

EWSB with Strong Coupling at the LHC

Nicolas Berger (LAPP Annecy)

Contents

- → Strong Vector boson scattering at LHC
 - Motivation
 - Signatures
 - ATLAS & CMS analyses
- → Searches for technicolor signals at LHC
 - Model overview
 - ATLAS search in I⁺I⁻ channel
 - CMS search in WZ channel

EWSB at the LHC

The good news: we already know 3 components of the EWSB sector: W_{\perp}^{\pm} , Z_{\perp} , Goldstone bosons of broken SU(2)xU(1) generators

 \rightarrow In Higgs mechanism, part of the Higgs sector:

$$\phi^{+} \leftarrow \begin{pmatrix} \phi^{+} + \phi^{-*} \\ \phi^{0} + \phi^{\prime 0} \end{pmatrix}$$

The good news: we already know 3 components of the EWSB sector: W_{\perp}^{\pm} , Z_{\perp} , Goldstone bosons of broken SU(2)xU(1) generators

The good news: we already know 3 components of the EWSB sector: W_{\perp}^{\pm} , Z_{\perp} , Goldstone bosons of broken SU(2)xU(1) generators

As is, violation of perturbative unitarity for $\Lambda \sim 4\sqrt{\pi}v \sim 1.7$ TeV.

Nicolas Berger, APPS 2011, 2011-12-02

If no new physics << 1 TeV, unitarization by strong dynamics

 \rightarrow Can be with resonances or without, depending on Chiral dynamics and unitarization scheme

Disfavored by EW fits : like ~1-2 TeV Higgs \Rightarrow Need other new physics 12

As is, violation of perturbative unitarity for $\Lambda \sim 4\sqrt{\pi}v \sim 1.7$ TeV.

Nicolas Berger, APPS 2011, 2011-12-02

If no new physics << 1 TeV, unitarization by strong dynamics

 \rightarrow Can be with resonances or without, depending on Chiral dynamics and unitarization scheme

Disfavored by EW fits : like \sim 1-2 TeV Higgs \Rightarrow Need other new physics 13

The ATLAS Detector

The CMS Detector

Signature

ATLAS VV Searches events / 1 fb ATLAS 10 on-resonant Search for resonances at 500, 800 GeV, 1.1 TeV, and a non-resonant scenario. Need at least 1 lepton to reduce hadronic bkg. 10⁻¹ ~ 17 fb @ 1.1 TeV 10⁻² WW \rightarrow lv qq ~ 10 fb non-resonant 1200 1400 1600 1800 \rightarrow Largest σ BR m_{ww} (GeV) 10* \rightarrow Large backgrounds: top and W+jets pp pp 10^{14} σ_{tot} TeV Tevatron 10^{13} QCD ~ 12 fb @ 1.1 TeV e< $WZ \rightarrow Iv qq$ 10^{12} 7 \rightarrow Same as above, considered together 10¹¹ 10^{10} σ_{bb} Ĩ ÉW 10⁹ ~ 4 fb @ 1.1TeV $WZ \rightarrow qq l^+l^ 10^{8}$ $\sigma\left(fb\right)$ top \rightarrow Z \rightarrow II reduces bkg levels. WZ+jets 10 σ_w 10⁶ $\sigma_{iet}(E_T^{jet} > 100 GeV)$ \rightarrow Low σ BR Higgs 10⁵ 10^{4} ~ 1 fb @ 1.1TeV $WZ \rightarrow Iv I^+I^ 10^{3}$ $\sigma_{t\bar{t}}$ $\sigma_{jet}(E_T > \sqrt{s/4})$ \rightarrow Fully leptonic, low bkgs (VV+jets) 10^{2} VBS \rightarrow Very small σ BR σ_{Higgs} (M_H=150GeV) 10 $\sigma_{Higgs}(M_H=500 GeV)$ **Results from CERN-OPEN-2008-020), at 14 TeV** 10^{-1} 10³ **10⁴**

 \sqrt{s} (GeV)

