

The ATLAS Computing Model

Alessandro De Salvo <<u>Alessandro.DeSalvo@roma1.infn.it</u>> 12-4-2007

Outline

- > ATLAS facilities
- > Analysis model
- > Distributed production and analysis tools

LHC computing and ATLAS

- ATLAS is one of the 4 LHC experiments and will start its operation with real data in 2007/2008
- LHC will provide 4•10⁷ collisions/s in each experiment, which is reduced to ~100 events/s after the filtering
 - With an average event size of 1 MB this leads to a recording rate of 100 MB/s
 - Considering a year of data taking (10¹⁰ collisions) the overall storage capacity needed is about 10 PB/year

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Computing resources

- The ATLAS Computing model has been documented in 2005 in the Computing TDR
 - http://doc.cern.ch//archive/electronic/cern/preprints/lhcc/public/lhcc-2005-022.pdf
- Some components are still evolving and will not be final for some time
 - Calibration and alignment strategy
 - Physics data access patterns
 - Could be exercised from June 2007
 - Unlikely to know the real patterns until 2007/2008!
 - Still uncertainties on the event sizes , reconstruction time

Data types in ATLAS

- RAW
 - The data coming out of the trigger is called bytestream data
 - The bytestream format is encapsulated in a C++ object called RDO (Raw Data Object)
 - An RDO object is about 1.6 MB in size
- ESD
 - The ESD (Event Summary Data) is a more compact format, derived from the RDO format
 - An ESD event is about 0.5 MB in size
- AOD
 - The AOD (Analysis Object Data) format is extracted from the ESD data and is specifically targetted to user analysis
 - An AOD event is about 10 kB in size
- TAG
 - TAGs are databases created to be used as an event-level metadata system
 - Supporting a fast selection of events of interest of a given analysis
 - A TAG event is about 0.1 kB in size

The ATLAS Computing Model

Data flow

- Event Filter farm → Tier-0
 - 450 Mb/s, continuous
- Tier-0
 - Raw data \rightarrow CERN MSS
 - **Raw data** \rightarrow Tier-1s
- **Tier-0** \rightarrow Tier-1s
 - ESD, AOD, TAG
 - 2 copies of the full ESD set, distributed worldwide
- **Tier-0** \rightarrow Tier-2
 - Calibration data streams
- **Tier-1** \rightarrow Tier-2
 - A subset of raw data/ESD
 - Full copy of AOD and TAG
 - User/group datasets
- **Tier-2** \rightarrow Tier-1
 - MC raw, ESD, AOD, TAG
- **Tier-2** \rightarrow Tier-0
 - Calibration data processing

Network bandwidth

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

ATLAS HI Heavy Ions data

ATLAS pp data

Network bandwidth $TO \rightarrow T1$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Network bandwidth T1 \rightarrow T2

Facilities at CERN

Tier-0:

- Prompt first pass processing on express/calibration & physics streams with old calibrations - calibration, monitoring
- Calibrations tasks on prompt data
- 24-48 hours later, process full physics data streams with reasonable calibrations

 \rightarrow Implies large data movement from T0 \rightarrow T1s

- CERN Analysis Facility
 - Access to ESD and RAW/calibration data on demand
 - Essential for early calibration
 - Detector optimisation/algorithmic development

Facilities outside CERN

- Tier-1
 - Reprocess 1-2 months after arrival with better calibrations
 - Reprocess all resident RAW at year end with improved calibration and software → Implies large data movement from T1↔T1 and T1 → T2

~30 Tier 2 Centers distributed worldwide

Monte Carlo Simulation, producing ESD, AOD, ESD, AOD -> Tier 1 centers

- On demand user physics analysis of shared datasets
- Limited access to ESD and RAW data sets
- Simulation
 - \rightarrow Implies ESD, AOD, ESD, AOD \rightarrow Tier 1 centers
- Tier 3 Centers distributed worldwide
 - Physics analysis
 - Data private and local summary datasets

ATLAS Computing requirements (2008-2010)

	CPU (MSi2k)		Disk (PB)		Tape (PB)	
	2008	2010	2008	2010	2008	2010
Tier-0	3.7	6.1	0.15	0.5	2.4	11.4
CERN Analysis Facility	2.1	4.6	1.0	2.8	0.4	1.0
Sum of Tier-1s	18.1	50	10	40	7.7	28.7
Sum of Tier-2s	17.5	51.5	7.7	22.1		
Total	41.4	112.2	18.9	65.4	10.5	41.1

