrow 50 \text{ fb}^{-1} / 3 \div 4 \text{ anni}$ per la fisica di precisione alla ϕ (K, η , η' ,...) **Rivelatore**: "update" KLOE (f.e.e., daq, hv,...) "upgrade" \rightarrow "inner tracker" $\rightarrow \gamma \gamma$ tagger \rightarrow bersagli (³He, ⁴He,...) \rightarrow polarimetro

Possibile schema: 3 diversi "inner detectors"

3. Stato della macchina

DAFNE è in funzione dal 1999.				
Energia:	$\sqrt{s} = M(\phi) = 10^{\circ}$ scan 1016 < \sqrt{s}	19.4 MeV s < 1023 MeV + <i>off-peak</i> (1000 MeV)		
Luminosità: –	 picco 1.5×10³² 2.5 fb⁻¹ 0.25 + 1 fb⁻¹ 0.25 + 1 fb⁻¹ 	cm ⁻² s ⁻¹ (progetto 5×10 ³²) KLOE FINUDA DEAR / SIDDHARTA		
Programma a breve termine: \rightarrow 06/2007 FINUDA run \rightarrow 12/2007 Test per DAFNE2 (vedi seguito) \rightarrow 06/2008 SIDDHARTA run (nuova macchina)				

Idee per aumentare la luminosità di DAFNE (P.Raimondi)

(vedi D.Alesini et al., LNF-06/33 (IR))

(1) Collisioni ad angolo θ + riduzione di σ_x per evitare l'effetto "hourglass" (clessidra):

 β_y può essere ridotto fino a $2\sigma_x/\theta$

Nuovo set di parametri: θ 2x17 \rightarrow 2x24 mrad $\circ \beta_x$ 1.5 $\rightarrow 0.2 \text{ m}$ $\circ \beta_y$ 18 $\rightarrow 6 \text{ mm}$ $\circ \sigma_x$ 700 $\rightarrow 200 \ \mu\text{m}$ $\circ \sigma_y$ 15 $\rightarrow 2.4 \ \mu\text{m}$ $\circ \sigma_z$ 25 $\rightarrow 20 \ \text{mm}$

A parità di correnti (13 mA / bunch x 110 bunches) \rightarrow 7 ÷ 8 ×10³² cm⁻² s⁻¹

(2) "Crabbed waist": diversi profili di β_v per diversi x: L aumenta

Test: regione di interazione di KLOE con l'apparato SIDDHARTA

- (1) Nuovi quadrupoli permanenti: QD0 (30 cm da IP) e QF1;
- (2) Assenza dei magneti splitter;
- (3) Utilizzati tutti gli altri componenti (sestupoli inclusi);
- (4) Separazione verticale dei fasci in IR2.

4. Studi sul rivelatore

- In funzione dal 1999;
- Magnete, Calorimetro e Camera sono ok;
- Nuova regione di interazione,
 (R < 25 cm): rimozione di QCAL;

4.2 Schema AMADEUS: targhette gassose + tagging K

Diverse opzioni sono in studio (beam pipe cilindrico):
(1) Metà targhetta criogenica (spessa ~5 cm) e metà K⁺ tagger; può essere utile l'inner tracker proposto da KLOE.
(2) Targhetta criogenica completa + track detector prima e dopo.
Targhetta di ⁴He spessa 5 cm ==> 40% dei K⁻ sono fermati ==>~1 Hz @10³³

4.3 Polarimetro per protoni e neutroni

Schema di principio di un polarimetro per la misura di P_y del protone: ==> 2 ÷ 4 cm di carbonio tra inner tracker e camera a deriva

4.4 Rivelazione di neutroni con il calorimetro di KLOE

DANTE, AMADEUS ==> rivelazione *neutroni* $E_{K} = 10 \div 200 \text{ MeV}$ Può essere utilizzato il calorimetro di KLOE ?

Risultato sorprendente ! "*Efficiency enhancement*" rispetto a uno scintillatore organico "bulk"

Spiegazione (FLUKA):

- interazioni anelastiche n+Pb \rightarrow micro-sciame molto localizzato;
- alta sampling frequency \rightarrow lo sciame "raggiunge" la fibra

4.5 Tagger di elettroni a piccolo angolo per la fisica γγ

Graal tagging system 1/2

2 mm

Micro-strip

6,8 mm

Scintillator 9

electron

 \rightarrow "interazione" con disegno DAFNE2.

