Gauge invariant cosmological perturbations

Jan Weenink

ITF, Utrecht University & Nikhef

Amsterdam Particle Physics Symposium 30 November - 2 December 2011

Jan Weenink (UU/Nikhef) Amsterdam, 2 December 2011 1 / 14

History of the universe

Physics of the very early universe: inflation

Cosmological inflation (Guth 1981)

- ▶ is an accelerated expansion of the early universe $(10^{-37} 10^{-32} \text{ s})$
- solves horizon and flatness problems
- can amplify quantum fluctuations in the early universe

How do we describe quantum fluctuations during inflation?

Quantum fluctuations in the very early universe

Inflation can be described by a scalar field rolling down a potential in an expanding universe

Action:

$$S = \int d^4x \sqrt{-g} \left\{ -R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - V(\Phi) \right\}$$

with background FLRW metric $g^{(0)}_{\mu\nu}={\rm diag}(-1,a^2,a^2,a^2)$.

Density perturbations are associated with perturbations of the matter fields, i.e. $\Phi = \phi + \varphi$

But in very early universe, fluctuations of spacetime are equally important, $g_{\mu
u}=g^{(0)}_{\mu
u}+\delta g_{\mu
u}$

However, issue of gauge dependence for metric fluctuations.

Quantum fluctuations in the very early universe

Inflation can be described by a scalar field rolling down a potential in an expanding universe

Action:

$$S = \int d^4x \sqrt{-g} \left\{ -R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - V(\Phi) \right\}$$

with background FLRW metric $g_{\mu\nu}^{(0)}={
m diag}(-1,a^2,a^2,a^2).$

Density perturbations are associated with perturbations of the matter fields, i.e. $\Phi = \phi + \varphi$

But in very early universe, fluctuations of spacetime are equally important, $g_{\mu\nu}=g_{\mu\nu}^{(0)}+\delta g_{\mu\nu}$

However, issue of gauge dependence for metric fluctuations..

Gauge dependence in general relativity

The action

$$S = \int d^4x \sqrt{-g} \left\{ -R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - V(\Phi) \right\}$$

is covariant: it is invariant under coordinate transformations. Metric tensor transforms as:

$$ilde{\mathsf{g}}_{\mu
u}(ilde{\mathsf{x}}) = rac{\mathsf{d} \mathsf{x}^{lpha}}{\mathsf{d} ilde{\mathsf{x}}^{\mu}} rac{\mathsf{d} \mathsf{x}^{eta}}{\mathsf{d} ilde{\mathsf{x}}^{
u}} \mathsf{g}_{\mu
u}(\mathsf{x}).$$

Now:

lacktriangle split the metric field in a *fixed* background $g_{\mu
u}^{(0)}$ and a fluctuation $\delta g_{\mu
u}$

- this breaks the general covariance for the fluctuations

Gauge freedom in general relativity

A general perturbation of a quantity Q is defined as

Perturbation $\delta Q = (Q \text{ in perturbed spacetime})$ - $(Q^{(0)} \text{ in background spacetime})$

In order to compare Q and $Q^{(0)}$, one has to choose a mapping between the perturbed and background spacetime \Longrightarrow this is a gauge choice

The freedom in choosing a mapping is called a gauge freedom

Gauge transformations in general relativity

Under an infinitesimal coordinate transformation

$$\mathbf{x}^{\mu} \rightarrow \tilde{\mathbf{x}}^{\mu} = \mathbf{x}^{\mu} + \boldsymbol{\xi}^{\mu} \text{, gauge transformations of the fields:}$$

$$\delta g_{\mu\nu}(x) \quad \to \quad \delta g_{\mu\nu}(\tilde{x}) = \delta g_{\mu\nu}(x) - \nabla_{\mu} \xi_{\nu} - \nabla_{\nu} \xi_{\mu}$$
$$\varphi(x) \quad \to \quad \varphi(\tilde{x}) = \varphi(x) + \xi^{0} \partial_{0} \phi(t)$$

(compare to QED: $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda$)

Problems with gauge freedom: calculating physical quantities (similar to QED)

Two solutions

- ► Fix the gauge (in QED: Coulomb gauge, Lorenz gauge)
- ► Construct gauge invariant variables (in QED: electric field E_i (For GR: Bardeen 1980)

Gauge transformations in general relativity

Under an infinitesimal coordinate transformation

$$\mathbf{x}^{\mu} \rightarrow \tilde{\mathbf{x}}^{\mu} = \mathbf{x}^{\mu} + \boldsymbol{\xi}^{\mu},$$
 gauge transformations of the fields:

$$\delta g_{\mu\nu}(x) \rightarrow \delta g_{\mu\nu}(\tilde{x}) = \delta g_{\mu\nu}(x) - \nabla_{\mu} \xi_{\nu} - \nabla_{\nu} \xi_{\mu}$$

$$\varphi(x) \rightarrow \varphi(\tilde{x}) = \varphi(x) + \xi^{0} \partial_{0} \phi(t)$$

(compare to QED: $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda$)

Problems with gauge freedom: calculating physical quantities (similar to QED).

