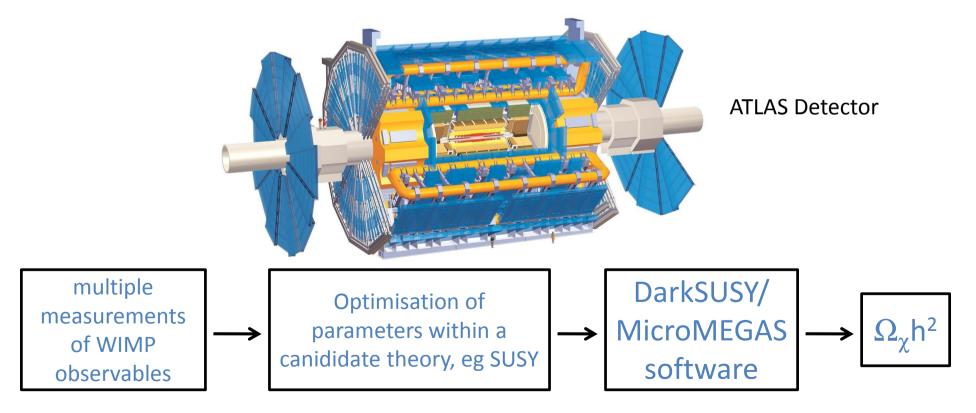

Dark matter and the LHC

David Milstead Stockholms Universitet


Dark matter candidates

 \Rightarrow Mass 100 - 1000 GeV for correct relic density.

The LHC – an essential component of the DM story

- If DM is made of WIMPs, they will be produced at LHC in abundance
- Indirect DM detection using principally missing E_T signatures
- Unique role of LHC: multiple measurements allow understanding of underlying theory, determination of identity of DM

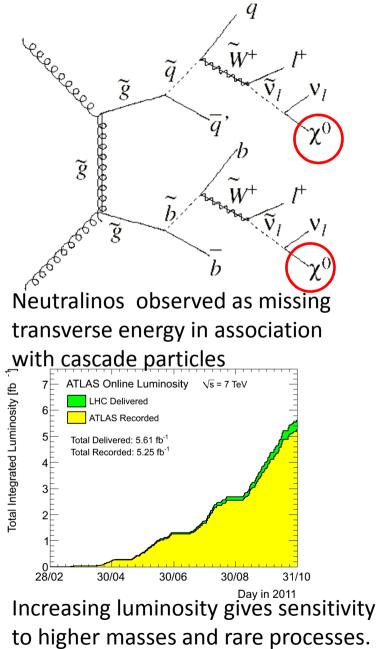
Standard SUSY Slide

- Improves the fine tuning problem, approximate gauge unification...
- Provides a dark matter candidate

Lightest neutralino: $\tilde{\chi}^0 = a_1 \tilde{\gamma} + a_2 \tilde{Z}^0 + a_3 \tilde{H}_1^0 + a_4 \tilde{H}_2^0$ gaugino Higgsino

Constrained models:

