Masse Fermioniche e Simmetrie Discrete

Ferruccio Feruglio Padova

IFAE 2007 - Napoli, 11 Aprile 2007

based on
AF1 = Guido Altarelli and F. F. hep-ph/0504165
AF2 = Guido Altarelli and F. F. hep-ph/0512103
AFL $=$ Guido Altarelli, F.F. and Yin Lin hep-ph/0610165
FHLM = F.F., Claudia Hagedorn, Yin Lin and Luca Merlo hep-ph/0702194

Lepton Mixing Angles

$$
\begin{aligned}
& {[2 \sigma \text { errors (95\% C.L.)] }} \\
& \sin ^{2} \vartheta_{23}=0.45\left(1_{-0.20}^{+0.35}\right) \quad \sin ^{2} \vartheta_{13}=0.8_{-0.8}^{+2.3} \times 10^{-2} \\
& \vartheta_{23}=\left(42.1_{-5.3}^{+9.1}\right)^{0} \quad[2 \sigma]
\end{aligned}
$$

[Fogli, Lisi, Marrone, Palazzo 0608060]
[Schwetz 0606060]
different viewpoints: - angles are all generically large [anarchy]

- angles reflect an underlying order

$$
\begin{aligned}
& \sin ^{2} \vartheta_{23}=\frac{1}{2} \quad \sin ^{2} \vartheta_{13}=0 \quad \sin ^{2} \vartheta_{12}=\frac{1}{3} \quad \vartheta_{12}=35.3^{0} \\
& \begin{array}{l}
\text { [Harrison, Perkins and Scott (HPS) mixing pattern } \\
\text { or Tri-Bimaximal mixing] } \\
\text { not a bad } 1^{\text {st }} \text { order approximation! } \\
\vartheta_{12}=\left(34.1_{-1.6}^{+1.7}\right)^{0} \text { [16 } \\
\text { errors on within } 1 \sigma \approx \theta_{23} \text { and } \theta_{13} \text { are still large } \ldots
\end{array}
\end{aligned}
$$

future [< 10 yr] precision/sensitivity on θ_{23} and θ_{13} down to about λ^{2} could confirm HPS mixing pattern

$$
\begin{aligned}
& \vartheta_{13} \approx \delta \vartheta_{23} \approx \lambda^{2} \approx 0.04 \div 0.05 \mathrm{rad}\left(2.1^{0} \div 2.9^{0}\right) \\
& \text { [Gonzalez-Garcia, Maltoni, Smirnov 0408170] }
\end{aligned}
$$

If future data will confirm HPS down to about λ^{2} precision

$$
U_{P M N S}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+O\left(\lambda^{2}\right) \quad \begin{aligned}
& \text { quite symmetric! } \\
& \text { also called } \\
& \text { "Tri-Bimaximal=TB" } \\
& \begin{array}{l}
\left|v_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(-\left|v_{\mu}\right\rangle+\left|v_{\tau}\right\rangle\right) \\
\left|v_{2}\right\rangle=\frac{1}{\sqrt{3}}\left(\left|v_{e}\right\rangle+\left|v_{\mu}\right\rangle+\left|v_{\tau}\right\rangle\right)
\end{array}
\end{aligned}
$$

reminiscent of

$$
\pi^{0}=\frac{|u u\rangle-|d d\rangle}{\sqrt{2}} \quad \eta=\frac{|u u\rangle+|d d\rangle-2|s s\rangle}{\sqrt{6}} \quad \eta^{\prime}=\frac{|u u\rangle+|d d\rangle+|s s\rangle}{\sqrt{3}}
$$

theoretical challenge:

- how to derive TB from a model?
(eventually modified by small, $\mathrm{O}\left(\lambda^{2}\right)$, corrections)?