Simulazione: $\theta=0 E_{e^-} < 510 MeV$: Da dove "escono" gli elettroni ? \rightarrow Finestra tra QD0 e QF1

5 mm

Conclusioni:

→ Continuazione del programma scientifico e+ea bassa energia con un significativo allargamento del programma (alta luminosità e alta energia);

→ Progetto basato su una macchina (DAFNE) e un rivelatore (KLOE) funzionanti e ben conosciuti;

 \rightarrow Alcune idee molto brillanti di sviluppo tecnologico sia di macchina che di rivelatore.

RISERVE

View of the modified IR1 region Similar modifications will be made in the IR2, without the low-beta insertion In addition in IR2 the two lines will be Vertically Separated

Insertion and Fixation in KLOE IR

Stretching and Supporting GEMs

Results of preliminary MonteCarlo simulations for AMADEUS setup with optimized degrader and cryotarget

40% are stopped in the cryogenic He gas target (15% liq. He density, ~ 5 cm thick) \rightarrow 12.5 \times 10⁸ K⁻⁴He atoms per month

for 10⁻³ cluster formation yield:

12.5 imes 10⁵ kaonic clusters formed in one month

- * *Efficiency* of tracking & identification K^{\pm} & detection of decay products \rightarrow
- ~ 10⁵ events per month (~ 1000 pb⁻¹)

Cryogenic toroidal target cell:

working temperature: 5 -10 K working pressure: < 2 bar

thin-walled design: 75µm Kapton, with aluminum grid reinforcement (grid transmission > 85 %)

inner diameter:	110 mm
outer diameter:	210 mm
inner length:	120 mm
outer length:	200 mm

Proton Polarimeter

http://www.Inf.infn.it/conference/nucleon05/FF/polarimeter_study_2.pdf

Counting rate is determined by the convolution of

- multiple scattering (small angle, Molière)

- strong nuclear scattering (large angle, exp. unpol. cross section and analyzing power)

Higher analyzer thickness ⇒ higher rate

but

- larger Molière angle θ_{m}
- lower tracking resolution

Polarimeter thickness

To keep $\Delta p/p$ below ~10%

 \Rightarrow T ~ 3-4 cm

 \Rightarrow pol. acceptance ϵ ~ 3%

 \Rightarrow error on the phase below 10%

Neutron interactions in the calorimeter

Simulated neutron beam: $E_{kin} = 180 \text{ MeV}$

Each primary neutron has a high probability to have elastic/inelastic scattering in Pb

In average, secondaries generated in *inelastic interactions* are 5.4 per primary neutron, counting only neutrons above 19.6 MeV.

Typical reactions on lead:

$n Pb \rightarrow$	$x n + y \gamma + Pb$
$n Pb \rightarrow$	x n + $y \gamma$ + p + residual nucleus
$n Pb \rightarrow$	x n + $y \gamma$ + p + residual nucleus

In addition, secondaries created in interactions of low energy neutrons (below 19.6 MeV) are - in average - 97.7 particles per primary neutron.

	target	P _{el} (%)	P _{inel} (%)
	Pb	32.6	31.4
fi	bers	10.4	7.0
	glue	2.3	2.2
	neutror	าร	
	_/		62.2%
	above	19.MeV	62.2%
	above	1 9.MeV S	62.2% 26.9%
	above photon protons	19.MeV S	62.2% 26.9% 6.8%
	above photon protons He-4	19.MeV S	62.2% 26.9% 6.8% 3.2%
	<i>above</i> photon protons He-4 deutero	19.MeV s s	62.2% 26.9% 6.8% 3.2% 0.4%
	<i>above</i> photon protons He-4 deutero triton	19.MeV s s	62.2% 26.9% 6.8% 3.2% 0.4% 0.2%
	<i>above</i> photon protons He-4 deutero triton He-3	19.MeV s s	62.2% 26.9% 6.8% 3.2% 0.4% 0.2% 0.2%

neutrons	94.2%
protons	4.7%
photons	1.1% ₃₂