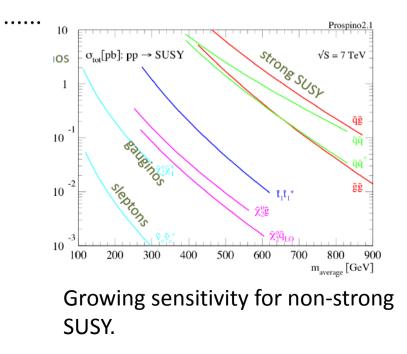
At GUT scale: Eg CMSSM

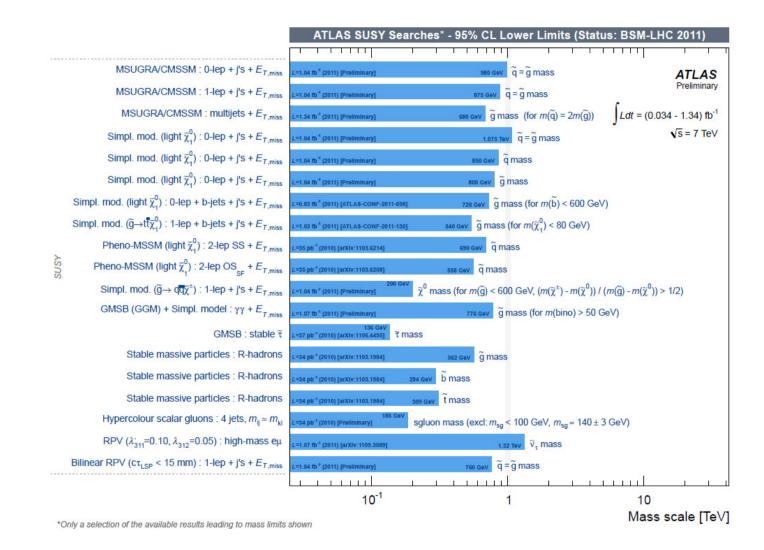

Gauginos mass= $m_{1/2}$; Scalar mass $m_{\tilde{q}}^2 = m_0^2$ tan β =ratio of MSSM Higgs VEVs

 $A_0 \equiv$ trilinear couplings μ =Higgsino mass parameter

Simplified models:

Decouple all particles not relevant for signature, simplified decay chains.


Search strategies for SUSY at the LHC


Jet multiplicity + kinematics Lepton multiplicity + kinematics + global event quantities

$$E_T^{miss} = -\left|\sum_i \vec{E}_T\right| \quad m_{eff} = E_T^{miss} + \sum_i p_T^{jet}$$
$$H_T = \sum_i p_T^{jet}$$

 α_T exploits angular relation between jets....

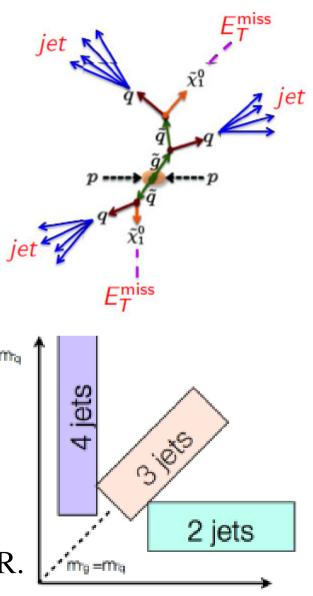
A body of searches already performed

Albeit with model dependence - limits starting to push SUSY up to and beyond 1 TeV

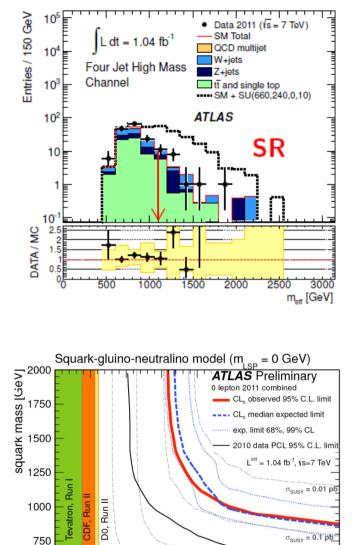
O-lepton searches

Different signatures correspond to different SUSY spectra.

2-4 jet searches


Larger E_T^{miss} , lower jet multiplicity

$$m_{eff} = E_T^{miss} + H_T$$
 $H_T = \sum_{jets} p_T$

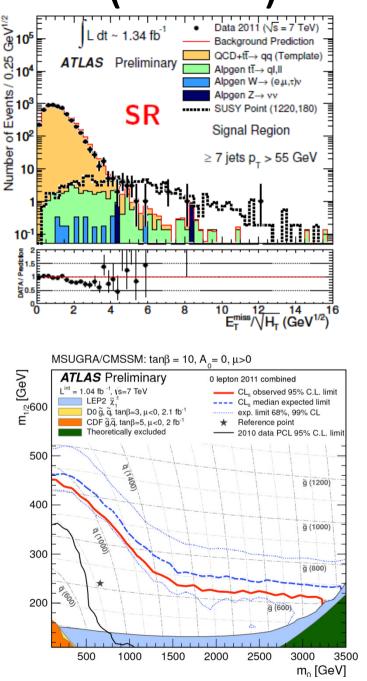

6-8 jet searches

Lower E_T^{miss} , larger jet multiplicity E_T^{miss} Invariant under jet multiplicities

Suppress QCD with topological selections. Five signal regions and 5 control regions per SR.