TB mixing from vacuum alignment

choose the basis where charged leptons are diagonal

in this basis, TB mixing is entirely due to
$\left.m_{v}=\frac{m_{3}}{2}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right)+\frac{m_{2}}{3}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)+\frac{m_{1}}{3}\left(\begin{array}{ccc}4 & -2 & -2 \\ -2 & 1 & 1 \\ -2 & 1 & 1\end{array}\right) \quad m_{3} \leftrightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right) m_{2} \leftrightarrow \frac{1}{\sqrt{3}}\binom{1}{1}_{1}^{1}\right)_{1} \leftrightarrow \frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
minimal symmetry $Z_{2} \times Z_{2}$ group: $G_{S U}=G_{S} \times G_{U}$, guaranteeing this pattern

$$
\begin{aligned}
& G_{S}=\{1, S\} \quad G_{U}=\{1, U\} \\
& S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S^{T} m_{v} S=m_{v} \\
& U^{T} m_{v} U=m_{v}
\end{aligned}
$$

algorithm to reproduce TB mixing

1. start from a flavour symmetry group $\mathrm{G} \supset \mathrm{G}_{\mathrm{T}}, \mathrm{G}_{\mathrm{Su}}$
2. arrange symmetry
[In practice, G_{s} is already sufficient] breaking of G :

spontaneous symmetry breaking
$\underset{\text { alignment }}{\text { vacuum }}\left\langle\varphi_{T}\right\rangle, \quad\left\langle\varphi_{S U}\right\rangle, \ldots$ problem
should have specific magnitudes and relative directions in flavour space.

minimal choice for G

matrices S and T satisfy

$$
S^{2}=(S T)^{3}=T^{3}=1
$$

the group generated by S and T is A_{4} and has 12 elements

$$
A_{4}=\left\{1, S, T, S T, T S, T^{2}, S T^{2}, S T S, T S T, T^{2} S, T S T^{2}, T^{2} S T\right\}
$$

- group of even permutation of four objects
- subgroup of SO(3) leaving a tetrahedron invariant
A_{4} representations :

1	$S=1$	$T=1$
1^{\prime}	$S=1$	$T=\omega^{2}$
$1^{\prime \prime}$	$S=1$	$T=\omega$

2 \& -1 \& 2

2 \& 2 \& -1\end{array}\right) \quad T=\left($$
\begin{array}{ccc}1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega\end{array}
$$\right) \quad \omega \equiv e^{i \frac{2 \pi}{3}}\)

	l	e^{c}	μ^{c}	τ^{c}	h_{u}	h_{d}	φ_{T}	φ_{S}	ξ_{i}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	1	3	3	1
matter fields									

$\mathrm{SU}(2) \mathrm{xU}(1) \mathrm{xA}_{4}$ invariant Lagrangian:
[Λ Is the cutoff]

$$
\begin{aligned}
L & =y_{e} e^{c}\left(\frac{\varphi_{T}}{\Lambda} l\right) h_{d}+y_{\mu} \mu^{c}\left(\frac{\varphi_{T}}{\Lambda} l\right)^{\prime} h_{d}+y_{\tau} \tau^{c}\left(\frac{\varphi_{T}}{\Lambda} l\right)^{\prime \prime} h_{d} \\
& \left.+x_{a} \frac{\xi}{\Lambda}(l l) \frac{h_{u} h_{u}}{\Lambda}+x_{b}\left(\frac{\varphi_{S}}{\Lambda} l l\right) \frac{h_{u} h_{u}}{\Lambda}+\ldots\right\} \begin{array}{l}
\text { higher dimensional } \\
\text { operators in } 1 / \Lambda \\
\text { expansion }
\end{array}
\end{aligned}
$$

