Top Physics Results from the ATLAS Experiment

Marina Cobal University of Udine / INFN Udine On behalf of the ATLAS Collaboration

Amsterdam Particle Physics Symposium Amsterdam 30 Nov- 2 Dec 2011

Cross Sections

$\sigma_{t\bar{t}}$ single lepton (no b-tagging)

- Analysis with 0.7 fb⁻¹
- Kinematical differences between tt and W+jets
- likelihood discriminant
 - lepton η , leading jet p_{T} , aplanarity, transverse momentum of all jets but the two leading ones
- Fit in 6 channels:
 - 3, 4 and >= 5 jets; e, μ
- Main systematics:
 - signal modelling (choice of signal MC generator, ISR/FSR), jet energy scale (JES)

ATLAS-CONF-2011-121

σ_{tt} = 179.0 ± 3.9(stat) ± 9.0 (syst) ± 6.6 (lumi) pb

$\sigma_{t\bar{t}}$ single lepton (b-tagging)

- Multivariate method on 35 pb-1 \rightarrow split in 6 channels (=3,=4, \geq 5 jets; e/µ)
- Input variables: lepton η, exp(-8*aplanarity), exp(3*H_{T, 3p}), b-tag weight
- Profile likelihood fit extracts 16 parameters including $\sigma_{t\bar{t}}$
- Main systematics:
 - W+jets HF content (7%)
 - Tagger calibration (7%)

ATLAS-CONF-2011-035

 $H_{T,3p} = \sum_{i=3}^{N_{\text{njets}}} |p_{T,i}^2| / \sum_{i=1}^{N_{\text{objects}}} |p_{z,i}|$

σ_{tt} dilepton

Data corresponding to **0.70 fb**⁻¹

ee

μμ

eμ

0

- Two counting analysis with/without the request of a b-tagged jet
- Main backgrounds estimated from data: •

ATLAS-CONF-2011-100

$\sigma_{t\bar{t}}$ combination

Combined dilepton and single lepton channels

Inclusive cross section: μ+τ

- <u>Motivation</u>: decays like t→bH⁺ can enhance BR of final states involving τ-leptons
- Analysis on 1.1 fb⁻¹, with one μ and one hadronically decaying τ
 - event selection: 1 μ , 1 τ -jet (with one track τ_1 and with three tracks τ_3) and two other jets, one of them passing b-tagging
- Boosted decision trees (BDT) used to identify τ's and reject electrons and jets
- Signal fractions from a fit on BDT_i
 - backgrounds templates using control samples in data
- Main systematics:
 - τ-identification,
 - ISR/FSR modelling
 - b-tagging

 $\sigma_{tt} = 142 \pm 21(stat)^{+20}(syst) \pm 6$ (lumi) pb

Jet multiplicity in $t\bar{t}$ events

- <u>Motivation</u>: jet multiplicity measurement gives the **possibility** to constrain ISR at m_{top} energy
- Analysis based on o.70 fb⁻¹ in l+jets channel
- QCD and W+jets backgrounds estimated from data
- Jet multiplicity distribution after background subtraction compared to different MC predictions:
 - ISR varied within the uncertainty

- Main uncertainties:
 - at low jet multiplicity (4 jets): QCD and W+jets backgrounds
 - at high jet multiplicity: JES

8

- <u>Motivation</u>: knowledge of the tγ vertex
- 1.04 fb⁻¹ of data in l+jets channel
- Single lepton selection, + presence of **one photon**, $p_T > 15$ GeV and $|\eta| < 2.5$, not close to a jet:
- Backgrounds:
 - from control regions in data: tt with fakes, W+jets + γ, QCD + γ
 - from MC: diboson, single top, Z+jets + γ /electron fake
- Signal fraction extracted from a fit on photon tracking isolation:
 - templates for signal and backgrounds from data
- Main systematics: γ ID, γ purity, JES, b-tagging, ISR/FSR
 - higher statistics will help in reducing γ contribution

σ_{tty} = 2.0 ± 0.5(stat) +0.7(syst) ± 0.08 (lumi) pb

NEW

Properties

10

Top quark mass

- <u>Motivation</u>: large contribution to eweak radiative corrections from m_{top}
 - constrain Higgs boson mass from precision measurements
- Analysis performed with o.70 fb⁻¹ in I+jets channel,
 - asking the presence of one b-jet
- 3-jet from hadronic top: combination with higher total $\ensuremath{p_{\mathsf{T}}}$
- Technique: m_{top} and JES determined simultaneously
 - W mass and width used as constraints
- m_{top}^{reco} in data have been compared to signal + backgrounds templates with ≠ JES and m_{top}
 - $-\ m_{top}$ and JES from a likelihood fit

- Main systematics:
 - ISR/FSR
 - signal modelling
 - JES for light jets and b-jets

ATLAS-CONF-2011-120

m_{top} = 175.9 ± 0.9(stat) ± 2.7(syst) GeV

Charge asymmetry I

Charge asymmetry only in asymmetric initial states

 main contribution: quark-antiquark annihilation

- Valence quarks more boosted than sea antiquarks
 - top more boosted than antitops
 - broader rapidity
- Sensible observables to the asymmetry:

 $A_{c} = \frac{N(\Delta \mid Y \mid > 0) - N(\Delta \mid Y \mid < 0)}{N(\Delta \mid Y \mid > 0) + N(\Delta \mid Y \mid < 0)}$

where $\Delta \mid Y \mid = \mid Y_t \mid - \mid Y_{\overline{t}} \mid$

In SM asymmetry only at NLO: A~1%

Charge asymmetry II

- Data: 0.70 fb⁻¹ in l+jets channel
- Standard I+jets selection, b-tagging
- W+jets and QCD backgrounds from data, other backgrounds from MC
- Event kinematics reconstructed with a kinematic likelihood fitter
 - input: p_T , η , Φ of decay products
 - constraints from m_t , m_W , Γ_t and Γ_W
 - b-tagging info taken into account
- Bayesian unfolding used to correct for acceptance and detector effects
- Main systematics:
 - signal modelling and JER

ATLAS-CONF-2011-106

 $A_{c} = -0.024 \pm 0.016(stat) \pm 0.023(syst)$

tt + anomalous E_T^{miss}

- Search for anomalous E_T^{miss} in ttbar (lepton+jets) events
 - benchmark: TT pair, $T \rightarrow tA_o$
 - Ao dark matter candidate
 - Enhanced cross-section due to spin states
 - Signal region:
 - ET^{miss} >100 GeV, m_T>150 GeV; dilepton veto: p_T > 15 GeV, tracks

W helicity

- V-A coupling predicts:
 - $F_o \approx 0.7$ (long. polarization)
 - $F_R \approx o$ (RH polarization)
 - $F_L \approx 0.3$ (LH polarization)
- Wtb structure probed → set limits on new physics
- Use e+jets and μ+jets channels
 - Can extract directly from cos θ* or unfold to parton level and calculate asymmetry

	Single Lepton	Single+ Dilepton
F_{L}	0.57 ± 0.07(stat) ± 0.09(sys)	0.25 ±0.08
F_0	0.35 ± 0.04(stat) ± 0.04(sys)	0.75 ±0.08
F_R	0.09± 0.04(stat) ± 0.08(sys)	o (imposed)

W helicity

- V-A coupling predicts:
 - F_o ≈ 0.7 (long. polarization)
 - F_R ≈ o (RH polarization)
 - $F_L \approx 0.3$ (LH polarization)
- Wtb structure probed → set limits on new physics
- Use e+jets and μ+jets channels
 - Can extract directly from cos θ* or unfold to parton level and calculate asymmetry

	Single Lepton	Single+ Dilepton
F_L	0.57 ± 0.07(stat) ± 0.09(sys)	0.25 ±0.08
F ₀	0.35 ± 0.04(stat) ± 0.04(sys)	0.75 ±0.08
F_R	0.09± 0.04(stat) ± 0.08(sys)	o (imposed)

Spin correlations I

- <u>Motivation</u>: test of SM predictions, BSM scenario predicts different correlations
 - complementary to Tevatron measurements: ≠ energy and ≠ dominant production mechanism
- Top and antitop decay hadronizing:
 - polarization is not lost
 - spin correlation from angular distributions of decay products
- SM prediction compared with non correlation hypothesis

Spin correlations II

- Dilepton channel, using 0.70 fb⁻¹
- $A = \frac{N_{like} N_{unlike}}{N_{like} + N_{unlike}} = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) N(\uparrow\downarrow) N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$
- <u>Observable</u>: **ΔΦ(I⁺,I⁻) in the lab frame**₂
 - no need to reconstruct event kinematics
- no b-tagging
- Main backgrounds : DY+jets and fake leptons
- ΔΦ(l⁺,l⁻) distribution in data is fitted with SM and no-correlation predictions
- Correlation coefficient (ASM=0.32):

A= = 0.34^{+0.15}-0.11

- Main systematics:
 - MC available statistics
 - signal modelling (MC generator and ISR/FSR)

Top quark charge

180 Events

160

ATLAS

Preliminary

 $L dt = 0.70 \text{ fb}^{-1}$

- Motivation: exclude an exotic top quark with a charge -4/3
- L+jets analysis with 0.70 fb⁻¹
- Crucial points for the analysis:
 - pair correctly W-boson and b-jet
 - measure W boson and b-jet charge
 - W boson charge from the lepton
- Two techniques:
 - W-b pairing from m(l,b-jets), b-jet charge = sum of associated tracks charges
 - W-b pairing using a kinematic fitter, select events with a soft μ inside the bjet of the leptonic leg: $\mathbf{Q}_{b} = \mathbf{Q}_{u}$
- Main systematics: ISR/FSR

μ**+jets**

• Data Exotic

Single top

W+jets (DD)

∃tŦ

4]