O-lepton results (~1fb⁻¹)

750


1000

 $\sigma_{SUSY} = 10 \text{ pb}$

LEP2 q

1250 1500 1750 2000

aluino mass [GeV]

Interpretation

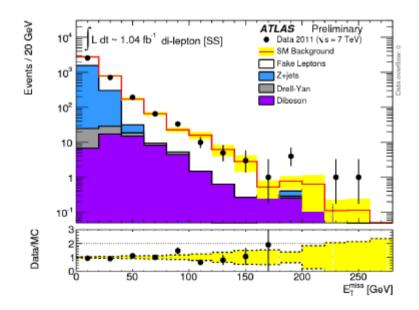
500

250

0

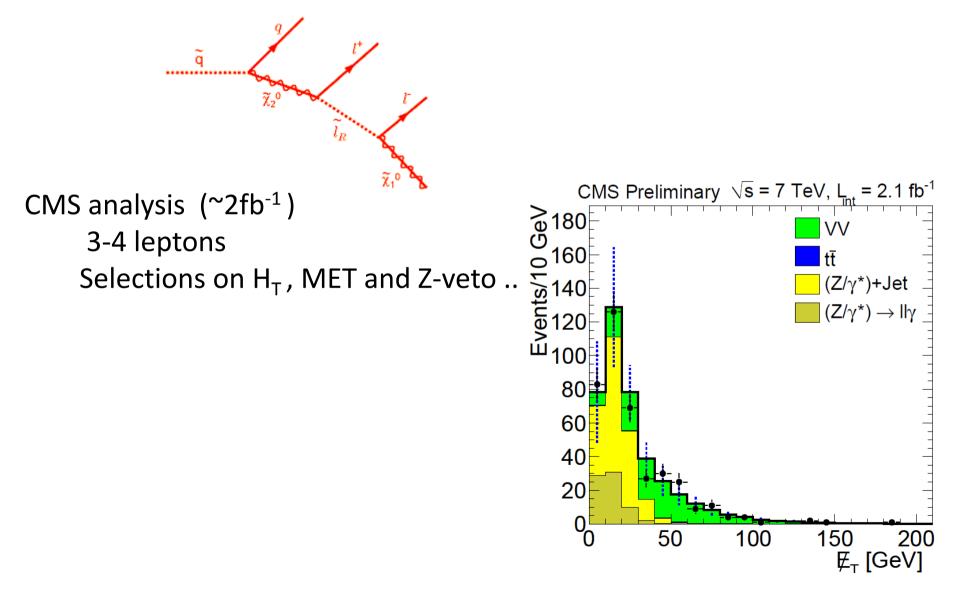
0

250


500

Observed yields

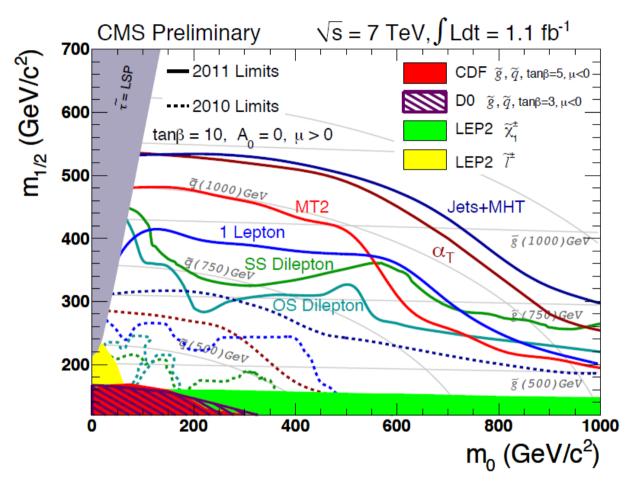
Dilepton search (~1fb⁻¹)


