News on Parton Distribution Functions

Maria Ubiali RWTH Aachen

30th November 2011 APPS, Amsterdam

The LHC era

2010-11: Impressive experimental performances at the LHC!

To fully exploit the LHC physics potential a solid and quantitative understanding of strong interaction (QCD) is essential

Need both precise computation of hard process and precise PDFs determination

Partonic cross section

$$_{F},m)+\mathcal{O}\left(rac{\Lambda_{ ext{QCI}}^{2n}}{S_{ ext{had}}^{n}}
ight)$$

Parton Distribution Functions

PDFs and LHC interplay

G. Watt, JHEP 1109 (2011) 069

- Can we trust PDF uncertainties?
- How do we interpret the differences?
- Shall we just pick a set out of the PDFs "supermarket" shelf or take the envelope of ALL predictions?

PDF4LHC: huge effort in understanding differences & improving theoretical and statistical treatment in PDF analyses $PDFs \rightarrow LHC$ PDF uncertainties are crucial for LHC standard candle processes and for discovery & exclusion

, LHAPDF

PDFs and LHC interplay

$PDFs \rightarrow LHC$

PDF uncertainties are crucial for LHC standard candle processes and for discovery & exclusion

 $LHC \rightarrow PDFs$ Exploit the discriminating and constraining potential of the increasingly precise LHC data

V. Radescu, DIS 2011

Outline

• PDFs for LHC

- The ideal parton densities
- Current parton densities
- Towards an agreement?
- The α_s puzzle

2 LHC for PDFs

- Constraints from LHC data
- Inclusion of LHC data

• Summary and open questions

The ideal PDF set

7 DATA: Different data constrain different parton combinations at different x.

Use wide dataset and include correlations to retain all relevant experimental info 🗹

[[]NNPDF, Nucl.Phys. B838 (2010)]

The ideal PDF set

DATA: Different data constrain different parton combinations at different x.

Use wide dataset and include correlations to retain all relevant experimental info 🗹

PARAMETRIZATION: A restrictive parametrization may be inadequate to describe data or present unrealistically small uncertainties

Use sufficiently flexible parametrization to avoid bias 🗹

TATISTICS: Inconsistent statistical treatment may lead to inconsistent CL for individual experiments

Provide PDF uncertainty bands checked to provide consistently-sized CL

THEORY: The theory used in the analysis must be adequate and precise

Consistent inclusion of heavy quark mass effects Use computation of highest available perturbative order Estimate theoretical uncertainty due to higher order

JUSER-FRIENDLY: The user must be able to choose physical parameters

Provide PDFs for a variety of values of α_s and heavy quark masses \mathbf{M}

Steps towards the ideal Increased parametrization flexibility

 NNPDF use always same redundant Neural Network parametrization
 CTEQ and MSTW added parameter (e.g. added one parameter in the small-x region)

 HERAPDF included parametrization error by varying around best-fit parameters

Steps towards the ideal Heavy quark treatment and physical parameter variation

- CTEQ61 to CTEQ66: importance of HQ mass effects
- Global analyses adopted a GM VFN scheme
- Extensive recent work:

Tung et al., hep-ph/0611254; Thorne, hep-ph/0601245; Tung, Thorne, arXiv:0809.0714; P.N., Tung, arXiv:0903.2667; Forte, Laenen, Nason, arXiv:1001.2312; J. Rojo et al., arXiv:1003.1241; Alekhin, Moch, arXiv:1011.5790;...

Is a consistent picture emerging? Precise HERA F²_c and F²_b data will answer

LHC. $\sqrt{s} = 14 \text{ TeV}$

Variation of **physical parameters** in PDF fit affects predictions: actual uncertainty is larger than PDF only uncertainty

Provide way to combine (PDF+ α_s) and (PDF+ m_Q) variation

Current PDF sets Where they are...