Resource evolution

T1/T2 Disk shares (2008)

ATLAS "average" Tier-1 Data Flow (2008)

ATLAS Distributed Data Management (DQ2)

- Files are aggregated in datasets
 - A dataset is a defined set of files
 - Files are transferred only as part of a dataset
- The PoolFileCatalog API is used to give uniform file access in all the grids
 - In LCG/EGEE the replica catalog used is LFC
 - Aims to have a uniform data access in all the environments
- ATLAS specific services and catalogs are restricted to Tier-1 centers
- Data transfer is operated through FTS channels

The ATLAS cloud model

ATLAS DDM data transfers (10-4-2007)

Analysis model

- Analysis model broken into two components
 - @ Tier 1: Scheduled central production of augmented AOD, tuples & TAG collections from ESD

 \rightarrow Derived files moved to other T1s and to T2s

- @ Tier 2: On-demand user analysis of augmented AOD streams, tuples, new selections etc and individual user simulation and CPU-bound tasks matching the official MC production
 - \rightarrow Modest job traffic between T2s
 - → Tier 2 files are not private, but may be for small sub-groups in physics/detector groups
 - \rightarrow Limited individual space, copy to Tier3s

Group analysis

- Group analysis will produce
 - Copies of subsets
 - Dataset definitions
 - TAG selections
- Characterised by access to full ESD and perhaps RAW
 - Resource intensive
 - Must be a scheduled activity
 - Can back-navigate from AOD to ESD at same site
 - Can harvest small samples of ESD (and some RAW) to be sent to Tier 2s
 - Must be agreed by physics and detector groups

Big Trains

- Efficiency and scheduling gains access if analyses are blocked into a 'big train'
- Idea around for a while, already used in e.g. heavy ions
 - Each wagon (group) has a wagon master (production manager)
 - Must ensure will not derail the train
- Train must run often enough (every ~2 weeks?)
- Trains can also harvest ESD and RAW samples for Tier 2s (but we should try to anticipate and place these subsets

Group analysis at Tier-1 centers

- Per-user resources (assumed for all working groups), 1 user per group (production manager)
 - 1000 passes through 1/10th of ESD sample (most will be on sub-streams) or 100 passes through the full ESD

	2007	2008	2009	2010
CPU (MSI2k)	1.3	9.2	4.6	8.9
Disk (TB)	67	483	1107	2067
Events	170M	2.1B	1.6B	2.4B

On-demand analysis

- Restricted to Tier 2s and CAF
 - Can specialise some Tier 2s for some groups
 - ALL Tier 2s are for ATLAS-wide usage
- Most ATLAS Tier 2 data should be 'placed' and have a lifetime of order months
 - Job must go to the data
 - This means the Tier 2 bandwidth is lower than if you pull data to the job
- Role and group based quotas are essential
 - No user quotas, only group quotas
- Data Selection
 - Over small samples with Tier-2 file-based TAG and AMI dataset selector
 - TAG queries over larger samples by batch job to database TAG at Tier-1s/large Tier 2s
- What data?
 - Group-derived formats
 - Subsets of ESD and RAW
 - Pre-selected or selected via a Big Train run by working group
 - No back-navigation between sites, formats should be co-located

User analysis

- Per-user resource (assumed with time for 700 active users)
 - Assume in 2007/2008, much of work done through group (to get data in shape for other work)
 - 25 passes through user sample

	2007	2008	2009	2010
CPU (kSl2k)	2.8	12	12	19
Disk (TB)	0.6	2.4	4.2	6.2
Events	1.7M	11 M	16 M	24M

Optimized access

- RAW, ESD and AOD will be streamed to optimise access
- The selection and direct access to individual events is via a TAG database
 - TAG is a keyed list of variables/event
 - Overhead of file opens is acceptable in many scenarios
 - Works very well with pre-streamed data
- Two roles
 - Direct access to event in file via pointer
 - Data collection definition function
- Two formats, file and database
 - Now believe large queries require full database
 - Multi-TB relational database
 - Restricts it to Tier1s and large Tier2s/CAF
 - File-based TAG allows direct access to events in files (pointers)
 - Ordinary Tier2s hold file-based primary TAG corresponding to locally-held datasets