- 3 different analyses: OS, SS, OSSF
- Signal region with large MET but no jet requirement
- Data-driven fake estimation
- No excess

	Background	Obs.	95% C.L.
OS-SR1	$15.5 \pm 1.2 \pm 4.4$	13	9.5 fb
OS-SR2	$13.0 \pm 1.8 \pm 4.1$	17	15.2 fb
OS-SR3	$5.7 \pm 1.1 \pm 3.5$	2	5.0 fb
SS-SR1	$32.6 \pm 4.4 \pm 4.4$	25	10.2 fb
SS-SR2	$24.9 \pm 4.1 \pm 6.6$	28	20.3 fb

Multilepton searches

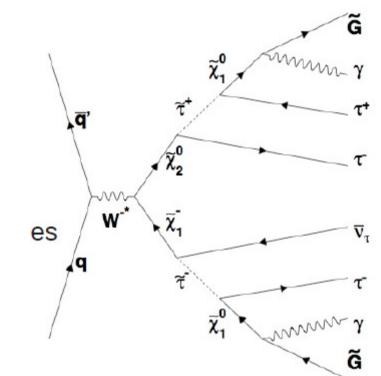
Generic study sensitive to extended decay chains and specific models.


Results for different signal selections

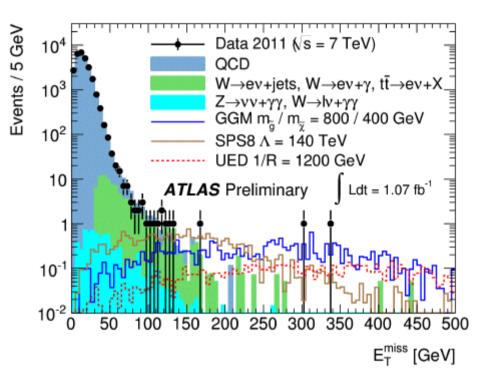
Selection		$N(\tau)=0$	$N(\tau)=1$		$N(\tau)=2$	
	obs	expected SM	obs	expected SM	obs	expected SM
≥FOUR Lepton Results						
MET>50, H_T >200,noZ	0	0.003 ± 0.002	0	0.01 ± 0.05	0	0.30 ± 0.22
MET $>50, H_T > 200, Z$	0	0.06 ± 0.04	0	0.13 ± 0.10	0	0.15 ± 0.23
MET>50,H _T <200,noZ	1	0.014 ± 0.005	0	0.22 ± 0.10	0	0.59 ± 0.25
MET>50, H_T <200, Z	0	0.43 ± 0.15	2	0.91 ± 0.28	0	0.34 ± 0.15
MET<50, H_T >200,noZ	0	0.0013 ± 0.0008	0	0.01 ± 0.05	0	0.18 ± 0.07
MET<50, H_T >200, Z	1	0.28 ± 0.11	0	0.13 ± 0.10	0	0.52 ± 0.19
MET<50,H _T <200,noZ	0	0.08 ± 0.03	4	0.73 ± 0.20	6	6.9 ± 3.8
MET<50, H_T <200, Z	11	9.5 ± 3.8	14	5.7 ± 1.4	39	21 ± 11
THREE Lepton Results						
MET>50,H _T >200,no-OSSF	2	0.87 ± 0.33	21	14.3 ± 4.8	12	10.4 ± 2.2
MET>50,H _T <200,no-OSSF	4	3.7 ± 1.2	88	68 ± 17	76	100 ± 17
MET<50, H_T >200,no-OSSF	1	0.50 ± 0.33	12	7.7 ± 2.3	22	24.7 ± 4.0
MET<50,H _T <200,no-OSSF		5.0 ± 1.7	245	208 ± 39	976	1157 ± 323
MET>50, H_T >200,noZ	5	1.9 ± 0.5	7	10.8 ± 3.3	-	-
MET>50, H_T >200, Z	8	8.1 ± 2.7	10	11.2 ± 2.5	-	-
MET>50,H _T <200,noZ	19	11.6 ± 3.2	64	52 ± 13	-	-
MET<50, H_T >200,noZ	5	2.0 ± 0.7	24	26.6 ± 3.3	-	-
MET>50, H_T <200, Z	58	57 ± 21	47	44.1 ± 7.0	-	-
MET<50, H_T >200, Z	6	8.2 ± 2.0	90	119 ± 14	-	-
MET<50,H _T <200,noZ	86	82 ± 21	2566	1965 ± 438	-	-
MET $<$ 50, H_T $<$ 200, Z	335	359 ± 89	9720	7740 ± 1698	-	-
Totals 4L	13.0	10.4 ± 3.8	20.0	7.8 ± 1.5	45	30 ± 12
Totals 3L	536	539 ± 94	12894	10267 ± 1754	1086	1291 ± 324

