How to Detect Heavy Higgs Bosons of the MSSM

(IFAE2007, Naples, 11-13 April 2007)

Stefano Moretti

NExT Institute (Southampton/Rutherford Appleton Laboratory)

Outline of the talk

- Supersymmetric (SUSY) Higgs spectra (masses and couplings)
- Colliders phenomenology
 - 1. Current limits from LEP, Tevatron
 - 2. Future searches at LHC
- Outlook

• MSSM based upon: 1. minimal particle content; 2. Poincare invariance; 3. SM gauge invariance; 4. SUSY.

• MSSM particle content:

Gauge bosons $S = 1$	Gauginos $S = 1/2$
gluon, W^{\pm}, Z, γ	$\operatorname{gluino}, \widetilde{W}, \widetilde{Z}, \widetilde{\gamma}$
Fermions $S = 1/2$	Sfermions $S = 0$
$\binom{u_L}{d_L}\binom{\nu_L^e}{e_L}$	$\binom{\widetilde{u}_L}{\widetilde{d}_L}\binom{\widetilde{\nu}_L^e}{\widetilde{e}_L}$
u_R, d_R, e_R	$\widetilde{u}_R, \widetilde{d}_R, \widetilde{e}_R$
Higgs	Higgsinos
$ \begin{pmatrix} H_2^0 \\ H_2^- \end{pmatrix} \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix} $	$\begin{pmatrix} \widetilde{H}_2^0 \\ \widetilde{H}_2^- \end{pmatrix} \begin{pmatrix} \widetilde{H}_1^+ \\ \widetilde{H}_1^0 \end{pmatrix}$

- Charged and neutral higgsinos mix with non-coloured gauginos to form physical mass eigenstates, so-called charginos $\tilde{\chi}_{1,2}^{\pm}$ neutralinos $\tilde{\chi}_{1,\dots4}^{0}$.
- Mixing also expected in b, t and τ sfermion sector.

- Introduce additional discrete symmetry, *R*-parity:
- \rightarrow forbid B L violating interactions (i.e., no proton decay).
- SM particles are R-even while SUSY ones are R-odd !
- MSSM with *R*-parity conservation:
- \rightarrow SUSY in pairs and Lightest SUSY Particle (LSP) is stable (DM candidate).
- Sparticles interactions fixed by gauge symmetries and SUSY:
- \rightarrow no adjustable parameters, i.e. predictive !
- *However*, SUSY is <u>non-exact symmetry of nature</u>:
- \rightarrow SM particle and SUSY sparticles non-degenerate masses !
- Mechanism of SUSY breaking not understood:

 $\mathcal{L} = \mathcal{L}(SUSY) + \mathcal{L}(SUSY\text{-breaking}).$

- (<u>Soft-breaking terms terms</u> are consistent with Poincare and SM gauge invariance) and <u>do not reintroduce</u> quadratic divergences for scalar particles !)
- > 100 free parameters to parametrise SUSY breaking.
- Models exist that assume universality of parameters at Plank/GUT scale (not treated here)

- Two-doublet Higgs models are anomaly-free, e.g. MSSM.
- SUSY structure also requires (at least) two Higgs doublets to generate masses for both "up"-type and "down"-type quarks and charged leptons.
- MSSM Higgs sector consists of five physical Higgs particles:
- \rightarrow two CP-even neutral Higgses, h^0 and H^0 $(M_{h^0} \leq M_{H^0})$
- \rightarrow one CP-odd neutral Higgs boson, A^0
- \rightarrow a charged Higgs boson pair, H^{\pm} .

• AT LO, $\tan\beta$ (ratio of VEVs) and one Higgs mass (e.g., M_{A^0}) completely determine MSSM Higgs sector.

- At LO: $M_{h^0} < M_Z$, $M_{A^0} < M_{H^0}$ and $M_W < M_{H^{\pm}}$!
- Particle/Sparticle (virtual) effects enter in higher orders via

$$\epsilon = \frac{3G_F}{\sqrt{2}\pi^2} \frac{M_t^4}{\sin^2 \beta} \log \left(1 + \frac{M_S^2}{M_t^2}\right) \,.$$

- When radiative corrections are included (NLO): $M_{h^0}^2 \leq M_Z^2 \cos^2 2\beta + \epsilon \sin^2 \beta$.
- NNLO (almost complete): \rightarrow fig

$$M_{h^0} \lesssim 130 \text{ GeV} !$$
 (absolute MSSM upper limit)

- Lightest Higgs mass (assume two scenarios):
 - 1. Minimal mixing $\mu = A_t = A_b = 0$ (dash);
 - 2. Maximal mixing $\mu = 0$, $A_b = 0$, $A_t = \sqrt{6}M_{SUSY}$ (solid).