March 2010	CTEQ6.6	MSTW08	NNPDF2.0	АВКМО9	HERAPDF1.0	JR09	
Fixed-target DIS					×		
HERA DIS		$\overline{\checkmark}$			\checkmark	\checkmark	
Fixed-target DY		\checkmark			×	\checkmark	HA
Tevatron W,Z		\checkmark		×	×	×	PDF
Tevatron jets				×	×		
GM-VFN scheme			×	×	\checkmark	×	.00
NNLO	×		×		$\overline{\checkmark}$		
α_s variation			\checkmark	×	×	×	
m _Q variation	×		\checkmark	×	×	×	

November 2011	CT10(w)	MSTW08	NNPDF2.1(2.2)	ABKM09	HERAPDF1.5	JR09	
Fixed-target DIS				V	×	\checkmark	
HERA DIS							H-
Fixed-target DY					×		PD
Tevatron W,Z				×	×	×	F <
Tevatron jets				×	×		
LHC data	×	×		×	×	×	5
GM-VFN scheme				×	V	×	
NNLO	×				\checkmark		
α_s variation			\checkmark	×	\checkmark	×	
m _Q variation				×		×	

Implicit criterion: only what is public in LHAPDF exists

Current PDF sets ...and where they are going

highlights from EW working group+PDF4LHC meeting, November 2011 https://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=145744

- CT10(w): release a NNLO analysis
- MSTW08: performing studies Hessian versus Monte Carlo method for uncertainty determination
- NNPDF: inclusion of more LHC data (NNPDF2.3 and NNPDF3.0)
- ABM: release ABM10 and ABM11 with more HERA data, running HQ mass
- HERAPDF: release HERAPDF1.6 and HERAPDF1.7 combining HERA-I, HERA-II and HERA jets data
- HERAFITTER: new project trying to put together HERA and LHC data

November 2011	CT10(w)	MSTW08	NNPDF2.1(2.2)	ABKM09	HERAPDF1.5	JR09	
Fixed-target DIS			\checkmark	V	×	V	1_
HERA DIS						\checkmark	L L
Fixed-target DY					×	\checkmark	
Tevatron W,Z			\checkmark	×	×	×	
Tevatron jets				×	×		
LHC data	×	×		×	×	×	. о
GM-VFN scheme			\checkmark	×	M	×	
NNLO	×				\checkmark	\checkmark	
α_s variation			\checkmark	×	\checkmark	×	
m _Q variation			\checkmark	×		×	

Going towards agreement? Quark-quark luminosities

NLO $W^{\pm} \rightarrow f^{\pm}v$ at the LHC ($\sqrt{s} = 7$ TeV) $\sigma_{W^{\pm}} \cdot \mathbf{B}(W^{\pm} \rightarrow F_V)$ (nb) 10.8 10.6 10.4 10.2 68% C.L. PDF MSTW08 10 CTEQ6.6 9.8 CT10 С NNPDF2.1 9.6 HERAPDF1.0 \wedge HERAPDF1.5 9.4 Vertical error bars ABKM09 Inner: PDF only GJR08 Outer: PDF+a. 9.2 0.12 0.124 0.118 0.122 0.114 0.116 α_s(M_z²) NNLO W⁺ and W⁻ cross sections at the LHC (\sqrt{s} = 7 TeV) $\sigma_{W^{-}} \cdot B(W^{-} \rightarrow fv)$ (nb) 4.5 ATLAS, L = 33-36 pb⁻¹ 4.4 (September 2011) 4.3 4.2 68% C.L. PDF /4.1⊦ Watt NNPDE2 1 HERAPDF1.0 ci HERAPDF1.5 ABKM09 JR09 PDF+a, uncertainties 3.9 d/u 5.6 5.8 6 6.2 6.4 6.6 $\sigma_{w^*} \cdot \mathbf{B}(\mathbf{W}^* \rightarrow \mathbf{I}^* v)$ (nb)