No smoking gun but interesting observations to follow up with higher lumi

-


Compilation of exclusion limits

Hadronic searches give the best limits within this constrained model. SUSY may not be constrained. All searches are complementary.


SUSY with photons

- GMSB scenario
- Gravitino (LSP)
- Possibility of photon + MET signature

Results

- Diphoton + MET
 - NLSP decay products
- Two em clusters
- MET>125 GeV

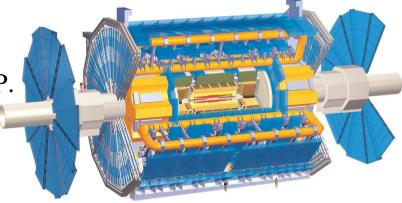
$E_{\rm T}^{\rm miss}$ range	Data	Predicted background events				Expected signal events			
[GeV]	events	Total	QCD	$W/t\bar{t}(\rightarrow e\nu) + X$	Irreducible	GGM	SPS8	UED	
0 - 20	20881	-	-	-	-	0.20 ± 0.05	0.22 ± 0.04	0.02 ± 0.01	
20 - 50	6304	5968 ± 29	5951 ± 28	13.3 ± 8.1	3.6 ± 0.3	0.45 ± 0.08	1.5 ± 0.1	0.11 ± 0.01	
50 - 75	86	87.1 ± 3.3	60.9 ± 2.8	25.2 ± 1.7	1.0 ± 0.2	0.48 ± 0.08	2.2 ± 0.1	0.14 ± 0.01	
75 - 100	11	14.7 ± 1.2	6.7 ± 0.9	7.4 ± 0.8	0.52 ± 0.10	0.8 ± 0.1	2.1 ± 0.1	0.15 ± 0.01	
100 - 125	6	4.9 ± 0.7	1.6 ± 0.4	3.0 ± 0.5	0.32 ± 0.08	1.2 ± 0.1	2.5 ± 0.1	0.29 ± 0.02	
> 125	5	4.1 ± 0.6	0.8 ± 0.3	3.1 ± 0.5	0.23 ± 0.05	17.2 ± 0.5	13.0 ± 0.3	9.67 ± 0.11	
		•							

Could the WIMP not manifest itself as MET ?