* some invariant is missing from L : $\quad\left\{\varphi_{S} \leftrightarrow \varphi_{T}\right.$ [can be forbidden by an additional $\left.Z_{3}\right]\left\{x(l l) h_{u} h_{u}\right.$
$\begin{aligned} & \begin{array}{l}\text { under appropriate } \\ \text { conditions }\end{array}\end{aligned}\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \quad$ breaks A_{4} down to G_{T}
$\begin{array}{lllr}\left(e, g, \text { SUSY }+Z_{3}\right) & \left\langle\varphi_{S}\right\rangle & = & \left(v_{S}, v_{S}\right. \\ \text { minimization of } V & \langle\xi\rangle & = & u \\ \text { leads to } & \langle\xi\end{array}$

$$
\left[\left\langle h_{u, d}\right\rangle=v_{u, d} \ll v_{T}, v_{S}, u\right] \quad v_{T}, v_{S}, u \leq \Lambda
$$

then:

$$
\begin{aligned}
& m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right)
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { charged fermion masses } \\
m_{f}=y_{f} v_{d}\left(\frac{v_{T}}{\Lambda}\right)
\end{array} \\
& m_{v}=\left(\begin{array}{ccc}
a+\frac{2}{3} b & -\frac{b}{3} & -\frac{b}{3} \\
-\frac{b}{3} & \frac{2}{3} b & a-\frac{b}{3} \\
\text { free parameters as in the SM } \\
-\frac{b}{3} & a-\frac{b}{3} & \frac{2}{3} b
\end{array}\right)
\end{aligned} \begin{aligned}
& a \equiv 2 x_{a} \frac{u}{\Lambda}
\end{aligned} \begin{aligned}
& 2 \text { complex } \begin{array}{l}
\text { parameters in } \\
\text { v sector }
\end{array} \\
& \text { (overall phase unphysical) }
\end{aligned}
$$

[has also an accidental invariance under G_{U}]
mixing angles entirely from v sector:
$U_{P M N S}=\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right)$

independent from $|\mathrm{a}|,|\mathrm{b}|, \Delta \equiv \arg (\mathrm{a})-\arg (\mathrm{b})!!$

v masses: $\quad m_{1}=|a+b| \frac{v_{u}^{2}}{\Lambda} \quad m_{2}=|a| \frac{v_{u}^{2}}{\Lambda} \quad m_{3}=|a-b| \frac{v_{u}^{2}}{\Lambda}$

$$
m_{2}>m_{1} \quad \square-1 \leq \cos \Delta<-\left|\frac{b}{2 a}\right| \longleftrightarrow \begin{aligned}
& v \text { spectrum always } \\
& \text { of normal hierarchy type }
\end{aligned}
$$

$\left|\frac{b}{2 a}\right| \approx \begin{cases}1 & \text { [almost hierarchical spectrum] } \\ 0 & \text { [almost degenerate spectrum] }\end{cases}$
$r \equiv \frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}} \approx \frac{1}{35}$ requires a (moderate) tuning

predictions:

$$
\begin{aligned}
& m_{1} \geq 0.017 \mathrm{eV} \\
& \sum_{i} m_{i} \geq 0.09 \mathrm{eV} \\
& \left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+\frac{10}{9} \Delta m_{a t m}^{2}\left(1-\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{a t m}^{2}}\right)
\end{aligned}
$$

range of VEVs:

$$
\begin{aligned}
& m_{\tau}=y_{\tau} v_{d}\left(\frac{v_{T}}{\Lambda}\right) \\
& y_{\tau}<4 \pi
\end{aligned}
$$

from v spectrum
\square
 $\Lambda=1.8 \times 10^{15}\left(\frac{v_{S}}{\Lambda}\right) \sin ^{2} \beta \quad \mathrm{GeV}$
assuming all VEVs of the same order

$$
0.002<\frac{v_{T}}{\Lambda} \approx \frac{v_{S}}{\Lambda} \approx \frac{u}{\Lambda}<1 \quad \Lambda<0.25 \times 10^{15} \quad \mathrm{GeV}
$$

sub-leading corrections

arising from higher dimensional operators, depleted by additional powers of $1 / \Lambda$.