G. Watt http://projects.hepforge.org/mstwpdf/pdf4lhc/ringberg/

- Observables related to QQ luminosity do not depend much on $\alpha_s(m_Z)$

Going towards agreement? Gluon-gluon luminosities

G. Watt http://projects.hepforge.org/mstwpdf/pdf4lhc/ringberg/ gg luminosity at LHC (\star{s} = 7 TeV)

- Noticeable agreement among global sets (MSTW and NNPDF at NNLO plus CT10 at NLO)
- Less agreement with JR and ABKM
- Observables related to GG luminosity do depend a
- lot on $\alpha_s(m_z)$
- The $\alpha_s(m_z)$ puzzle

The α_s puzzle

only statistical uncertainty quoted

Analysis	α _s (M _z) NLO	α _s (M _z) NNLO	Ref.
MSTW08	0.1202 ^{+0.0012} -0.0015	0.1171 ± 0.00114	MSTW, Eur.Phys.J. C63 (2009)
NNPDF2.1	0.1191 ± 0.0006	0.1173 ± 0.0007	NNPDF, Phys.Lett. B701 (2011) & 1110.2483
CT10	0.11964 ± 0.0064	0.118 ± 0.005	prel. (P. Nadolsky talk)
NNPDF2.1 (DIS only)	0.1178 ± 0.0009	0.1166 ± 0.0008	NNPDF, Phys.Lett. B701 (2011) & 1110.2483
HERAPDF		0.1202 ± 0.0019	prel. (M.Cooper talk)
ABKM09	0.1179 ± 0.0016	0.1135 ± 0.0014	Alekhin et al, Phys.Rev. D81(2010)
JR09	0.1145 ± 0.0018	0.1124 ± 0.0020	JR, Phys.Rev. D79 (2009)

NNLO α_s(M²) values used by different PDF groups

- Several parton sets provide range of PDF sets at several α_s values
- BUT for some PDF sets α_s is a parameter of the fit: impossible to disentangle PDF and α_s
- $\alpha_s(m_z)$ determined in NNLO PDF analyses disagree more than quoted uncertainties
- Global sets (and prel. HERA+jets) tend to agree to a higher value compatible with PDG average
- For some non global α_s determination, $\alpha_s(M_z)$ is much below PDG average
- Jets data stabilize analysis? Something more to be understood?

Constraints from LHC data

NNPDF2.1 dataset + LHC data

- \rightarrow Medium and large x gluon
 - Prompt photon
 - Precision jets data
 - Top pairs

 \rightarrow Light flavors at medium and small x

- Low-mass Drell-Yan
- Z rapidity distributions
- W asymmetries
- Polarized W

 Strangeness and heavy flavors

- Wc for strangeness
- Zc and yc for charm
- Zb for bottom

J. Rojo, PDF4LHC November 2011

Assess the impact of the LHC data

• To include LHC data in parton fits, TOOLS to interface slow NLO/NNLO codes to the fit are essential

APPLGRID [T. Carli et al, Eur.Phys.J. C66 (2010)]FASTNLO [T. Kluge et al, hep-ph/0609285]FASTDY [NNPDF, Nucl.Phys. B838 (2010)]

- It is nice to have a tool to estimate quickly the impact of new data without refitting
- Reweighting: an ensemble of MC PDF replicas gives a representation of probability density
 Update the "old" probability density upon the addition of new data

- Reweighting equivalent to refitting
 Any external user can do it!
- A lot of activity in this direction
 - NNPDF studies

Tevatron W lepton asymmetry [Nucl.Phys.B849 (2011)] LHC W lepton asymmetry [Nucl.Phys.B855 (2012)] Inclusion of more LHC data [J Rojo, PDF4LHC Nov. 2011]

- LHCb studies [De Lorenzi, PDF4LHC Apr. 2010]
- Prompt photon data [D'Enterria, PDF4LHC Nov. 2011]
- MSTW prel. studies [G. Watt, PDF4LHC Nov. 2011]

Some results

 W lepton asymmetry data from ATLAS and CMS → medium, small-x region light quarks/antiquarks
 LHCb high rapidity data → small-x region

■ Direct photon → medium-x gluon

LHC data already have a non-negligible impact!!