- M_{h^0} very sensitive to top mass !
- What about heavy Higgses ? \longrightarrow next figure

MSSM Higgs collider searches

- There exist limits from LEP2 and Tevatron, again assume:
 - 1. Minimal mining scenario (i.e., no mixing in stop sector)
 - 2. Maximal mixing scenario (i.e., $\tilde{t}_1 \& \tilde{t}_2$ maximally mixed)
- MSSM parameter space available is reducing !
- LHC prospects from ATLAS and CMS for the MSSM \rightarrow no-lose theorem but large decoupling SM-like area !
- \bullet Ought to observe second Higgs state or make precision measurements of BRs, $\Gamma s,$ etc.
- Ought to include interaction between Higgs/SUSY sectors:
- \rightarrow Higgs \rightarrow SUSY and SUSY \rightarrow Higgs signatures !

July 10, 2001

 \rightarrow e⁺e⁻ \rightarrow hA searches: $\sim 2\sigma$ excess for $(m_{\rm h}, m_{\rm A}) \approx$ (83,83), (93,93) G \rightarrow e⁺e⁻ \rightarrow hZ searches: $> 2\sigma$ excess for $m_{\rm h} = 97 \ \& \ 115 \ {
m GeV}$ excluded at 95% CL (- - -): $m_{\rm h} < 91.0$ (95.0 exp.) GeV

0.5 < tan β < **2.4**

Page 18

Charged Higgs, H[±]

Assume $B(H^+ \rightarrow c\bar{s}) + B(H^+ \rightarrow \tau^+ \nu) \doteq 1$

 $\label{eq:eta} \bullet \ e^+e^- \rightarrow \ H^+H^- \rightarrow \ c \bar{s} s \bar{c}, \ c \bar{s} \tau^- \bar{\nu}, \ \tau^+ \nu \tau^- \bar{\nu}$

L3 observe a large excess in the 4-jets channel
 compatibility with ALEPH, DELPHI, OPAL is being investigated.

LEP combined search excludes (95%CL) $m_{\rm H^\pm} <$ 78.6 (78.8 exp.) GeV for any B(H⁺ $\rightarrow \tau^+ \nu$) H^{\pm} at Tevatron (no updates on LEP's results for neutrals)

• In the MSSM,
$$M_{H^{\pm}} = \sqrt{M_{h^0}^2 + M_W^2}$$

The branching ratio for the decay $t \to bH^+$ as a function of $\tan\beta$ for several $\tan\beta$ values of $M_{H^{\pm}}$ and for $m_t = 178$ GeV (left) and the $\tan\beta - M_{H^{\pm}}$ parameter space excluded by the CDF and D0 collaborations from the non-observation of these decays (right).

LHC search channels for MSSM Higgses

Typical discovery channels are:

- $h \to \gamma \gamma$, inclusive production and production in association with an isolated lepton in Wh^0 and $t\bar{t}h^0$ final states
- $h \to b\overline{b}$ in association with an isolated lepton and b-jets in Wh^0 and $t\overline{t}h^0$
- $A^0, H^0 \to \mu \mu$, inclusive and in $b \overline{b} H^0 / A^0$ final states
- $A^0, H^0 \to \tau \tau$ with $2\ell, \, \ell + \tau$ -jet and 2τ -jet final states
- $H^{\pm} \to \tau \nu$ in $gg \to tbH^{\pm}$ and in $q\overline{q}' \to H^{\pm}$
- $H^{\pm} \to tb$ in $gg \to tbH^{\pm}$

Note:

- They only include SM-particle to Higgs interactions
- This assumes no interaction between Higgs & sparticle sectors: i.e., SUSY mass scales all heavy (except $M_{\tilde{\chi}^0_1}$ and possibly $m_{\tilde{t}_1}$)

CMS after 100 fb^{-1} of luminosity (MaxMix)

ATLAS after 300 fb^{-1} of luminosity (MaxMix)

- Why do not reduce the SUSY mass spectrum ? To sub-TeV scales.
- (Preferred scenario for SUSY couplings unification)

Higgses
$$\rightarrow$$
 SUSY

• Clean channel: $A, H \to \chi_2^0 \chi_2^0 \to 4\ell^{\pm} + E_T^{\text{miss}} (\chi_2^0 \to \chi_1^0 \ell^+ \ell^-, \ \ell = e, \mu)$ via $Z^{(*)}$ or sleptons (F Moortgat et al., hep-ph/0112045 & hep-ph/0105081)

CMS after 100 fb⁻¹ assuming $M_1 = 90$ GeV, $M_2 = 180$ GeV, $\mu = 500$ GeV, $M_{\tilde{\ell}} = 250$ GeV, $M_{\tilde{q},\tilde{g}} = 1000$ GeV.

