APPS 2011, Amsterdam, November 2011

Implications of LHC data for theory

Michael Krämer (RWTH Aachen)

APPS 2011, Amsterdam, November 2011

Implications of LHC data for a theorist

Michael Krämer (RWTH Aachen)

What is the mechanism of EWSB?

What is the mechanism of EWSB?

- What is the dark matter in the universe?
- ► Is there unification of the fundamental forces?
- Are there additional spatial dimensions?
- ► What is the origin of the matter-antimatter asymmetry?

• What is the mechanism of EWSB?

- ▶ What is the dark matter in the universe?
- ► Is there unification of the fundamental forces?
- Are there additional spatial dimensions?
- ► What is the origin of the matter-antimatter asymmetry?

Constraints from electroweak precision physics:

Constraints from the LHC:

114 GeV $< M_{\rm Higgs} < 141$ GeV or $M_{\rm Higgs} > 476$ GeV (95%C.L.)

What did we learn about the SM Higgs from the LHC?

Constraints from electroweak precision physics:

What did we learn about the SM Higgs from the LHC?

There is strong evidence that either

- the Higgs boson is light, consistent with electroweak precision physics and theoretical prejudice
- ▶ or, the Higgs boson is very heavy and strongly self-coupled.

There is strong evidence that either

- the Higgs boson is light, consistent with electroweak precision physics and theoretical prejudice
- ▶ or, the Higgs boson is very heavy and strongly self-coupled.

However,

- the SM Higgs mechanism does not provide a dynamical explanation of EWSB;
- and what stabilizes the Higgs boson mass?

Thus, the SM Higgs mechanism points to physics beyond the SM, e.g. composite Higgs models, little Higgs models, higher-dimensional Higgs models, supersymmetry,...

► What is the mechanism of EWSB?

- ► What is the dark matter in the universe?
- ► Is there unification of the fundamental forces?
- Are there additional spatial dimensions?
- ► What is the origin of the matter-antimatter asymmetry?

▶

The hierarchy problem: why is $M_{\text{Higgs}} \ll M_{\text{Planck}}$?

ightarrow need new coloured top partners with mass below about 500 GeV

The hierarchy problem: why is $M_{\text{Higgs}} \ll M_{\text{Planck}}$?

 \rightarrow Supersymmetry? Little Higgs models? ...?

A dark matter connection?

The new physics should

stabilize the Higgs mass

decouple from EWK physics

A dark matter connection?

The new physics should

stabilize the Higgs mass

decouple from EWK physics

Solution: impose a discrete parity

- \rightarrow all interactions require pairs of new particles;
- $\rightarrow\,$ the lightest new particle is stable and provides a dark matter candidate.

A weakly interacting massive particle (WIMP) with mass $\sim {\cal O}(100)$ GeV provides the correct dark matter relic abundance.

Supersymmetry and other new physics models that address

the hierarchy problem and the origin of dark matter

generically predict a spectrum of new particles at the TeV-scale with a weakly interacting & stable particle (\leftarrow discrete parity)

A generic BSM signature at the LHC is thus cascade decays with $E_{\mathrm{T,miss}}$

Exploring SUSY before the LHC

CMSSM global fit to B, K and EWK observables, $(g-2)_{\mu}$ and $\Omega_{
m DM}$

CMSSM global fit to B, K and EWK observables, $(g-2)_{\mu}$ and $\Omega_{ m DM}$

- global fits point to light sparticle spectrum with ${ ilde m} < 1~{
m TeV}$

CMSSM global fit to B, K and EWK observables, $(g-2)_{\mu}$ and $\Omega_{ m DM}$

 \blacktriangleright global fits point to light sparticle spectrum with $\tilde{m} < 1 \ {\rm TeV}$

current data cannot constrain more general SUSY models

CMSSM global fit without $(g-2)_{\mu}$ and Ω_{DM}

▶ prediction of light SUSY spectrum rests on $(g-2)_{\mu}$ and $\Omega_{\rm DM}$

ATLAS limits ($\approx 1 \text{ fb}^{-1}$)

CMS limits ($\approx 1 \text{ fb}^{-1}$)

 $ightarrow m_{ ilde{q}} pprox m_{ ilde{g}} \gtrsim 1.2 \; {
m GeV}$

CMSSM global fit including LHC exclusions with 2 fb⁻¹

CMSSM global fit including LHC exclusions with 7 fb⁻¹

Global SUSY fits with LHC exclusions: is there a tension?

- \rightarrow LEOs prefer low mass scales (for non-coloured sector)
- \rightarrow LHC prefers high mass scales (for coloured sector)
- Is there a tension building up?

Global SUSY fits with LHC exclusions: is there a tension?

- \rightarrow LEOs prefer low mass scales (for non-coloured sector)
- \rightarrow LHC prefers high mass scales (for coloured sector)

Is there a tension building up?