NEW

FCNC in decay

- Study top pair events. One of the top decays according to the SM
- Look for t→Zq vertex (q =u,c): leptonic W/Z decays to suppress QCD background
- Cut & Count:
 - 3 leptons (> 25 GeV, > 20 GeV, > 15 GeV), two same flavor and OS
 - 2 jets (>30 GeV, >20 GeV), ET^{miss}>20 GeV
- Main backgrounds:
 - WW, ZW with 3 real isolated leptons: from MC
 - Z+jets, tt (l+jets, dilepton), single top, W+jets and QCD with 1, 2 or 3 fake leptons: DD techniques
- Main systematics: WW, ZW modelling

Observed BR(t→qZ) < 1.1 % @ 95% CL

FCNC in production

- look for gq→t vertex
 - anomalous single top production
- Single lepton Events
 - exactly 1 b-tagged jet
 - exactly 1 lepton (e/ μ)
- Neural Network with 13 input variablesbinned likelihood ratio
- No excess observed: limit on σ_{qq}*BR(t→Wb)
- Systematics: ISR, JES, HF content in W+jets

Process	SM	2HDM	SUSY
$u + g \rightarrow t$	3.7* 10 ⁻¹⁴	10-4	8* 10⁻⁵
$c + g \rightarrow t$	4.6* 10 ⁻¹²	10-4	8* 10 ⁻⁵

Observed $\sigma_{qg} \rightarrow t*BR(t \rightarrow Wb) < 17.3 \text{ pb}$ Expected $\sigma_{qg} \rightarrow t*BR(t \rightarrow Wb) < 17.4^{-5.4}_{+8.2} \text{ pb}$

New Physics (?)

Resonances I

- <u>Motivation</u>: new resonances that decay predominantly to top quark pair predicted by some BSM models
- Dilepton analysis with **1.04 fb**⁻¹ of data
- Goal: search for excess in the H_T+E_T^{miss} spectrum
- Signal: KK-gluon in Randall-Sundrum model
- Event selection: no b-tagging request
- Backgrounds:
 - DY+jets and fakes from data
 - SM tt, t, dibosons from MC
- Data are compatible with SM background only hypothesis
- Main systamatics:
 - JES and tt modelling

ATLAS-CONF-2011-123

M_{kk} > 0.84 TeV @ 95% CL

Resonances II

Conclusions

- For most of the studies, 0.7 fb-1 of data analysed
- All results consistent with SM expectation
- Very competitive measurements:
 - $\sigma_{\rm tt}$ measured in different channels, using 2011 data
 - up to 7% precision reached
 - measurement of jet multiplicity to constrain ISR
 - <u>NEW result</u>: top-antitop + photon cross section
 - measurements of the main top properties:
 - <u>NEW result</u>: UPDATE on FCNC measurement
 - searches for new physics in top events: constraints on the mass of new particles
- Most of them already limited by systematics
 - work ongoing to decrease the various contributions
- Still a lot of 2011 data to be analyzed

In Top Veritas?

Search for high $m_{t\bar{t}}$

- In many new physics models top plays a special role
 - Narrow resonance: leptophobic topcolor Z' as benchmark model
 - Wide resonance: a Kaluza-Klein gluon g_{KK}, which appears in Randall-Sundrum models
- $m_{t\bar{t}}$ from 3 or 4 jets, e/ μ , and ν
 - ΔR_{min} variant (4 highest p_T jets considered, jet removed if too far from other objects and has too high mass)
- Normalization uncertainties
 - W (35%), diboson (5%), QCD in e (30%) and μ (50%) channels
- Shape uncertainties
 - b-tag (11%), JES (9%), ISR/FSR(7%)

	Electron channel	Muon channel
tī	723.8	987.6
Single top	35.7	50.3
W+jets	92.7	172.3
Z+jets	5.9	8.0
Diboson	1.6	2.3
Total MC Background	859.7	1220.5
QCD Background	34.8	104.8
Total Expected	894.5	1325.3
Data observed	935	1396
Z', m = 500 GeV	15.4	21.4
$g_{KK}, m = 700 \text{ GeV}$	68.3	92.9

Other new physics searches

- Search for <u>resonances in m(top-antitop) spectrum</u> performed in I+jets ch. with 200 pb⁻¹: limits for a Z' boson:
 - 95% C.L. limits on σxBR(Z' tt): 38 at m_{Z'}=500 GeV and 3.2 at m_{Z'}=1300 GeV
- Other new physics searches involving top quark reported in Nenad Vranjes talk:
 - tt + E_T^{miss} searches:
 - data are found to be consistent with SM expectations. Limits at 95% CL put on new particles masses and cross sections
 - same sign top search:
 - no observation of same sign tops, upper limits on flavourchanging Z' boson cross-section

$m_{top}\, from\, \sigma_{t\bar{t}}$

- Use most accurate measurement
 - Multivariate analysis with b-tag
- Exploit dependence of σ_{tt} from m_{top}
 - Assume $m_{top}^{MC} = m_{top}^{pole}$
- m_{top} from combined uncorrelated th. and exp. likelihood: the max determines the extracted m_{top}^{pole}
 - fit performed for 3 theoretical calculations
- 13% uncertainty on σ_{tt} ~ 5 GeV uncertainty on m_{top}
- Default analysis → NNLO Langenfeld
 - (Phys. Rev. D80 (2009) 054009)

 $m_{top} = 166.4^{+7.8}$ GeV