Two solutions:

- ► Fix the gauge (in QED: Coulomb gauge, Lorenz gauge)
- ► Construct gauge invariant variables (in QED: electric field E_i)

 (For GR: Bardeen 1980)

Jan Weenink (UU/Nikhef)

Dynamical variables in the action

$$S = \int d^4x \sqrt{-g} \left\{ -R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - V(\Phi) \right\}.$$

What are the dynamical fields in this action?

"Decompose spacetime into space and time"

ADM line element (Arnowitt, Deser, Misner 1959)

$$ds^2 = -N^2 dt^2 + g_{ij}(dx^i + N^i dt)(dx^j + N^j dt)$$

- ▶ 7 dynamical fields: spatial metric gij and scalar field Φ
- ▶ 4 constraint fields: lapse function N, shift function N^i (compare to A_0 for QED)
- ▶ 7-4=3 dynamical degrees of freedom!

Perturbations

Now insert linear fluctuations of all fields around FLRW background ($ds^2 = -dt^2 + a^2 dx_i dx^i$):

$$g_{ij} = a(t)^2 \left(\delta_{ij} + \frac{h_{ij}}{h_{ij}}(t, \mathbf{x}) \right)$$

$$\Phi = \phi(t) + \varphi(t, \mathbf{x})$$

Scalar-vector-tensor decomposition:

$$\textbf{\textit{h}}_{ij} = \frac{\delta_{ij}}{3}\,\textbf{\textit{h}} + \left(\partial_i\partial_j - \frac{\delta_{ij}}{3}\,\nabla^2\right)\tilde{\textbf{\textit{h}}} + \partial_{(i}\,\textbf{\textit{h}}_{j)}^T + \textbf{\textit{h}}_{ij}^{TT},$$

with

$$\partial^{i} h_{i}^{T} = 0, \qquad \qquad \partial^{i} h_{ij}^{TT} = 0 = \partial^{j} h_{ij}^{TT}.$$

Substitute these in action, solve constraint equations to eliminate unphysical degrees of freedom..

Final result

Finally, the action $S = \int d^4x \sqrt{-g} \left\{ -R - \frac{1}{2}g^{\mu\nu}\partial_\mu\Phi\partial_\nu\Phi - V(\Phi) \right\}$ up to second order is

$$S^{(2)} = \int d^3x dt a^3 \left\{ \frac{\dot{\phi}^2}{36H^2} \left[\frac{1}{2} \dot{\mathcal{R}}^2 - \frac{1}{2} \left(\frac{\partial_j \mathcal{R}}{a} \right)^2 \right] + \frac{1}{4} \left[(\dot{h}_{ij}^{TT})^2 - \left(\frac{\partial h_{ij}^{TT}}{a} \right)^2 \right] \right\}$$

Mukhanov 1981

▶ 1 dynamical scalar: comoving curvature perturbation:

$$\mathcal{R} = (h - \nabla^2 \tilde{h}) - 6 \frac{H}{\dot{\phi}} \varphi$$

Combination of scalar metric and inflaton fluctations

Together with inflation forms the primordial power spectrum of the CMB

- ▶ 1 dynamical tensor: graviton h_{ij}^{TT}
- ► All fields are gauge invariant!

 \mathcal{R} and h_{ii}^{TT} are gauge invariant cosmological perturbations

Einstein and Jordan frame

Einstein frame action

$$S = \int d^4x \sqrt{-g} \left\{ -R - \frac{1}{2} g^{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi - V(\Phi) \right\}.$$

Jordan frame action (important for Higgs inflation)

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -R_{J} {\color{red}F(\Phi_{J})} - \frac{1}{2} g_{J}^{\mu\nu} \partial_{\mu} \Phi_{J} \partial_{\nu} \Phi_{J} - V_{J}(\Phi_{J}) \right\}.$$

Frames related through field redefinitions

$$g_{\mu\nu} = \omega^2 g_{\mu\nu,J}, \qquad \omega^2 = F(\Phi_J), \qquad d\Phi = \frac{d\Phi}{d\Phi_J} d\Phi_j$$

Just field redefinitions, therefore frames are physically equivalent

Are the Jordan and Einstein frame physically equivalent at the quantum level?