Signals generated with pythia

Boosted hadronic W's

 $\$ W \rightarrow qq signature changes with resonance mass:

- \rightarrow **500 GeV**: 2 final state jets : "**resolved**" regime
- \rightarrow **1.1 TeV**: merged jets, "**boosted**" regime.
- General topic of interest for exotic physics (top resonances, high- p_{T} Higgs searches)

Look at jet substructure:

 \rightarrow Jet mass

- \rightarrow For $k_{_{T}}$ jets, scale of last merging : $\sqrt{d}_{_{12}}$
- Well described by MC in recent data

Boosted analysis already does better at 800 GeV.

in context of pp \rightarrow WH 18

Boosted hadronic W's

 $\$ W \rightarrow qq signature changes with resonance mass:

 \rightarrow **500 GeV**: 2 final state jets : "**resolved**" regime

 \rightarrow **1.1 TeV**: merged jets, "**boosted**" regime.

General topic of interest for exotic physics (top resonances, high- p_{T} Higgs searches)

Look at jet substructure:

 \rightarrow Jet mass

 \rightarrow For $k_{_T}$ jets, scale of last merging : $\sqrt{d}_{_{12}}$

Well described by MC in recent data

Boosted analysis already does better at 800 GeV.

in context of pp \rightarrow WH 19

WW→lvqq Selection

Hadronic W candidate

ε ~40 %

- _ Single jet with mass 68<m<97 GeV, 30 GeV/E $_{\rm T}$ </br>
- Pair of jets with 67<m<106 GeV, 0.1< \sqrt{d} <0.45
- $-p_{T}^{W} > 200 \text{ GeV}, |\eta^{W}| < 2$

• **Leptonic W** ε

ε ~50 %

_ Use mass constraint to reconstruct p_z^{ν}

_p_T^W > 200 GeV

• Tagging jets $\epsilon \sim 40 \%$ _ 2 jets with p_T > 10GeV E > 300 GeV, $|\Delta \eta|$ >5

Central jet veto ε ~90 %

 $_$ No jet with p_T >30 GeV between tagging jets

• **Top veto** ε ~ 50 %

- Veto events with 130 < Wj mass < 240 GeV

WW→lvqq Mass Spectra

22

Results

All numbers for 14 TeV

Mass	Channel	Signal evts in 100 fb ⁻¹	Bkg evts in 100 fb ⁻¹	Significance for 100 fb ⁻¹	Lumi for	Lumi for			
500	WZ→jj II	28	20	5.3σ	30 fb ⁻¹	90 fb ⁻¹			
GeV	WZ→Iv II	40	25	6.6σ	20 fb ⁻¹	55 fb ⁻¹			
	WW/WZ→Iv qq	65	87	6.3σ	20 fb ⁻¹	60 fb ⁻¹			
800 GeV	WZ→jj II (resolved) WZ→j II (boosted)	24 27	30 23	3.9σ 4.9σ	60 fb ⁻¹ 38 fb ⁻¹	160 fb ⁻¹ 105 fb ⁻¹			
	WW/WZ→Iv qq	24	46	3.3σ	85 fb ⁻¹	230 fb ⁻¹			
1.1 TeV	WZ→j II (boosted)	19	22	3.6σ	68 fb ⁻¹	190 fb ⁻¹			
	WZ→Iv II	7	2	3.60	70 fb ⁻¹	200 fb ⁻¹			
Could start testing low-mass regions with ~20 fb ⁻¹ at 14 TeV \Rightarrow ~40-50 fb ⁻¹ at 7 TeV ? \Rightarrow by 2015									

Reaching 1 TeV and beyond will require **full LHC lumi + HL-LHC (>2018)**

- \rightarrow Non-resonant scenarios are even less favorable...
- \rightarrow Similar reach with high signal/high bkg and low signal/low bkg

CMS VV Searches

Scenarii considered: $\rightarrow M_{H}$ =500 GeV \rightarrow "no Higgs"