they affect m_{1}, m_{v} and they can deform the VEVs.
result

$$
U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+O\left(\frac{\mathrm{VEV}}{\Lambda}\right) \quad \begin{gathered}
\text { [leading corrections } \\
\text { can be even smaller } \\
O\left(\frac{V E V}{\Lambda}\right)^{2}
\end{gathered}
$$

and similarly for neutrino masses

TB mixing is preserved if corrections are $\leq \lambda^{2} \approx 0.04$
given the range $0.002<(\mathrm{VEV} / \Lambda)<1$, corrections can be kept below λ^{2}

quark masses

simple and good first order approximation:

	q	u^{c}	c^{c}	t^{c}	d^{c}	s^{c}	b^{c}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	$1^{\prime \prime}$	1^{\prime}

quark mass matrices diagonal in the leading order mixing matrix $\mathrm{V}_{\mathrm{CKM}}=1$

- unfortunately, corrections induced by higher dimensional operators are negligibly small
- top mass from dim 5 operator
- same assignment as in the lepton sector
- compatible with $S U(4) \otimes S U(2)_{L} \otimes S U(2)_{R}$ partial unification
additional sources of A_{4} breaking are needed in the quark sector possible solution within T^{\prime}, the double covering of A_{4}

$$
S^{2}=R \quad R^{2}=1 \quad(S T)^{3}=T^{3}=1
$$

24 elements representations: 1
1 1"

3
3 2

2' 2"

	$\left(\begin{array}{ll}u & d \\ c & s\end{array}\right)$	$\binom{u^{c}}{c^{c}}$	$\binom{d^{c}}{s^{c}}$	$\left(\begin{array}{ll}t & b\end{array}\right)$	t^{c}	b^{c}	η	$\xi^{\prime \prime}$
T^{\prime}	$2^{\prime \prime}$	$2^{\prime \prime}$	$2^{\prime \prime}$	1	1	1	2^{\prime}	$1^{\prime \prime}$

- lepton sector as in the A_{4} model
- t and b masses at the renormalizable level (τ mass from higher dim operators) at the leading order [including dim 5 operators]

$$
m_{u, d} \propto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right) \quad \begin{array}{ll}
33 \gg 22,23,32
\end{array} \quad \begin{aligned}
& m_{t}, m_{b}>m_{c}, m_{s} \neq 0 \\
& V_{c b}
\end{aligned}
$$

- masses and mixing angles of $1^{\text {st }}$ generation from higher-order effects
- despite the large number of parameters two relations are predicted

$$
\sqrt{\frac{m_{d}}{m_{s}}}=\left|V_{u s}\right|+O\left(\lambda^{2}\right) \quad \sqrt{\frac{m_{d}}{m_{s}}}=\left|\frac{V_{t d}}{V_{t s}}\right|+O\left(\lambda^{2}\right)
$$

$$
0.213 \div 0.243 \quad 0.2257 \pm 0.0021
$$

$$
0.208_{-0.006}^{+0.008}
$$

- vacuum alignment explicitly solved
- lepton sector not spoiled by the corrections coming from the quark sector

conclusion

mixing in the lepton sector is well described by the TB pattern
$\vartheta_{23}=45^{0} \quad \vartheta_{13}=0 \quad \sin ^{2} \vartheta_{12}=\frac{1}{3}$
errors on θ_{23} and θ_{13} are still large and future data are needed to confirm TB at the λ^{2} level

TB mixing can arise from
natural vacuum alignment preserved by high-order effects