Streaming

- 4 streams from event filter in the TDR
 - Primary physics, calibration, express, problem events
- More ESD and RAW streaming
 - Will explore the access improvements in large-scale exercises
 - Are also looking at overlaps, bookkeeping, etc
 - Streaming on trigger bits
- ~10-20 streams at AOD
 - Stream = disjoint partition of a run, defined by the selection algorithms provided by the physics community
 - May split from ESD/RAW stream, but not cross parent streams
 - Must avoid disk space wastage
 - If streams are not exclusive, must limit overlaps (<<10% total)
 - Must be very careful with bookkeeping

Test Streaming for Final Dress Reharsal (summer 2007)			
Exclusive stream	fraction		
Jet	22%		
Electron	35%		
Muon	20%		
Tau/MET	6%		
Photon	5%		
Overlap	13%		

Data hierarchy and access

- Based on Datasets (= defined set of files)
 - Files will have the complete associated luminosity blocks
- Support for dataset of datasets
 - The Stream is the high level component
 - Subset are also datasets
 - Use TAG for dataset to
 - Make logical collection of events
 - Make physical TAG collection
 - Access individual events
- Datasets will also be defined by physics groups and detector groups
 - Associated data will be modified and used for detector status, calibration studies, etc.
- To keep track of the metadata a specific application has been developed
 - ATLAS Metadata Interface (AMI)

Data processing: the ATLAS grid infrastucture

- **3** collaborating grids
 - LCG
 - NorduGrid
 - OSG
- Similar hardware but different middleware
 - Different teams for each grid, collaborating to aggregate the different resources for the ATLAS production
- Resource availability
 - The grid resources are generally open to all the ATLAS grid users (users belonging to the ATLAS VO) but must be also working in local mode

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Production on different Grids

- Different hardware and middleware but common experiment software structure and execution method
 - The same execution agents (transformations) ar being used in all the grid, making the resources homogeneous
 - Working both in grid-enabled systems as well as in local environments
- Different agents and wrappers for each grid flavor, but common framework (ProdSys)
 - Using a global Oracle database hosted at CERN (ProdSys database)
- The production jobs are defined in the ProdSys DB, independently of the Grid flavor, and then dispatched to the appropriate facility

The ATLAS Production System

WLCG/EGEE

- Submission methods
 - LCG Resource Broker
 - Condor-G direct submission
 - Also using glide-ins for CRONUS

Testing the new gLite Resource Broker (WMS)

- Allows bulk submissions and other enhancements
- Tested within the ATLAS LCG/EGEE Task Force
- http://lcg.web.cern.ch

NorduGrid

- Light middleware package (ARC, ~13 MB in total)
- Extended functionalities for the CE
 - Input/output files staging and caching
 - Controlled by XRSL (extension to globus RSL)
- Submission methods
 - The brokering is an integral part of the client software
 - Logging and bookeeping is done at the site level
- http://www.nordugrid.org

OSG/PANDA

- PANDA has been developed for OSG as an interface to ProdSys and for Distributed Analysis tasks
- It includes
 - A brokering system
 - Pilot jobs facility
 - Monitoring tools
 - Integration with the ATLAS DDM
- Direct submission of production and analysis jobs

CRONUS: glide-ins based Condor-C submission

MC Production status (Computing System Commissioning)

- Computing System Commissioning
 - CSC started in the second half of 2006
 - Full-chain test of the ATLAS software
 - Preparation to the Full Dress Reharsal (comprehensive test of all the software components)

- ~1.9M jobs, ~98M events
- OSG
 - ~0.8M jobs, ~39M events
- NorduGrid (NDGF)
 - ~0.4M jobs, ~19M events

Job distribution

MC production Jobs (Jan-Apr 2007)

MC production Walltime (Jan-Apr 2007)

Distributed Analysis tools

Tools

Configuration

- LCG
 - Short/Analysis queues
 - Job priorities
- OSG
 - PANDA task queue

Submission tools

- LCG
 - RB/WMS or direct Condor-G submissions are supported
- OSG
 - PANDA submission tools

Analysis Framework

- Mainly based on GANGA
 - CLI, GUI and python interface

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Gaudi/Athena and Grid Alliance

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Conclusions

- Computing Model Data has been well evolved to allow optimized placement of the ATLAS data at Tier Centers
 - Raw, ESD and AOD
- The analysis model is also progressing well
 - Most of the activites are well defined
 - Still we need to understand all the implications of the Physics Analysis model and the data placement/selection
- Several issues are being addressed during the Computing System Commissioning, started in the second half of 2006
 - Large-scale MC production
 - Data distribution and replication
 - • • •
- Full Dress Reharsal (comprehensive test all the Computing System components) to be performed in summer 2007
- Some issues will only be resolved with real data (2007/2008)