Let us look at the best fit points:

	M_0	$M_{1/2}$	A_0	aneta	χ^2/ndf
no LHC	77^{+114}_{-31}	333^{+89}_{-87}	426^{+70}_{-735}	$13\substack{+10\\-8}$	19/20
$35 \ \mathrm{pb}^{-1}$	$126\substack{+189 \\ -54}$	400^{+109}_{-40}	724_{-780}^{+722}	$17\substack{+14\\-9}$	20/21
$1~{ m fb}^{-1}$	235^{+389}_{-103}	601^{+148}_{-63}	627^{+1249}_{-717}	31^{+19}_{-18}	24/21
$2 \ \mathrm{fb}^{-1}$	254^{+456}_{-128}	647^{+157}_{-74}	771^{+1254}_{-879}	30^{+20}_{-19}	24/21
7 fb^{-1}	403^{+436}_{-281}	744^{+142}_{-150}	781^{+1474}_{-918}	43^{+11}_{-33}	25/21

\rightarrow even the CMSSM would "survive" the 2011/2012 LHC run

[Note: $a_{\mu}^{\rm SUSY} \sim {
m sgn}(\mu) \tan\beta M_{\rm SUSY}^{-2}$ and $\Omega_{\rm DM}$ require larger $\tan\beta$]

Future SUSY searches beyond pp \rightarrow jets + MET

- flavour constraints, e.g. $B_s \rightarrow \mu \mu$ (LHCb)
- ► direct dark matter searches (see e.g. Aprile et al: arXiv:1104.2549)

Comparison of global CMSSM fits with and without LHC exclusions

There has been a lot of activity recently (see e.g. arXiv:1109.3859v1)

 \rightarrow there is reasonable agreement between the different groups

The LHC has excluded constrained SUSY models where

 $m_{
m squark}pprox m_{
m gluino} \lesssim 1~{
m TeV}$

and squarks and gluinos decay into jets and $\tilde{\chi}_1^{\rm 0}$

and $m_{{ ilde \chi}^0_1}\lesssim 200~{
m GeV}$.

However,

The current searches are not sensitive to compressed SUSY spectra

Discovery/exclusion is hard for SUSY models with long decay chains and/or compressed mass spectra

[Conley et al.]

▶ The LHC has excluded constrained SUSY models where

```
m_{
m squark} pprox m_{
m gluino} \lesssim 1 \mbox{ TeV}
and squarks and gluinos decay into jets and \tilde{\chi}_1^0
and m_{\tilde{\chi}_1^0} \lesssim 200 \mbox{ GeV}.
```

However,

- The current searches are not sensitive to compressed SUSY spectra
- The LHC has only just started to probe the third generation squarks (cf. hierarchy problem)

The direct stop/sbottom cross section is suppressed compared to the inclusive squark & gluino cross section

► The LHC has excluded constrained SUSY models where

```
m_{
m squark} pprox m_{
m gluino} \lesssim 1 \mbox{ TeV}
and squarks and gluinos decay into jets and {	ilde \chi}_1^0
and m_{{	ilde \chi}_1^0} \lesssim 200 \mbox{ GeV}.
```

However,

- The current searches are not sensitive to compressed SUSY spectra
- The LHC has only just started to probe the third generation squarks (cf. hierarchy problem)
- ► The LHC has only just started to probe electroweak sparticles (cf. (g - 2)_µ)

The LHC7 will provide crucial information on EWSB and the Higgs boson

- current data are consistent with a light Higgs as expected from electroweak precision physics and supersymmetric theories;
- ▶ the exclusion of a Higgs with m_h ≤ 140 GeV would be the only way to exclude the MSSM;
- ► SM Higgs searches will, however, not be sufficient to exclude a light MSSM Higgs, e.g. because of invisible decays h → χ̃χ̃;
- the Higgs sector will play a crucial role for the assessment of SUSY models in the near future!

The LHC7 has started to cut heavily into the landscape of new physics at the TeV-scale

- there is no sign of new physics so far;
- canonical searches with jets and MET have pushed limits on squark and gluino masses beyond 1 TeV;

The LHC7 has started to cut heavily into the landscape of new physics at the TeV-scale

- there is no sign of new physics so far;
- canonical searches with jets and MET have pushed limits on squark and gluino masses beyond 1 TeV;

However, the LHC searches need to

- be optimized for and interpreted in a wider class of SUSY and other BSM models;
- focus on third generation and electroweak sparticles;
- be extended to more general and complex scenarios, e.g. compressed spectra.

Unfortunately, the (canonical) BSM searches will soon run out of steam; it will be crucial to upgrade the LHC energy towards 14 TeV.

Personally, I am disappointed about the lack of evidence for new physics.

I did hope for early discovery of new physics in the jets+MET signature.

But we should not forget that we have not yet reached design energy and so far only looked at about 0.1% of the expected LHC data set.

We have more than 10 years of LHC physics ahead of us. Let's enjoy the ride!