Here: an existence proof based on the discrete group A_{4} [T^{\prime}] vacuum alignment, stability and extension to quarks are non-trivial - neutrino spectrum is of normal hierarchy type

$$
\begin{aligned}
& \left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+(10 / 9) \Delta m_{a t m}^{2}\left(1-\Delta m_{\text {sol }}^{2} / \Delta m_{a t m}^{2}\right) \\
& m_{1}>0.017 \mathrm{eV} \quad \sum_{i} m_{i}>0.09 \mathrm{eV}
\end{aligned}
$$

$$
\sqrt{\frac{m_{d}}{m_{s}}}=\left|V_{u s}\right|+O\left(\lambda^{2}\right) \sqrt{\frac{m_{d}}{m_{s}}}=\left|\frac{V_{t d}}{V_{t s}}\right|+O\left(\lambda^{2}\right)
$$

relation to the modular group

modular group PSL(2,Z): linear fractional transformation

$$
\longrightarrow Z \rightarrow \frac{a Z+b}{c Z+d} \quad \begin{aligned}
& a, b, c, d \in Z \\
& \begin{array}{l}
\text { complex } \\
\text { variable } \\
a d-b c=1
\end{array}
\end{aligned}
$$

discrete, infinite group generated by two elements

$$
\begin{array}{ll}
\underbrace{Z \rightarrow-\frac{1}{Z}}_{S} \quad \underbrace{Z \rightarrow Z+1}_{T} & \begin{array}{l}
\text { obeying } \\
S^{2}=(S T)^{3}=1
\end{array}
\end{array}
$$

the modular group is present everywhere in string theory
[any relation to string theory approaches
to fermion masses?]
A_{4} is a finite subgroup of the modular group and

$$
A_{4}=\frac{P S L(2, Z)}{H}
$$

representations of A_{4} are representations of PSL(2,Z)

Ibanez; Hamidi, Vafa;
Dixon, Friedan, Martinec, Shenker; Casas, Munoz; Cremades, Ibanez,
Marchesano; Abel, Owen
infinite discrete normal subgroup of PSL(2,Z)

A_{4} as a leftover of Poincare symmetry in D>4

[AFL]

D dimensional
Poincare symmetry
usually broken by compactification down to 4 dimensions
a discrete subgroup of the (D-4) euclidean group can survive in specific geometries

Example: D=6
2 dimensions compactified on T^{2} / Z_{2}

$$
\begin{aligned}
& z \rightarrow z+1 \\
& z \rightarrow z+\gamma \\
& z \rightarrow-z \\
& \text { four fixed points }
\end{aligned}
$$

if $\quad \gamma=\mathrm{e}^{\mathrm{i} \frac{\pi}{3}}$
regular tetrahedron invariant under

$$
\begin{array}{ll}
S: & z \rightarrow z+\frac{1}{2} \\
T: & z \rightarrow \gamma^{2} z
\end{array} \quad S^{2}=T^{3}=(S T)^{3}=1
$$

$\delta\left(\sin ^{2} \theta_{23}\right)$ reduced by future LBL experiments from $v_{\mu} \rightarrow v_{\mu}$ disappearance channel

$$
P_{\mu \mu} \approx 1-\sin ^{2} 2 \vartheta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

- no substantial improvements from conventional beams
- superbeams (e.g. T2K in 5 yr of run)

$$
\begin{aligned}
& \delta P_{\mu \mu} \approx 0.01 \\
& \delta \vartheta_{23} \approx 0.05 \mathrm{rad} \leftrightarrow 2.9^{0}
\end{aligned}
$$

improvement by about a factor 2

$$
\vartheta_{23} \approx \frac{\pi}{4}
$$

$$
\delta \vartheta_{23} \approx \frac{\sqrt{\delta P_{\mu \mu}}}{2}
$$

i.e. a small uncertainty on $P_{\mu \mu}$ leads to a large uncertainty on θ_{23}

T2K-1 90\% CL black = normal hierarchy red = inverted hierarchy true value 41^{0} [courtesy by Enrique Fernandez]

