

Mitigation measures for extraction losses

M. Giovannozzi, C. Hernalsteens

- Dummy septum in SS15
- Extraction with electrostatic septum in SS31
- Faster kickers
- Outlook

Acknowledgements: G. Arduini, H. Bartosik, D. Bodart, R. Brown, G. Dumont, S. Gilardoni, V. Mertens, M. Newman, Y. Papaphilippou, S. Roesler.

Introduction

General criteria

Minimise the changes to be made to the machine
 To reduce cost

- To allow quick tests with beams
- In a second stage deeper revisions might be studied whenever these would bring a real added value.

 These solutions have been discussed and endorsed by PSRWG.

CERN PS MULTI TURN EXTRACTION Dummy septum in SS15: generalities

- Impact on losses studied by RP
- Allows concentrating losses in a well-shielded location (should this require reviewing the planned shielding increase on SEH16?)
- In principle, it provides a reduction acceptable for RP (factor of 10).
- Improvement of the radiation released outside the tunnel due to the corridor in front of the tunnel
- Linac3 radiation field to be revised
- New points considered here:
 - Re-location of hardware (DHZ15, gamma-jump quadrupole)
 - Trajectories of extracted beams in SS15: is it possible to find a position for the dummy septum?

03/10/2011

MG - MTE Workshop 2011

Original proposal by Brennan ³

Dummy septum in SS15: relocation **CERN PS MULTI** TURN EXTRACTION Current layout of yof hardware - I jump quadrupoles Q95

- Quadrupole of the triplet (SS99/7/15) should be relocated.
- Perfect symmetry already broken by second triplet due to SMH57.
- Criteria:
 - Currents of y-jump quadrupoles are sampled
 - For each sample beam envelope is computed ٠
 - Largest beam envelope is stored
 - Iterate for each possible new quadrupole location

Beam parameters used for the simulation

- Physical emittance at jump: ε_x=ε_y=4.03 μm*
- RMS momentum spread: op=3.5e-3
- Beam envelope is calculated as
 - N_{σt}=3, N_{σt}=2*
 - ε_x changed during gamma jump simulation according to 1/βγ
- Present layout provides $\Delta \gamma_t = 1.54$ with $\Delta Q < 0.02$

* As in S. Aumon, EPAC08

$$a_x = x \pm \sqrt{N_{\sigma t}^2 \beta_x \epsilon_x + N_{\sigma l}^2 \delta p^2 D_x^2}$$

Dummy septum in SS15: relocation of hardware - III

- From simulation results, retained SS:
 - 54, 59, 70, 85, 99

RACTION

CERN PS MULT

- SS99 seems the best candidate:
 - Enough space for γ-jump quadrupole
 - The triplet will be converted into a doublet
 - $\Delta \gamma_t$ =1.58, $\Delta Q \sim 0.025$
 - Aperture or tune excursion may be optimized

- Proposal (checked and OK by R. Brown and D. Bodart):
 - Install a quadrupole in SS99 during next winter TS
 - Connect quadrupole for special tests and assess performance
- NB: in current simulations the gradient keeps the same sign as in the current configuration. Removing this constraints might provide additional SS.

Dummy septum in SS15: relocation of hardware - IV

• DHZ15 has multiple functions:

- All beams:
 - correction of the closed orbit distortion at high energy. It could be moved by π or 2π away.
 - It is also used to correct the non-closure of the slow bump, but for this there are enough free parameters in the system to achieve the same result differently.
- MTE:
 - generation of the slow bump around SMH16. Slow bump have been re-computed without it.

Re-location of DH15 does not seem to be critical!

CERN PS MULTI O TURN Extraction	Dummy septum in SS15: relocation of hardware - V
0	L = 249 mm

	Straight section	Device installed	Used for
π	PS23	SEH23	East Hall extraction
2π	PS31	SEH31	СТ
π	PS39	Sext. and oct.	MTE
2π	PS47	Internal dump	All beams
π	PS55	Sext. and oct.	MTE
2π	PS63	Mostly empty but East H	all line just behind
π	PS71	KFA71	Fast extraction
2π	PS79	KFA79	Fast extraction
π	PS87	QND87 and QSE87	Tune
2π	PS95	WCM and Q doublet	Tune
[π]	PS02	Mostly empty, should che	eck the exact phase
π	PS03	Empty (WCM)	~530mm free space
[2π]	PS10	Empty, should check the	exact phase advance

MG - MTE Workshop 2011

Dummy septum in SS15: relocation of hardware - V

SS03 seems to be a very good candidate

Dummy septum in SS15: extraction conditions - I

Beams to be considered All fast extracted beams: • AD **OTOF OLHC** Trajectories with Slow bump (before extraction) Fast bump (last turn before extraction)

Dummy septum in SS15: extraction conditions - III

Considered: 1% error on bumpers and kickers. This was added to the envelope estimate
No particular optimisation performed, yet.
Kicker strength at maximum (but it could be

optimised)

Element	Needed	Maximum
KFA13	~ 80 KV	80 KV
KFA21	~ 80 KV	80 KV
BFA09	0.1 mrad	0.5 mrad

03/10/2011

- Two slow bumps (SS16, SS31)
- One fast bump (pedestal and staircase, between SS21 and SS9)
- QKE (in SS5/25 and SS25/73)
- Two septa (SMH16, SEH31)
- kickers Two TT₂ in to) correct the turn-by-turn trajectory differences

CERN PS MULTI

TURN

03/10/2011

Extraction with SEH31: delicate points - II

• QKE (in SS5 and 25)