Similar to ATLAS 500 GeV and non-resonant cases

Modes studied: $WW \rightarrow Iv qq, WW \rightarrow Iv qq$ $WZ \rightarrow qq II, ZZ \rightarrow qq II$ $WZ \rightarrow \mu\nu \mu\mu$ $W^{\pm}W^{\pm} \rightarrow I^{\pm}\nu I^{\pm}\nu$ $\rightarrow 2$ neutrinos \Rightarrow Cannot reconstruct WW mass

- \rightarrow Feasible in same-sign signature
 - \Rightarrow low background levels

N. Amapane et al. Study of VV-scattering processes as a probe of electroweak symmetry breaking, CMS AN-2007/005

Bo Zhu et al, "Same sign WW scattering Process as a probe of Higgs Boson in pp Collision at Sqrt(s) = 10 TeV", Eur. Phys. J. C71: 1514, 2011

Use the PHANTOM 2->6 fermion generator

CMS Analysis selections

μ: p_T > 20 GeV

e: E/p>0.8 , |1/E-1/p|<0.01 , H/E <0.02, Track Iso

jet: p_T > 30 GeV

Ζ→μμ,<mark>ee</mark>

- p⁺_z*p⁻_z > -2000 GeV²
- choose pair with largest p_T
- 81 < M_z < 101 GeV

• p_T^z>100 GeV

W→μν,**e**ν

- Fix p_z with $(p_\mu + p_v)^2 = M_W^2$
- MET > 30 GeV;
- MET/HT > 0.07

V→jj

• Couple of jets with minimum $\Delta \eta$

Tag jets:

- p_T>30 GeV, E_i > 100 GeV
- $|\eta| > 1$ for at least one jet
- Pair with largest M_{ii}
- close jets merged
- |Δη| > 1.5

Slide from P. Govoni

• M_{ii} > 500 GeV

 Final cuts:

 • M_{VWjj} > 1000 GeV

 • anti b-tagging

some additional selections among subchannels are different

P. Govoni - the CMS potential in the area of WW scattering

25

Nicolas Berger, APPS 2011, 2011-12-02

Results

Significant improvement since these results (Particle Flow) \Rightarrow now better in hadronic modes

Mass	Channel	Signal evts in 60 fb ⁻¹	Bkg evts in 60 fb ⁻¹	Significance for 60 fb ⁻¹	
500	WW,WZ→ev qq	309	~2000	6.7σ	Results for 14 TeV
Gev	WZ,ZZ→qq II	186	~104	~1.80	
	ZZ→II II	6.6	5.5	~2.40	
	WW/WZ→ev qq	26	187	1.9σ	Results at
	WW/WZ→µv qq	111	~104	1.1σ	10 TeV Can also
no- Higgs	WZ,ZZ→qq II	→qq II 15 ~1000 ~1.9σ		~1.90	separate the m _H =200 GeV
	ZZ→II II	0.36	0.50	0.5σ	and no-Higgs
	WZ→μν μμ	2.7	2.3	1.5σ	scenarii at 4o with 6 ab ⁻¹
200 GeV	$W^{\pm}W^{\pm} \rightarrow I^{\pm}v I^{\pm}v$	6.5	2.5	2.4σ	
no- Higgs	W [±] W [±] →I [±] v I [±] v	5.4	3.5	2.8σ	27

Technicolor

Technicolor:

No Higgs boson

Introduce:

A new strong gauge interaction

 \rightarrow typically some SU(N_{TC})

New fermions sensitive to TC ("techniquarks")

 \rightarrow typically N isospin doublets

EWSB:

TC coupling becomes large for $\Lambda_{TC} \sim O(100 \text{ GeV})$: \Rightarrow chiral symmetry breaking : $\langle Q_L Q_R \rangle \neq 0$, $\sim \Lambda_{TC}$.

 $\langle Q_L Q_R \rangle$ not invariant under SU(2) \otimes U(1) \Rightarrow EWSB

THE STANDARD MODEL

EW precision constraints, FCNC:

 \rightarrow "scaled-up QCD" models are excluded, but TC with a "**walking**" coupling is OK.