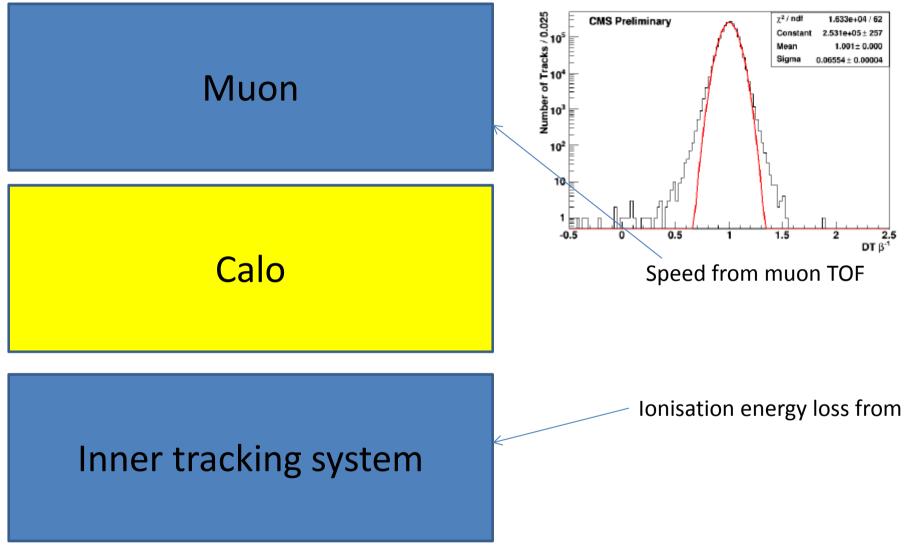
Eg ATLAS size ~13m radius

 \Rightarrow A particle with a lifetime ~10⁻⁷m could traverse the detector and then decay into a WIMP.

Split-SUSY

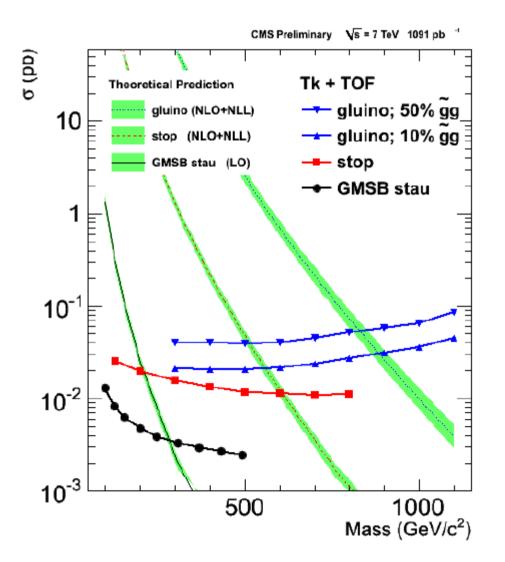

Heavy scalars (>> TeV), light gauginos.

Long-lived gluino decaying via virtual squark


lines into a neutralino.

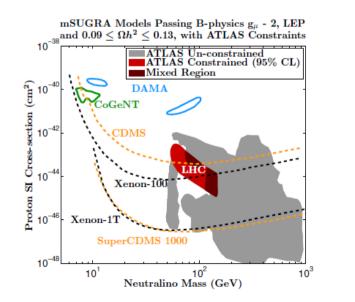
Also, gravitino dark matter from NLSP meta-stable stau.

$$c\tau = 16\pi \frac{F^2}{M_{\scriptscriptstyle\rm NLSP}^5} \sim \left(\frac{\sqrt{F}}{10^7 \; {\rm GeV}}\right)^4 \left(\frac{100 \; {\rm GeV}}{M_{\scriptscriptstyle\rm NLSP}}\right)^5 10 \; {\rm km}. \label{eq:tau_expansion}$$



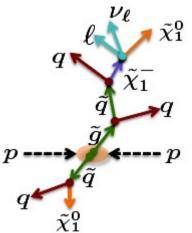
Hunting for SMPs

Exploit speed-dependent observables


Results of stable massive interacting particle search

Gluino ~890 GeV Stop ~830 GeV Stau ~293 GeV (GMSB)

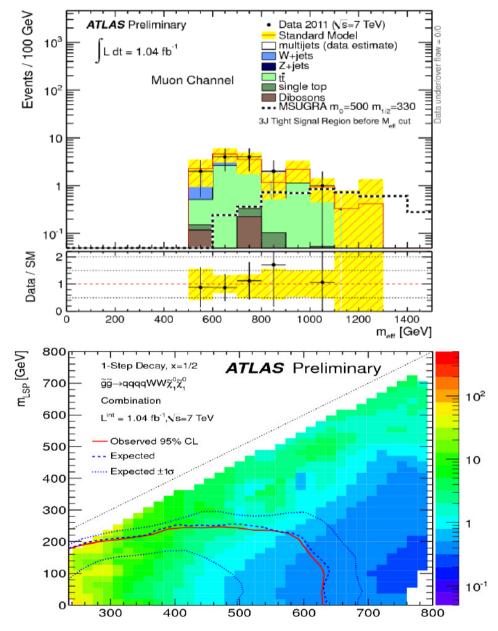
Summary


- The LHC is a WIMP factory (if they exist)
 - measure interactions and properties
- Wide range of signature-based searches performed.
- No smoking gun (nor a series of non-discoveries which came and went and caused excitement)
- Aim to discover WIMPs or gradually falsify the WIMP hypothesis as part of a program of direct and indirect community searches.