$\sin \theta_{13}$

a similar sensitivity is expected on $\theta_{13} \quad\left(U_{e 3}=\sin \theta_{13}\right)$

|Ue3|<0.05 would

- require a much
longer timescale
[Donini, Meloni, Rigolin 0506100]

many models predicts a large but not necessarily maximal θ_{23}

an example: abelian flavour symmetry group $U(1)_{F}$
$F(l)=(\times, 0,0) \quad[x \neq 0]$
$F\left(e^{c}\right)=(\times, \times, 0)$

$$
m_{e}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1)
\end{array}\right) v_{d} \quad m_{v}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1) \\
\cdot & O(1) & O(1)
\end{array}\right) \frac{v_{u}^{2}}{\Lambda}
$$

$\vartheta_{23} \approx O(1)$ maximal only by a fine-tuning!

similarly for all other abelian charge assignements
$F(l)=(1,-1,-1) \quad m_{v}=\left(\begin{array}{ccc}\cdot & O(1) & O(1) \\ O(1) & \cdot & \cdot \\ O(1) & \cdot & \cdot\end{array}\right) \frac{v_{u}^{2}}{\Lambda} \quad \vartheta_{23} \approx O(1)+$ charged lepton contribution
no help from the see-saw mechanism within abelian symmetries...

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos

2 flavour case
boundary conditions at $\Lambda \gg$ e.w. scale

$$
m_{2}, m_{3}, \vartheta_{23}
$$

$$
\begin{aligned}
& \vartheta_{23}(Q) \approx \frac{\pi}{4} \Leftrightarrow \varepsilon \approx-\frac{\delta m}{m} \cos 2 \vartheta_{23} \\
& \text { [possible only if } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m \text {] }
\end{aligned}
$$

gives the scale Q at which $\theta_{23}(\mathrm{Q})$ becomes maximal

$m_{2}, m_{3}, \vartheta_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$

$$
\text { if } \vartheta_{23}=\frac{\pi}{4}
$$

$$
\sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13} \quad \text { wrong! }}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2 \text { (Chooz) }
$$

patterns of symmetry breaking

$$
\left.\begin{array}{c}
\mathrm{A}_{4} \text { triplet } \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \\
\langle\varphi\rangle \propto(1,1,1)
\end{array} \quad A_{4} \rightarrow G_{S}\right)
$$

G_{s} is the low-energy symmetry in the v sector as we have seen
G_{T} is the low-energy symmetry in the charged lepton sector

low-energy parameters

v masses
[3 light active v]

$$
m_{1}, m_{2}, m_{3}
$$

$$
\text { order } \quad m_{1}<m_{2}
$$

$$
\Delta m_{21}^{2}<\left|\Delta m_{32}^{2}\right|,\left|\Delta m_{31}^{2}\right| \quad\left[\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}\right]
$$

i.e. 1 and 2 are, by definition, the closest levels

$$
\left.\begin{array}{l}
\Delta m_{21}^{2}=7.9(1 \pm 0.09) \times 10^{-5} \mathrm{GeV}^{2} \\
\left|\Delta m_{31}^{2}\right|=2.4\left(1_{-0.26}^{1+0.21}\right) \times 10^{-3} \mathrm{GeV}^{2}
\end{array}\right\} \text { at } 2 \sigma
$$

inverted hierarchy	2
	3

Mixing matrix (analogous to $\mathrm{V}_{\text {CKM }}$)

$$
U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{-i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{-i \delta} & c_{13} s_{23} \\
-c_{12} s_{13} c_{23}+s_{12} s_{23} e^{-i \delta} & -s_{12} s_{13} c_{23}-c_{12} s_{23} e^{-i \delta} & c_{13} c_{23}
\end{array}\right) \times \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i \beta}
\end{array}\right)}
$$