Technicolor

Technicolor:

No Higgs boson

Introduce:

A new strong gauge interaction

 \rightarrow typically some SU(N_{TC})

New fermions sensitive to TC ("techniquarks")

 \rightarrow typically N isospin doublets

EWSB:

TC coupling becomes large for $\Lambda_{TC} \sim O(100 \text{ GeV})$: \Rightarrow chiral symmetry breaking : $\langle Q_L Q_R \rangle \neq 0$, $\sim \Lambda_{TC}$.

 $\langle Q_L Q_R \rangle$ not invariant under SU(2) \otimes U(1) \Rightarrow **EWSB**

THE STANDARD MODEL

EW precision constraints, FCNC:

 \rightarrow "scaled-up QCD" models are excluded, but TC with a "**walking**" coupling is OK.

LSTC limits from Tevatron

- $\rightarrow \rho_{\tau}\text{, }\omega_{\tau}$ technimesons are easiest target
- \rightarrow Limits usually presented in (M(ρ_T), M(π_T)) plane

 $\pi_{\rm T}$ mass affects allowed decay channels, BFs.

→ For lower M(π_T), look for $\rho_T \rightarrow W \pi_T$. Best limit from CDF : M(ρ_T)< **250 GeV** → For higher M(π_T), use $\rho_T \rightarrow WZ$. Best limit from DØ : M(ρ_T) < **400 GeV**.

INCOMO DOIGOI, / II I O LOTT, LOTT IL OL

INCORCE DOIGOI, / I I C LOTT, LOTT IL C

ATLAS I⁺I⁻ search

→ Require 2 leptons with p_T >25 GeV → Main background: Drell-Yan → Excellent agreement between MC and the data in "LSTC region" ($m_{\parallel} \sim$ 200-600 GeV) → Quantify in terms of LSTC models

with various M(ρ_T), M(π_T) values

 \rightarrow assume M(ω_T) = M(ρ_T), ignore a_T

 \rightarrow Since no excess observed, set limits

dielectrons dimuons Source signal background signal background Normalization 5%NA NA 5%NA 10%NA 10% $PDFs/\alpha_s$ 3%QCD K-factor 3%NA NA Weak K-factor NA 4.5%4.5%NA 4.5%4.5%Trigger/Reconstruction negligible negligible 7%12%5%11% Total

ATLAS I⁺I⁻ search

→ Require 2 leptons with p_T >25 GeV → Main background: Drell-Yan → Excellent agreement between MC and the data in "LSTC region" ($m_{\parallel} \sim 200-600 \text{ GeV}$) → Quantify in terms of LSTC models

with various M(ρ_T), M(π_T) values

 \rightarrow assume M(ω_T) = M(ρ_T), ignore a_T

 \rightarrow Since no excess observed, set limits

Source	diele	ectrons	d	imuons
	signal	background	signal	background
Normalization	5%	NA	5%	NA
$PDFs/\alpha_s$	NA	10%	NA	10%
QCD K-factor	NA	3%	NA	3%
Weak K-factor	NA	4.5%	NA	4.5%
Trigger/Reconstruction	negligible	negligible	4.5%	4.5%
Total	5%	11%	7%	12%

ATLAS-CONF-2011-125

Limit on $M(\rho_T)$

 \rightarrow Assume M(π_T) = M(ρ_T) – 100 GeV scan M(ρ_T) values

 \rightarrow Set 95% UL on M(ρ_T) using the limit on production σ .BR(I⁺I⁻)

38

Nicolas

Limit on $M(\rho_T)$

 \rightarrow Assume M(π_T) = M(ρ_T) – 100 GeV scan M(ρ_T) values

 \rightarrow Set 95% UL on M($\rho_{\scriptscriptstyle T})$ using the limit on production $\sigma.BR(I^+I^-)$

39

Nicolas

Limit in M(ρ_T), M(π_T) plane

 \rightarrow Same with scan on both M(ρ_T) and M(π_T), limit in (M(ρ_T), M(π_T)) plane