ArXiv:1103.5061

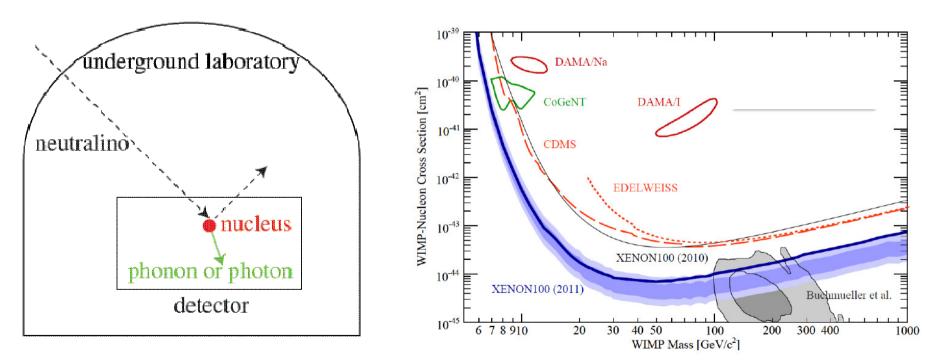
Jets + 1 lepton + MET

- Sensitive to lepton appearing in cascade
- "Matrix method" for QCD background
 - "loose" and "tight" electrons
 - Data for "loose" electron used to estim perforance for "tight" electron

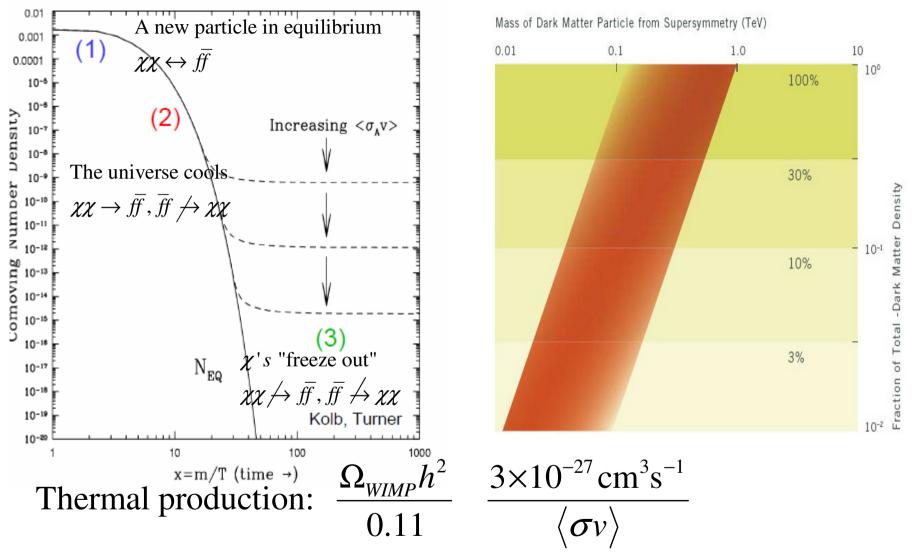

Results for 1-lepton search

Fully/semi data-driven backgrounds.

Background from combined likelihood fit


No excess

Interpretation within simplified model including intermediate chargino decay.


Direct Detection Experiments

- Direct detection of interaction between DM particle & detector
- No unambiguous observation yet
 - Limits on cross section as a function of mass
- Detection would confirm presence of DM albeit with little clue as to its identity

• Also indirect measurements from eg annihilation $\chi\chi \to \gamma\gamma, \gamma Z$

The WIMP miracle ?

Typical gauge couplings and weak scale interaction \Rightarrow Mass 100 - 1000 GeV for correct relic density.