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not a bad 1st order approximation! 
θ12 right within 1σ ≈ 20 ≤ 0.04 rad ≈ λ2 , where λ=0.22
errors on θ23 and θ13 are still large…

future [< 10 yr] precision/sensitivity on θ23 and θ13 down to about λ2

could confirm HPS mixing pattern )9.21.2( rad05.004.0 002
2313 ÷÷≈≈≈ λδϑϑ

[Fogli, Lisi, Marrone, Palazzo 0608060]
[Schwetz 0606060]

[Gonzalez-Garcia, Maltoni, Smirnov 0408170]

different viewpoints: - angles are all generically large [anarchy] 
- angles reflect an underlying order

[Harrison, Perkins and Scott (HPS) mixing pattern
or Tri-Bimaximal mixing]

C.L.)] (95% errors   2[ σ

[Hall, Murayama, Weiner 2000
De Gouvea, Murayama 0301050]
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If future data will confirm HPS down to about λ2 precision 

quite symmetric!
also called 

``Tri-Bimaximal=TB’’

theoretical challenge:
- how to derive TB from a model?
(eventually modified by small, O(λ2), corrections)?
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TB mixing from vacuum alignment
choose the basis where charged leptons are diagonal
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guaranteeing the 
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in this basis, TB mixing is entirely due to 
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algorithm to reproduce TB mixing

1. start from a flavour symmetry group G⊃GT, GSU 

2. arrange symmetry 
breaking of G:

G

GT GSU

in the charged 
lepton sector

in the neutrino 
sector

spontaneous 
symmetry 
breaking             

vacuum 
alignment 
problem

should have specific magnitudes and 
relative directions in flavour space.

...,, SUT ϕϕ

[In practice, GS is 
already sufficient]



minimal choice for G
matrices S and T satisfy

1)( 332 === TSTS

the group generated by S and T is A4 and has 12 elements

{ }STTTSTSTTSTSTSSTTTSSTTSA 22222
4 ,,,,,,,,,,,1=

- group of even permutation of four objects
- subgroup of SO(3) leaving a tetrahedron invariant 

[Ma, Rajasekaran 2001; Babu, Ma,
Valle 2003; Hirsch, Romao, Skandage, 
Valle, Villanova de Moral 2003; 
Ma 0409075] 
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a minimal model (lepton sector)
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higher dimensional 
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uu

TS

hhllx )(
ϕϕ ↔

[can be forbidden by an additional Z3]

[Λ Is the cutoff]

matter fields Higgses A4 breaking sector

...)()( +
ΛΛ

+
ΛΛ

+ uuS
b

uu
a

hhllxhhllx ϕξ

[AF1,AF2]



u
vvv

v

SSSS

TT

=
=
=

ξ
ϕ
ϕ

),,(
)0,0,(under appropriate 

conditions 
(e,g, SUSY + Z3)
minimization of V 
leads to 
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TGA  down to  breaks 4
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[has also an accidental invariance under GU ]



mixing angles entirely from ν sector:
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sub-leading corrections
arising from higher dimensional operators, 
depleted by additional powers of 1/Λ. 

they affect ml , mν and 
they can deform the VEVs.

result

and similarly for neutrino masses

TB mixing is preserved if corrections are ≤ λ2 ≈ 0.04

given the range 0.002<(VEV/Λ)<1, corrections can be kept below λ2

[leading corrections
can be even smaller

in particular cases]
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quark masses
simple and good first order approximation:  

'1''11'1''1134A
bsdtcuq cccccc

- same assignment as 
in the lepton sector

- compatible with

partial unification

quark mass matrices diagonal in 
the leading order mixing matrix VCKM=1
- unfortunately, corrections induced 
by higher dimensional operators are
negligibly small

- top mass from dim 5 operator
additional sources of A4 breaking 
are needed in the quark sector

possible solution within T’, the double covering of A4
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- t and b masses at the renormalizable level (τ mass from higher dim operators)

at the leading order [including dim 5 operators]
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- masses and mixing angles of 1st generation from higher-order effects
- despite the large number of parameters two relations are predicted
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243.0213.0 ÷ 0021.02257.0 ±
008.0
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- vacuum alignment explicitly solved
- lepton sector not spoiled by the corrections coming from the quark sector

[older T’ models by
Frampton, Kephard 1994
Aranda, Carone, Lebed 1999, 2000
Carr, Frampton 2007
similar U(2) constructions by
Barbieri, Dvali, Hall 1996
Barbieri, Hall, Raby, Romanino 1997
Barbieri, Hall, Romanino 1997]



conclusion
mixing in the lepton sector is well described by the TB pattern

errors on θ23 and θ13 are still large and future data are needed
to confirm TB at the λ2 level
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TB mixing can arise from 

natural vacuum alignment
preserved by high-order effects

Here: an existence proof based on the discrete group A4    [ T’ ]
vacuum alignment, stability and extension to quarks are non-trivial 
- neutrino spectrum is of normal hierarchy type
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relation to the modular group

modular group PSL(2,Z): linear fractional transformation
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complex
variable

discrete, infinite group generated by two elements
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obeying

A4 is a finite subgroup of the modular group and 

the modular group is present everywhere in string theory

H
ZPSLA ),2(

4 =
representations of A4 are 
representations of PSL(2,Z)

infinite discrete normal subgroup of PSL(2,Z)

[any relation to string 
theory approaches
to fermion masses?]