Significant improvement over Tevatron results

Limit in M(ρ_T), M(π_T) plane

 \rightarrow Same with scan on both M(ρ_T) and M(π_T), limit in (M(ρ_T), M(π_T)) plane

CMS $\rho_T \rightarrow WZ$ Search

Search in $\rho_T \rightarrow WZ$ mode, dominant for heavy $\rho_T (m_{\rho T} < m_{\pi T} + m_W)$ Use $WZ \rightarrow Iv$ II decay mode. Main background: SM WZ $\rightarrow IvII$

Parameter Set	$M(\rho_{TC}) = M(\omega_{TC})$	$M(a_{TC})$	$M(\pi_{TC})$	$M_V = M_A$	$\sigma \times BR(\mathbf{fb})$ (V	/Z
А	300	330	200	300	42.9	
В	400	440	275	400	12.9	
С	500	550	350	500	5.2	

Selection:

 \rightarrow Z: 2 leptons with 60 < m < 120 GeV

 \rightarrow W:1 lepton with p_7>20 GeV, E_7>30 GeV

Reconstruct WZ mass using W mass constraint.

CMS PAS EXO-11-041

Conclusion

- Vector boson scattering is a powerful probe of EWSB whatever the underlying mechanism.
- Many experimental challenges, but already being adressed for other analyses.
- Small production cross-sections ⇒ will need high luminosities to reach interesting mass ranges
- If strong dynamics leads to narrow sub-TeV resonances, could be observed earlier. Technicolor models provide good benchmarks for these scenarii.
- Everything depends on the results of Higgs search results in 2012... Exciting times ahead!

Backups

CMS mass resolutions

Mass resolutions

Chiral Lagrangian

Full ATLAS Results

Process	Cross se	ction (fb)	Lumino	sity (fb ⁻¹)	Significance
	signal	background	for 3σ	for 5σ	for 100 fb^{-1}
$WW/WZ \rightarrow \ell \nu \ jj,$					
m = 500 GeV	0.31 ± 0.05	0.79 ± 0.26	85	235	3.3 ± 0.7
$WW/WZ \rightarrow \ell \nu \ jj,$					
m = 800 GeV	0.65 ± 0.04	0.87 ± 0.28	20	60	6.3 ± 0.9
$WW/WZ \rightarrow \ell \nu \ jj,$					
m = 1.1 TeV	0.24 ± 0.03	0.46 ± 0.25	85	230	3.3 ± 0.8
$W_{jj}Z_{\ell\ell}, m = 500 \text{ GeV}$	0.28 ± 0.04	0.20 ± 0.18	30	90	5.3 ± 1.9
$W_{\ell\nu}Z_{\ell\ell}, m = 500 \text{ GeV}$	0.40 ± 0.03	0.25 ± 0.03	20	55	6.6 ± 0.5
$W_{jj}Z_{\ell\ell}, m = 800 \text{ GeV}$	0.24 ± 0.02	0.30 ± 0.22	60	160	3.9 ± 1.2
$W_j Z_{\ell\ell}, m = 800 \text{ GeV}$	$0.27 \pm 0.02 \pm 0.05$	$0.23 \pm 0.07 \pm 0.05$	38	105	4.9 ± 1.1
$W_j Z_{\ell\ell}, m = 1.1 \text{ TeV}$	$0.19 \pm 0.01 \pm 0.04$	$0.22 \pm 0.07 \pm 0.05$	68	191	3.6 ± 1.0
$W_{\ell\nu}Z_{\ell\ell}, m = 1.1 \text{ TeV}$	0.070 ± 0.004	0.020 ± 0.009	70	200	3.6 ± 0.5
$Z_{\nu\nu}Z_{\ell\ell}, m = 500 \text{ GeV}$	0.32 ± 0.02	0.15 ± 0.03	20	60	6.6 ± 0.6

W(qq)Z(II)

W(lv)Z(qq)

Pythia/Whizard comparison

Nicolas Berger, APPS 2011, 2011-12-02

(d)

PHANTOM cross-sections (α_{EW}⁶)