Induces strong distortions of PS optics

Extraction with SEH31: recap of MTE

- One slow bump (SS16)
- One fast bump (pedestal, between SS9 and SS13)
- Fifth turn extracted with KFA71 and KFA4
- No QKE
- One septum (SMH16)
- Two kickers in TT2 to correct the turn-by-turn trajectory clifferences

03/10/2011

Extraction with SEH31: proposed solution - I

- Phase of KFA13 is not suitable for a closed bump between 21 and 13.
- Kicker in 9 will always work at high strength, with KFA13 providing a small correction.
- QKEs are needed to "help" the kicker in 9 and provide extra kick to the beam deflected by SEH31.
- All this forces to go towards a nearly "carbon copy" of the CT optics.
- Guidelines for new solution:
 - Minimise the strength of QKEs
 - Close the combined SS16+SS31 slow bump
 - Close the fast bump

Extraction with SEH31: proposed solution - II

- Proposed closed (for core) combined SS16+SS31 slow bump
 - DHZ15 could be used to tune the bump
 - The position in SS25 could be optimised to increase the kick from QKE25
 0.06 SBUMP MAD-X 5.00.08

Magnet	Magne	Current		
	t type	[A]		
PE.BSP12	D205	431.2		
PE.BSP14	D205	139.9		
PR.DLH15	D205	0		
PE.BSP18	D205	86.6		
PE.BSP20	D205	279.7		
PE.BSP22	D205	313.9		
PE.BLG27	D205	228.2		
PE.BLG35	D210	228.2		
03/10/2011				

Magnet	Magnet type	Kick [mrad]	
PE.KFA13	MTE kicker	0.06	
PE.KFA21	MTE kicker	-0.54	
PE.BFA09p	CT pedestal	0.47	
PE.BFA21p	CT pedestal	0	
PE.BFA09s	CT staircase	0	
PE.BFA21s	CT staircase	0	
02/40/20	44	3.7	C

Extraction with SEH31: proposed solution - V

Phase space portraits at SS16. SMH16 and SEH31 are off

X [mm]

CERN PS MULT

KTRACTION

 The dots in the oval represent the image of initial condition in the SEH31 tracked from SEH31 to SMH16.

- The blue dots represent the image of islands in the SEH31 receiving the deflection.
- The SEH31 kick is a bit weak. The QKE strength should be increased (aperture in SS9 should be checked).

•A similar behaviour might occur for CT.

Faster kickers: assumptions

- Continuous beam.
- Rise time (τ) of the kickers is assumed 10%-90%
- Transverse beam distribution is a pure Gaussian
- Typical beamlet width is about 10 mm, corresponding to
- ±3 sigma.
 Septum width is 3 mm, corresponding to about 1.8 sigma.
- Nominal parameters:
 - τ = 350 ns -> 4 turns
 - τ = 80 ns -> fifth turn 03/10/2011

Faster kickers: losses - l

2

Septum thickness (σ)

3

- The relative losses are computed adding the contribution from the first turn and the fifth one.
- The magnetic septum blade is assumed to cut the beamlet at either 2.5 or 3 sigma.
- Imperfections 3.0 **91**5 <u>jon</u> included in Septum cut at 3 σ 2.5 computations Septum cut at 2.5 σ 2.0 Parameters' Relativelosses (%) range mimic 1.5 effect i O **Typical** imperfections. septum 1.0 width 0.5

0.0

03/10/2011

Faster kickers: losses - II

- The relative losses are essentially linear in the rise time.
- The different septum thicknesses represent the effect of imperfections (non correct angle of

extracted beam with respect to septum).

 The different cuts stands for different options due to extraction settings (beamlets separation) and kicker strength.

Faster kickers: losses - III

From the computations one obtains

• In all the cases shown before, $\alpha \sim 0.814$:

- A 100% variation in rise time generates a 81% variation in losses.
- This should be compared against
 - The cost to achieve the reduction in kickers' rise time (see Laurent's presentation).
 - The reduction in cool down time before any intervention can take place in the septum region.

Faster kickers: cool down - I

 Acceptable cool down time: 14 days (from P. Collier, see CERN-ATS-2011-007).

Simulations performed assuming:

- 2% losses as for a well-tuned MTE extraction
- Losses on septum of 6.4×10^{10} p/s (this depends on intensity and supercycle composition)
- Assuming 10 mSv/h as reasonable level for starting an intervention, then the cool down
 - 160 d run -> ~ 40 d
 - Halving the losses -> ~ 30 d
- There is no hope that an optimisation of the intervention might cut the cool down time by a factor of two!

Faster kickers: cool down - II

Some comments:

- Material analysis aimed at reducing the activation of the septum showed that the current situation cannot be further optimised.
- Some reduction of the intervention time could be obtained by designing a SMH16 with quick installation concept. This, however, would not change the previous conclusions.

CERN PS MULTI O TURN EXTRACTION

Outlook - I

- Dummy septum in SS15:
 - Extraction trajectories of FE beams require optimisation
 - Islands phase and trajectories need also tuning
 - Re-location of equipment seems feasible (pre-warning for γ-jump quadrupole)
 - Analysis for CT to be added
 - Tests with FE beams required to assess the feasibility
- Extraction with electrostatic septum in SS31
 - CT-like optics is imposed -> maybe more than SEH31 should be re-used...
 - Aperture to be studied in details
 - Fifth turn extraction to be studied
 - Closure of fast bump to be improved
 - Tests (trajectories) could be launched before the end of the run
- Faster kickers
 - Losses reduction is slightly less than a factor of two
 - The reduction in cool down time is not enough!

03/10/2011

MG - MTE Workshop 2011

Outlook - II

- Time-line for decisions (go/no go for dummy septum) to be agreed (see ABT presentations).
- The fluctuations will in any case make losses worse than estimates, no matter what the extraction scheme will be...