

Sviluppi sui rivelatori a GEM

Alessandro Cardini

INFN Cagliari, Italy

Ringraziamenti

- Questa presentazione e' una mia personale selezione di alcuni degli argomenti riguardanti i rivelatori a GEM presentati recentemente a Conferenze Internazionali ed a Workshop dedicati
- Ringrazio quindi tutti gli autori per il materiale messo a disposizione

Outline

- Generalita'
- Caratteristiche
- Applicazioni in HEP
- Rivelatori di fotoni
- Applicazioni criogeniche
- Altre applicazioni
- Conclusioni

Generalita'

La GEM (F. Sauli, 1997) e' un sottile foglio di poliammide (Kapton) ramato su entrambi i lati e forato chimicamente con una densita' di buchi di di 50-100 mm⁻²

Parametri standard:

- Spessore poliammide 50 μm
- Spessore rame 5 μm
- \varnothing buco 70 μ m
- Passo 140 μm

Applicando una differenza di potenziale tra i due lati del foglio si creano all'interno dei buchi dei campi sufficienti a realizzare una moltiplicazione degli elettroni a valanga

A. Cardini / INFN Cag

Rivelatori a GEM

- La caratteristica principale dei rivelatori a GEM e' la separazione tra gli stadi di amplificazione e di raccolta della carica, che puo' essere realizzata a pad, strip, ...
- Il guadagno di un singolo stadio e' limitato a ~10³, per cui sono tipicamente utilizzate piu' GEM in cascata
- Il segnale indotto sugli elettrodi di lettura e' dovuto solamente agli elettroni

Rivelatori a multi-GEM

I rivelatori a multi-gem permettono di ottenere guadagni piu' elevati in condizioni di funzionamento piu' sicure, riducendo il problema delle scariche, sempre presenti nei rivelatori a microstrutture

Caratteristiche (R&D per LHCb)

- Rivelatori tripla-GEM
- Risoluzione energia ~ 25%
- A G~20k, guadagno stabile fino a ~50 MHz/cm²

Napoli, 11 aprile 2007

Varie forme possibili!

2 settori

Osaka magnetic spectrometer

Approx. 200 mm x 50 mm

Compass CERN 310 mm x 310 mm 12 settori LHCb CERN 200 mm x 240 mm 6 settori

1.1.1.1.1.1.

Napoli, 11 aprile 2007

A. Cardini / INFN Cagliari

Queste sono GEM prodotte al CERN, massima dimensione zona attiva approx. 400 mm x 400 mm

Altri produttori stanno entrando nel business: 3M, TechEtch

Per il momento domina ancora la fabbricazione "artigianale" del CERN

Il Tracker di Compass

22 rivelatori a tripla GEM, 310 mm x 310 mm area attiva, lettura <u>analogica</u> su strip 2D con passo di 400 μm

Distribuzione della carica sulle strip: 65 µm RMS su entrambe le coordinate

Napoli, 11 aprile 2007

Il Tracker di Compass

Efficienza pari a 97.2% per MIP Inefficienze dovute all'utilizzo di spaziatori

Compass lavora ad un guadagno di circa 10k, per una probabilita' di scarica inferiore a 10⁻¹² per particella incidente

S. Bachmann et al, NIM A470(2001)548

B. Ketzer et al, NIM A535(2004)314 Napoli, 11 aprile 2007

Triggering @ LHCb

Copertura di 0.6 m² della zona centrale della prima stazione del rivelatore di muoni

GEM 20×24 cm² Pad 10×25 mm² Lettura <u>digitale</u> 0.5 MHz/cm² Eff. > 96% in 25 ns 10 anni → ~2 C/cm²

Importante studio sulle miscele con CF_{4,} indispensabili per aumentare la velocita' di deriva degli elettroni

Napoli, 11 aprile 2007

Triggering @ LHCb

Risoluzioni temporali idonee per fare per il triggering LO @ LHC

Ridottissime probabilita' di scarica a *G* ~ 6000

Napoli, 11 aprile 2007

Il tracker di TOTEM

40 rivelatori semicircolari con diametro esterno di 300 mm attualmente in costruzione

Circuito di lettura con strip radiali e pad (3 strati)

Napoli, 11 aprile 2007

Il tracker di TOTEM

40 rivelatori come questo a fianco!

Questo e' il piu' esteso rivelatore - attualmente in costruzione - ad utilizzare la tecnica della tripla GEM

Si tratta quindi di una produzione industriale con criteri di controllo qualita' adeguati

Napoli, 11 aprile 2007

Quality Control @ LHCb

- Il controllo qualita' delle GEM e' fondamentale per garantire le performance del rivelatore finale
 - I fogli di GEM sono osservati in controluce notare che a occhio anche l'assenza di un singolo buco e' ben visibile - e tutti i difetti visibili vengono osservati al microscopio ottico per valutare il problema

• Questa procedura e' accettabile per produzioni relativamente limitate

Napoli, 11 aprile 2007

Quality Control @ Helsinki (Totem)

T. Hilden, Helsinki

Original image

original image has variable coloration and brightness

Separated background

backgrou

segmen

holes are removed with median filter commonly used for noise removal

original pixel values are divided by corresponding values of inverted background

Finished image

• final image has all the texture that was darker than the background

background light enables
recognition of blocked
holes

Detail of a finished image with background illumination

Quality Control @ Helsinki (Totem)