Ibanez; Hamidi, Vafa;
Dixon, Friedan, Martinec,
Shenker; Casas, Munoz;
Cremades, Ibanez,
Marchesano; Abel, Owen



A4 as a leftover of Poincare symmetry in D>4

D dimensional 
Poincare symmetry

usually broken by 
compactification down
to 4 dimensions

a discrete subgroup of  the (D-4) euclidean group
can survive in specific geometries 

Example: D=6

2 dimensions
compactified on T2/Z2
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δ(sin2θ 23) reduced by future LBL experiments 
from ν μ→ ν μ disappearance channel

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−≈

E
LmP

4
sin2sin1

2
312

23
2 ϑμμ

423
πϑ ≈

223
μμδ

δϑ
P

≈

i.e. a small uncertainty
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uncertainty on θ 23- no substantial improvements from conventional beams
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[courtesy by
Enrique Fernandez]



|Ue3|<0.05 would 
require a much 
longer timescale

3eU2.01.001.0

MINOS
OPERA

double
CHOOZT2K

NuMI

05.0

ν-factory

10 yr 
>> 10 yr

sin θ13

Present

bound

a similar sensitivity is expected on θ13     (Ue3=sin θ13 )

[Donini, Meloni, Rigolin 0506100]



many models predicts a large but not necessarily maximal θ 23

an example: abelian flavour symmetry group U(1)F
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maximal only by a fine-tuning!

similarly for all other abelian charge assignements
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θ 23  maximal by RGE effects?
running effects important only for quasi-degenerate neutrinos
2 flavour case
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to obtain Q at the e.w. scale

a similar conclusion also for the 3 flavour case:
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[Ellis, Lola 1999
Casas, Espinoza, Ibarra, Navarro 1999-2003
Broncano, Gavela, Jenkins 0406019]

Λ<Qat 



patterns of symmetry breaking 
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low-energy parameters

321 ,, mmm

ν masses
[3 light active ν]
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plan of the seminar

based on 
AF1 =   Guido Altarelli and F. F. hep-ph/0504165 
AF2 =   Guido Altarelli and F. F. hep-ph/0512103
AFL =   Guido Altarelli, F.F. and Yin Lin hep-ph/0610165
FHLM = F.F., Claudia Hagedorn, Yin Lin and Luca Merlo hep-ph/0702194

- lepton mixing angles and Tri-Bimaximal (TB) mixing
- maximal atmospheric mixing angle
- TB mixing from vacuum alignment, minimal model based on A4
- extension to the quark sector: from A4 to T’
- microscopic origin of A4



within abelian flavour symmetries 

many models predicts a large but not necessarily maximal θ 23

423
πϑ = only by a fine-tuning

423
πϑ = is not an infrared stable fixed point of RGE evolution 

initial conditions at high energy should be fine-tuned in order to achive
maximal atmospheric mixing angle at low energy

[Ellis, Lola 1999
Casas, Espinoza, Ibarra, Navarro 1999-2003
Broncano, Gavela, Jenkins 0406019
Chankowski, Pokorski 2002]



further requirements for the vacuum alignment

(1) alignment should be natural
no ad-hoc relations: desired VEVs from most general V 

in a finite region of parameter space

(2) alignment not spoiled by sub-leading terms
from higher-dimensional 
operators compatible with 
gauge and flavour symmetries 

leading order

often             
then                          needed 
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it is not a local minimum of the most
general renormalizable scalar potential V
depending on ϕS , ϕT , ξ and invariant under A4 

a simple solution in 1 extra dimension ≡ ED
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(1) natural vacuum alignment

charged lepton 
masses from 
non-local operators Λ
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a 4D supersymmetric solution ≡ SUSY

L is identified with the superpotential wlepton in the lepton sector
wlepton is invariant under RUZA )1(34 ××
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τμ mmme <<<< easily reproduced by 
U(1) flavour symmetry
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(3) alignment and mass hierarchies
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these models have a see-saw realization

3  neutrinos handed-right includingby ≈cν

1∝Dmν
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ννν inverse of what was before

- mixing matrix is the same

- eigenvalues are the inverse and now also the case of inverted hierarchy is allowed



0
23 45=ϑ

θ 23 maximal from non-abelian flavour symmetries ?
can never arise in the limit of 
an exact realistic symmetry

charged lepton mass matrix:

00
lll mmm δ+= symmetry breaking effects:

vanishing when flavour symmetry F
is exactsymmetric limit
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determined entirely by the pattern of breaking effects
(different, in general, for ν and e sectors)

[omitting phases]
undetermined

undetermined
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an obstruction:

realistic symmetry:

(1)

(2)


	  