- only if v are Majorana
- drops in oscillations

plan of the seminar

- lepton mixing angles and Tri-Bimaximal (TB) mixing
- maximal atmospheric mixing angle
- TB mixing from vacuum alignment, minimal model based on A_{4}
- extension to the quark sector: from A_{4} to T^{\prime}
- microscopic origin of A_{4}
based on
AF1 = Guido Altarelli and F. F. hep-ph/0504165
AF2 = Guido Altarelli and F. F. hep-ph/0512103
AFL $=$ Guido Altarelli, F.F. and Yin Lin hep-ph/0610165
FHLM = F.F., Claudia Hagedorn, Yin Lin and Luca Merlo hep-ph/0702194

within abelian flavour symmetries

many models predicts a large but not necessarily maximal θ_{23}

$$
\vartheta_{23}=\frac{\pi}{4} \quad \text { only by a fine-tuning }
$$

$\vartheta_{23}=\frac{\pi}{4} \quad$ is not an infrared stable fixed point of RGE evolution
initial conditions at high energy should be fine-tuned in order to achive maximal atmospheric mixing angle at low energy
[Ellis, Lola 1999
Casas, Espinoza, Ibarra, Navarro 1999-2003
Broncano, Gavela, Jenkins 0406019
Chankowski, Pokorski 2002]

further requirements for the vacuum alignment

(1) alignment should be natural
no ad-hoc relations: desired VEVs from most general V in a finite region of parameter space
(2) alignment not spoiled by sub-leading terms

(3) alignment compatible with mass hierarchies
$\frac{m_{e}}{m_{\tau}}, \quad \frac{m_{\mu}}{m_{\tau}}$ should vanish in the limit of exact symmetry

(1) natural vacuum alignment

$\left\langle\varphi_{T}\right\rangle$	$=\left(v_{T}, 0,0\right)$	
$\left\langle\varphi_{S}\right\rangle$	$=$	$\left(v_{S}, v_{S}, v_{S}\right)$
$\langle\xi\rangle$	$=$	u

it is not a local minimum of the most general renormalizable scalar potential V depending on $\varphi_{\mathrm{S}}, \varphi_{\mathrm{T}}, \xi$ and invariant under A_{4}
$v_{T} \approx v_{S} \approx u$
a simple solution in 1 extra dimension \equiv ED
[AF]

[Altarelli, F. 0504165] $\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right)$ local minimum of V_{0}
0
:---
local minimum of V_{L}

$\underset{\substack{v \text { masses arise from } \\ \text { local operators at } \mathrm{y}=\mathrm{L}}}{\left(\varphi_{S} l l\right) h_{u} h_{u}} \Lambda^{2} \quad \frac{\xi(l l) h_{u} h_{u}}{\Lambda^{2}}$
this explains also the absence of the terms with $\varphi_{S} \leftrightarrow \varphi_{T}$

charged lepton masses from non-local operators

$$
\left.\begin{array}{rl}
& \frac{\left(f^{c} \varphi_{T} F\right) \delta(y)}{\sqrt{\Lambda}} \\
\rightarrow-M F F^{c} \\
\frac{\left(F^{c} l\right) h_{d}}{\sqrt{\Lambda}} \delta(y-L)
\end{array}\right\}
$$

$$
E \ll M
$$

a 4D supersymmetric solution \equiv SUSY

[AF2]
L is identified with the superpotential $\mathrm{w}_{\text {lepton }}$ in the lepton sector $\mathrm{w}_{\text {lepton }}$ is invariant under $A_{4} \times Z_{3} \times U(1)_{R}$

	l	e^{c}	μ^{c}	τ^{c}	$h_{u, d}$	φ_{T}	φ_{S}	ξ	$\tilde{\xi}$	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	1	1^{\prime}	1^{\prime}	1	3	3	1	1	3	3	1
Z_{3}	ω	ω^{2}	ω^{2}	ω^{2}	1	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	1	1	1	1	0	0	0	0	0	2	2	2

matter fields Higgses A_{4} breaking sector "driving fields"
absence of $\quad \varphi_{S} \leftrightarrow \varphi_{T} \quad x(l l)$ automatic