Einstein and Jordan frame

Einstein frame action

$$S = \int d^4 x \sqrt{-g} \left\{ -R - \frac{1}{2} g^{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi - V(\Phi) \right\}.$$

Jordan frame action (important for Higgs inflation)

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -R_{J} F(\Phi_{J}) - \frac{1}{2} g_{J}^{\mu\nu} \partial_{\mu} \Phi_{J} \partial_{\nu} \Phi_{J} - V_{J}(\Phi_{J}) \right\}.$$

Frames related through field redefinitions

$$g_{\mu\nu} = \omega^2 g_{\mu\nu,J}, \qquad \omega^2 = F(\Phi_J), \qquad d\Phi = \frac{d\Phi}{d\Phi_J} d\Phi_j$$

Just field redefinitions, therefore frames are physically equivalent

Are the Jordan and Einstein frame physically equivalent at the quantum level?

The quantum equivalence of frames

Free Jordan frame action (JW, Prokopec 2010):

$$S_J^{(2)} = \int d^3x \bar{N}_J dt a_J^3 \left\{ z_J^2 \left[\frac{1}{2} \dot{\mathcal{R}}_J^2 - \frac{1}{2} \left(\frac{\partial_i \mathcal{R}_J}{a_J} \right)^2 \right] + \frac{F}{4} \left[(\dot{h}_{ij,J}^{TT})^2 - \left(\frac{\partial h_{ij,J}^{TT}}{a_J} \right)^2 \right] \right\}$$

Under the field redefinitions $g_{\mu\nu}=\omega^2g_{\mu\nu,J},\ d\Phi=\frac{d\Phi}{d\Phi_I}d\Phi_j$:

$$S_J^{(2)} o S^{(2)}!$$

Important observation

$$\mathcal{R} = \mathcal{R}_J$$
 and $extbf{ extit{h}}_{ij}^{TT} = extbf{ extit{h}}_{ij,J}^{TT}.$

Comoving curvature perturbation \mathcal{R} and graviton h_{ij}^{TT} are gauge invariant **and** invariant under a conformal transformation \longrightarrow observables!

The quantum equivalence of frames

Free Jordan frame action (JW, Prokopec 2010):

$$S_J^{(2)} = \int d^3x \bar{N}_J dt a_J^3 \left\{ z_J^2 \left[\frac{1}{2} \dot{\mathcal{R}}_J^2 - \frac{1}{2} \left(\frac{\partial_i \mathcal{R}_J}{a_J} \right)^2 \right] + \frac{F}{4} \left[(\dot{h}_{ij,J}^{TT})^2 - \left(\frac{\partial h_{ij,J}^{TT}}{a_J} \right)^2 \right] \right\}$$

Under the field redefinitions $g_{\mu\nu}=\omega^2g_{\mu\nu,J},\ d\Phi=\frac{d\Phi}{d\Phi_J}d\Phi_j$:

$$S_J^{(2)} o S^{(2)}!$$

Important observation:

$$\mathcal{R} = \mathcal{R}_J$$
 and $h_{ij}^{TT} = h_{ij,J}^{TT}$.

Comoving curvature perturbation \mathcal{R} and graviton h_{ij}^{TT} are gauge invariant and invariant under a conformal transformation \longrightarrow observables!

Current project: gauge invariance for higher order perturbations

Calculate the gauge invariant action up to 3rd order in perturbations

- ▶ Maldacena (2003) used gauge fixing to obtain 3rd order action for single scalar field
- We want to do this in a completely gauge-invariant way in the Jordan frame (with T. Prokopec and G. Rigopoulos)
- ► Challenging: Gauge-invariant variables are nonlinear

Why is this useful?

- ▶ Possible to calculate quantum corrections to power spectrum
- Possible to calculate non-Gaussianities: bispectrum
- ► Show the quantum equivalence of Jordan and Einstein frames at 3rd order

Summary and outlook

Summary:

- ▶ Quantum fluctuations in the early universe can be amplified during inflation
- ▶ Issue of gauge dependence: gauge invariant cosmological perturbations
- ► Cosmological perturbations + inflation predicts primordial power spectrum for CMB

for a review, see Mukhanov, Feldman, Brandenberger 1992

Outlook:

- Calculate gauge invarian action up to 3rd order (non-linear GI variables)
- ▶ (Dis)prove quantum equivalence of Jordan and Einstein frames
- Quantum corrections, non-gaussianity