- Can supplement with heavier -inos: $A, H \rightarrow \tilde{\chi}_a^+ \tilde{\chi}_b^-, \tilde{\chi}_i^0 \tilde{\chi}_j^0 \rightarrow 4\ell^{\pm} + E_T^{\text{miss}}$ (a, b = 1, 2, i, j = 1, 2, 3, 4)(M Bisset, N Kersting, F Moortgat, S Moretti, in progress)
- Heavier -inos onset <u>heavy Higgs</u> decays

Number of $pp \to H^0, A^0 \to 4\ell N$ events, where $\ell = e^{\pm}$ or μ^{\pm} and N represents invisible final state particles, for $100 \, \text{fb}^{-1}$, with $\tan \beta = 10$ and $M_A = 500 \,\text{GeV}$. Also shown is the percentage from $H^0, A^0 \to \tilde{\chi}_2^0 \tilde{\chi}_2^0$: > 90% (red), 50% – 90% (yellow), 10% – 50% (light blue), < 10% (white). Optimized slepton masses (with stau inputs raised 100 GeV) are used, $m_t = 175 \,\text{GeV}, m_b = 4.25 \,\text{GeV}, m_{\tilde{q}} = 1 \,\text{TeV}, m_{\tilde{g}} = 800 \,\text{GeV}, A_{\tau} = A_{\ell} = 0$. The cross-hatch shaded areas are excluded by LEP.

Heavier -inos dominated: $M_2 = 200 \text{ GeV}, M_1 = 100 \text{ GeV}, \mu = -200 \text{ GeV}, m_{\tilde{\ell}_{soft}} = 150 \text{ GeV}, m_{\tilde{\tau}_{soft}} = 250 \text{ GeV}$

(M Bisset, M Guchait, S Moretti, Eur.Phys.J.C19:143-154,2001; M Bisset, F Moortgat, S Moretti, Eur.Phys.J.C30:419-434,2003)

 \rightarrow only 3 leptons, need to reconstruct additional top (t \rightarrow bjj)

Les Houches Workshop, May 2003

Filip Moortgat, University of Antwerpen

Discovery Reach

MSSM parameters:

```
\begin{split} M_2 &= 210 \text{ GeV}, \\ \mu &= 135 \text{ GeV}, \\ M_{\text{sleptons}} &= 110 \text{ GeV}, \\ M_{\text{squark, gluino}} &= 1\text{TeV} \end{split}
```

Les Houches Workshop, May 2003

Filip Moortgat, University of Antwerpen

$$SUSY \rightarrow Higgses$$

• Possible production & decay channels:

$$pp \to \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g} \to \chi_2^{\pm}, \chi_3^0, \chi_4^0 X$$
$$\to \chi_1^{\pm}, \chi_2^0, \chi_1^0 h^0, H^0, A^0, H^{\pm} X$$

$$pp \to \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g} \to \chi_1^{\pm}, \chi_2^0 X$$
$$\to \chi_1^0 H^{\pm}, h^0, H^0, A^0 X$$

$$pp \rightarrow \tilde{t}_2 \tilde{t}_2^*, \tilde{b}_2 \tilde{b}_2^* \text{ with } \tilde{t}_2(\tilde{b}_2) \rightarrow \tilde{t}_1(\tilde{b}_1)h^0, H^0, A^0 \text{ or } \tilde{b}_1(\tilde{t}_1)H^{\pm}$$

$$pp \to \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g} \to t/\bar{t}X \to H^{\pm}X$$

• Signatures:

 $h^0, H^0, A^0 \to b\bar{b}$ and $H^{\pm} \to \tau \nu \to \text{hadronic in a multi-jet environment} + E_T^{\text{miss}}$

CMS after 100 fb⁻¹ assuming $M_2 = 175$ GeV, $M_2 = 350$ GeV, $\mu = 150$ GeV, $M_{\tilde{\ell}} = 175$ GeV, $M_{\tilde{q},\tilde{g}} = 800$ GeV

Outlook

- A no-lose theorem exists for MSSM Higgs bosons: we are guarantuced to find at least one state at the LHC
- However, over a sizable region of the MSSM parameter space, this state (the lightest MSSM Higgs field) is degenerate with the SM field: we may not be able to distinguish a standard from a SUSY Higgs model at the LHC !
- These conclusions are however based on a decoupled MSSM, wherein SUSY objects are much heavier that the Higgs states (and SM matter)
- This is no longer true if the mass scale of SUSY is low ($\leq 1 \text{ TeV}$)
- If Higgs-sparticle interactions are allowed, a rich phenomenology emerges
- Under these conditions all MSSM Higgs bosons can *potentially* be observed (some rescaling of SM-like channels may be needed)
- Approach so far: optmise yield of clean signatures implies discovery contours not overlayable (i.e., different MSSMs) on usual plane $(M_A, \tan \beta)$
- Need to define <u>SUSY Higgs benchmarks</u> → figure (K Jacobs, S Moretti, P Osland et al., in progress)

SUSY benchmark points in m_A tan β plane

 \Rightarrow Require dedicated study to give suitable set of benchmark points

Snowmass points and slopes: SPS hep-ph/0202233

Chosen with SUSY space rather than Higgs space in mind.

9 points: 5+1 mSugra, 2 GSMB, 1 AMSB

Only 4 points feature in usual Higgs plane. 1a, 4 (mSUGRA) 7,8 GMSB.

Benchmarks from Carena et al. Eur. Phys. J. C 26 601 (2003) not designed to take light SUSY particle effects into account, except in stop loops (gluo-phobic Higgs scenario)