$$
w=w_{\text {lepton }}+w_{d}+\ldots
$$

minimum of the scalar potential at:

$$
\begin{aligned}
& w_{d}=M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)+g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+ \\
& g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \tilde{\xi}^{2} \\
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \begin{array}{ccc}
\left\langle\varphi_{S}\right\rangle & = & \left(v_{S}, v_{S}, v_{S}\right) \\
\langle\xi\rangle & = & u \\
\langle\tilde{\xi}\rangle & = & 0
\end{array} \\
& v_{T}=-\frac{3 M}{2 g} \quad v_{S}^{2}=-\frac{g_{4}}{3 g_{3}} u^{2} \\
& u \text { undetermined }
\end{aligned}
$$

(3) alignment and mass hierarchies

$$
m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right)
$$

charged fermion masses are already diagonal

$$
m_{e} \ll m_{\mu} \ll m_{\tau} \quad \begin{aligned}
& \text { easily reproduced by } \\
& \mathrm{U}(1) \text { flavour symmetry }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
Q\left(e^{c}\right)=4 \quad Q\left(\mu^{c}\right)=2 \quad Q\left(\tau^{c}\right)=0 \\
Q(l)=0
\end{array}\right\} \quad \text { compatible with } \mathrm{A}_{4} .
\end{aligned}
$$

$$
Q(\vartheta)=-1 \quad\langle\vartheta\rangle \neq 0
$$

$$
\square
$$

$$
y_{e} \approx \frac{\langle\vartheta\rangle^{4}}{\Lambda^{4}} \quad y_{\mu} \approx \frac{\langle\vartheta\rangle^{2}}{\Lambda^{2}} \quad y_{\tau} \approx 1
$$

these models have a see-saw realization

by including right - handed neutrinos $v^{c} \approx 3$

$$
M \propto\left(\begin{array}{ccc}
a+\frac{2}{3} b & -\frac{b}{3} & -\frac{b}{3} \\
-\frac{b}{3} & \frac{2}{3} b & a-\frac{b}{3} \\
-\frac{b}{3} & a-\frac{b}{3} & \frac{2}{3} b
\end{array}\right)
$$

$$
\text { as } m_{v} \text { before }
$$

$$
m_{v}=-\left(m_{v}^{D}\right) M^{-1} m_{v}^{D} \propto M^{-1}
$$

inverse of what was before

- mixing matrix is the same
- eigenvalues are the inverse and now also the case of inverted hierarchy is allowed

θ_{23} maximal from non-abelian flavour symmetries ?

 an obstruction: $\vartheta_{23}=45^{0}$ can never arise in the limit of charged lepton mass matrix:symmetric limit

$$
m_{l}=m_{l}^{0}+\delta m_{l}^{0} \quad \begin{aligned}
& \text { symmetry breaking effects: } \\
& \text { vanishing when flavour sym }
\end{aligned}
$$ vanishing when flavour symmetry F is exact

realistic symmetry:
(1) $\left|\delta m_{l}^{0}\right|<\left|m_{l}^{0}\right|$
(2) $m_{l}{ }^{0}$ has rank ≤ 1

$$
m_{l}^{0}=\left(\begin{array}{llc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & m_{\tau}
\end{array}\right) \longrightarrow \vartheta_{12}^{e} \text { undetermined }
$$

$U_{\text {PMNS }}=U_{e}^{+} U_{v}$
$\tan \vartheta_{23}^{0}=\tan \vartheta_{23}^{v} \cos \vartheta_{12}^{e}+\left(\frac{\tan \vartheta_{13}^{v}}{\cos \vartheta_{23}^{v}}\right) \sin \vartheta_{12}^{e} \longrightarrow$ undetermined

$$
\vartheta_{23}=45^{0} \quad \begin{aligned}
& \text { determined entirely by the pattern of breaking effects } \\
& \text { (different, in general, for } v \text { and e sectors) }
\end{aligned}
$$