T. Hilden, Helsinki

Napoli, 11 aprile 2007

Occurrence

Quality control @ MIT

Sviluppo di un sistema di Scanner Ottico Automatico F. Simon, B. Surrow

Mappa dei diametri dei buchi per GEM prodotte dalla TechEtch

GEM e TPC

Sono state proposte TPC con readout a GEM. I vantaggi rispetto ad una lettura con multi-wire sono:

- Pad response function piu' stretta, ∆s ~ 1 mm
- Segnali piu' rapidi in quanto non c'e' la coda ionica, ∆t ~ 20 ns
- Buona risoluzione multi-traccia, $\Delta V \sim 1 \ mm^3$
- Ottima riduzione del feedback ionico
- Robustezza, basso costo, design

Proposta per ILC

GEM e TPC

Rivelatore GEM-TPC per LEGS (Laser Electron Gamma Source) @ BNL

Napoli, 11 aprile 2007

A. Cardini / INFN Cagliari

B. Yu, LBL TPC Workshop, April 2006

GEM e TPC

GEM-TPC per l'International Linear Collider: il prototipo di Desy-Aachen

Sviluppi sulle TPC

F. Sauli, NSS2006

- L'utilizzo di una tripla-GEM per l'amplificazione della carica fornisce un contributo aggiuntivo di diffusione trasversa $\sigma_{\rm GEM}{\sim}400~\mu{\rm m}$
- Molto lavoro sull'ottimizzazione del design delle pad di lettura
- Nuove tecniche di charge spreading, come l'utilizzo di un anodo resistivo
- Utilizzo di gas come il CF₄ a bassissima diffusione, con il quale le GEM operano correttamente
- Utilizzo della prima GEM come gate per gli ioni

The "Ultimate TPC"

F. Sauli, NSS2006

Prototipo per NA49

Sviluppo di GEM semicilindriche al CERN - Sauli et al.

Napoli, 11 aprile 2007

Prototipo per NA49

ĥŝ

Lettura con circuito 2D a strip

Spettro di MIP ad un beam test Beam spectrum for 158GeV negative hadrons

Napoli, 11 aprile 2007

Prototipo per KLOE2

anode – V strips gem3 – U strips

G. Bencivenni et al., LNF

Rivelatore estremamente leggero

Napoli, 11 aprile 2007

gem2

gem1

Fotomoltiplicatori a GEM

- La particolare struttura della GEM, con canali di moltiplicazione stretti ed indipendenti, e l'opacita' della GEM ai fotoni e al feedback ionico permette di raggiungere elevati guadagni in gas nobili puri o loro miscele
- Strutture multi-gem che utilizzano fino a 4 GEM in cascata sono state studiate al CERN, al Weizemann e a Novosibirsk
- In particolare sono stati studiati fotocatodi in trasparenza o in riflessione - in questo ultimo caso il fotocatodo e' depositato sulla prima GEM

Napoli, 11 aprile 2007

Fotomoltiplicatori a GEM

Triple-GEM detector with CsI-coated first GEM

Amplitude spectrum

Q.E. at 185 nm vs. field (relative to vacuum)

A. Breskin et al., NIM A483 (2001) 670

Rivelatore Hadron-Blind

Napoli, 11 aprile 2007

HBD @ Phenix (RHIC)

Readout con ASIC

Ultimate grnularit Un rivelatore a singola GEM con lettura a micro-PAD ha una buona efficienza di rivelazione di raggi X morbidi attraverso la rivelazione del fotoelettrone e la misura dell'angolo medio di emissione

ASIC readout chip 105600 canali 470 pixel/mm² 15 mm x 15 mm active area

Napoli, 11 aprile 2007

- GEM pitch: 50 μm
- GEM holes diameters: 33 μm, 15 μm
- Read out pitch: 50 μm
- Absorption gap thickness: 10 mm
- Collection gap thickness: 1 mm

X-Ray Polarimeter

R. Bellazzini, Imaging 2006

The GEM glued to the bottom of the gas-tight enclosure
The large area ASIC mounted on the control motherboard

Angular distribution for polarized x-rays

G~1000 @450V Ne/DME 50/50

5.4 keV photoelectrons

Rivelatori Criogenici a GEM

Sono stati studiati i meccanismi di amplificazione delle GEM anche a temperature criogeniche

A. Buzulutskov et al, NIM A548 (2005) 487

Napoli, 11 aprile 2007

Rivelatori a doppia fase

Rivelatore a Xe a doppia fase per la ricerca di materia oscura P.K. Lightfoot, NIM A554 (2005) 266

"Nuclear recoil signal events contain no (for low drift field) primary ionization between these two pulses"

Curva di guadagno per LXe (171 K) + 2% CH₄

Conclusioni

- Caratteristiche principali dei rivelatori a GEM:
 - Separazione degli stadi di moltiplicazione e raccolta della carica
 - Localizzazione 2D
 - Accuratezza nella posizione di ~50 μ m
 - Rate capability in eccesso di 1 MHz/mm²
 - Alti guadagni possibili (>10⁵) con rivelatori a multi-gem
 - Single-electron sensitivity
 - Vari design possibili per i fogli di GEM
 - Possibile realizzare rivelatori non planari
 - Utilizzo criogenico e/o in doppia fase
- Un panorama di applicazioni estremamente vario!