- Two scenarios have been compared
 - M_H = 500 GeV
 - no-Higgs ($M_H = \infty$)
- after the signal definition, the obtained cross sections are:

					$qqqq\mu$	$\nu/e\nu$			$qqqq\mu$	μ/ee			
				no-H	liggs	500 (GeV	no-Higgs		500 GeV			
				σ (pb)	perc.	σ (pb)	perc.	σ (pb)	perc.	σ (pb)	perc.		
		total		0.689	100%	0.718	100%	0.0305	100%	0.0350	100%		
		sign	al	0.158	23%	0.184	26%	0.0125	41%	0.0165	47%		
	· · · ·	top		0.495	72%	0.494	69%	0.0137	45%	0.0137	39%		
		non	resonant	0.020	3%	0.023	3%	0.0030	10%	0.0035	10%		
		three	e bosons	0.016	2%	0.017	2%	0.0012	4%	0.0014	4%		
			aauuu	uleeee	1	<u> </u>		uuuu	1	 T		$uu^{\pm}u$	
		no-H	liggs	500	GeV	no-I	Higgs	500	GeV	no-H	Higgs	500	GeV
		σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.
	total	0.180	100%	0.310	100%	4.182	100%	4.152	100%	4.29	100%	4.16	100%
	signal	0.120	66.4%	0.229	74.1%	1.317	31.5%	1.281	30.8%	3.26	76%	3.11	75%
<u> </u>	top	0	0%	0	0%	1.817	43.5%	1.828	44.01%	0	0%	0	0%
	non resonant	0.0364	20.2%	0.0533	17.2%	0.673	16.1%	0.651	15.7%	0.47	11%	0.46	11%
	three bosons	0.0241	13.4%	0.0268	8.66%	0.375	8.9%	0.392	9.5%	0.56	13%	0.58	14%

• Cross sections for the analyzed final states vary of three orders of magnitude (0.1 \rightarrow 100 fb)

jets topology

jets from the qqVZ (qqqqµµ) channel: tag jets and V decay products

P. Govoni - the CMS potential in the area of WW scattering

selection efficiencies

selection efficiency as a function of M_{VV} , for different channels

Full CMS results (60 fb⁻¹)

	$qqqq\mu\nu$	$qqqqe\nu$	$qqqq\mu\mu$	qqqqee	$qq\mu\mu\mu\mu$	qqeeee	$qq\mu\mu\mu\nu$	$qq\mu^{\pm}\nu\mu^{\pm}\nu$
signal	111	26	5	10	0.16	0.2	2.7	8.3
W + n jets	5570	166	=	-		=	-	0
Z + n jets	499	-	205	580	-	-	0	-
Īt	446	19	0	0	-	-	0	664
ZZ + n jets	-	-	10	17	0.3	0.2	0.02	110
ZW + n jets	-	-	139	93	-	-	2.21	20
WW + n jets	3094	-	-	-	-	-	-	37
irreducible backgrounds	47	3	1	1	0.009	0.001	0.09	1.3
backgrounds	9656	187	355	691	0.31	0.201	2.3	832
significance	1.13	1.87	0.28	0.38	0.27	0.39	1.51	0.29

no Higgs case

	$qqqq\mu\nu$	$qqqqe\nu$	$qqqq\mu\mu$	qqqqee	qqµµµµ	qqeeee
signal	703	309	86	100	3.1	3.5
W + n jets	34840	1383	-		-	-
Z + n jets	3094	-	3798	4660	-	-
$\overline{t}t$	5976	609	30	14	0	=
ZZ + n jets	-	-	125	184	2.6	2.9
ZW + n jets	-	-	781	615	0	-
WW + n jets	16133	-	-		0	-
irreducible backgrounds	220	23	20	20	0.036	0.04
backgrounds	60263	2015	4754	5493	2.6	2.94
significance	2.86	6.72	1.24	1.34	1.66	1.76

Two different approaches for $4q\mu\nu$ and $4qe\nu$: -high efficiency to study the high M_{VV} region -high significance for a discovery

Higgs with m_H=500 GeV

Pietro Govoni - SUSY08

15