Summary and outlook

- PDF uncertainties play a crucial role in LHC phenomenology
- During the last few years the determination of PDFs has enormously improved both from statistical and theoretical point of views
- There are now 5 collaborations that provide up-to-date parton sets
- ⇒ How do we interpret the differences among these parton sets?
 - Here provided some criteria: parametrization, data, α_s ...
 - Still some discrepancies are unclear: more benchmarks needed? Probably yes...
 - Envelope of 5 predictions is a poor solution!
 - PDF4LHC recipe: choose global fits (predictions tend to agree to each others)
- PDF uncertainties are purely experimental
- ⇒ Theoretical uncertainty is still an unexplored field, time to start!
- LHC data already provide important constraints to PDFs and start discriminating among predictions!
- Inclusion by reweighting/refitting is crucial for obtaining up-to-date parton sets
- Towards collider only fit (HERA, Tevatron, LHC)?

Back-up

Alternative tables

	Data	Parametrization	Stat. treatment	Pert. Order	HQ scheme	α _s
CT10(w)	global DIS (FT + HERA) DY (FT + TeV) Inclusive Jets	* 6 independent f _i * Polynomial par (26 pars)	Hessian with fixed tolerance	NLO	S-ACOT-χ	external parameter - several α _s values
MSTW08	global DIS (FT + HERA) DY (FT + TeV) Inclusive Jets	* 7 independent f _i * Polynomial par (20 pars)	Hessian with dynamic tolerance	LO NLO NNLO	ACOT + TR'	external parameter - several α _s values + fitted
NNPDF2.1 (NNPDF2.2)	global DIS (FT + HERA) DY (FT + TeV) Inclusive Jets (+ LHC data)	* 7 independent f _i * Neural Networks (259 pars)	Monte Carlo sampling + Cross validation	LO NLO NNLO	FONLL-A	external parameter - several α _s values
HERAPDF1.5	only DIS HERA-I + prel. HERA-II	* 5 independent f _i * Polynomial par (14 pars)	Conventional Hessian (Monte Carlo)	NLO NNLO	ACOT + TR'	external parameter
АВКМ09	only DIS + Fixed-Target DY	* 6 independent f _i * Polynomial par (13 pars)	Hessian wo tolerance	NLO NNLO	FFNS n _f =3,4,5	fitted,not external parameter
JR09	DIS + Jets + Fixed-Target DY	* 5 independent f _i * Valence-like assumptions	Hessian with fixed tolerance	NLO NNLO	FFN, nf=3,4,5 and VFN	fitted,not external parameter

The name of the game

• The name of the game:

Determine a set of functions and their errors starting from a bunch of experimental data

$$\langle \mathcal{F}[f(x)] \rangle = \int [\mathcal{D}f] \mathcal{F}[f(x)] \mathcal{P}[f(x)]$$

• Determine a infinite-dimensional object with a finite number of constraints!

Standard approach:
 Project into a space of parameters and use
 Hessian method

$$f_i(x, Q_0^2) = a_0 x^{a_1} (1 - x)^{a_2} P(x, a_3, a_4, \dots),$$

- Is the parametrization flexible enough?
- What is the error associated to any particular choice?
- Has to rely on linear propagation of errors and on tolerances

The NNPDF method for extracting PDFs

FONLL: heavy quark scheme

- NNPDF2.1 implements the FONLL method: prescription for combining massive quarks in the decoupling scheme N_F = 3 and massless quarks in the MS scheme N_F = 4, at any given order, avoiding double counting. Reference: S.Forte, E.Laenen, P.Nason, J. Rojo [ArXiv:1001.2312]
- Definition of FONLL structure function:

$$F^{\text{FONLL}}(x, Q^2) = F^{(n_f+1)}(x, Q^2) + F^{(n_f)}(x, Q^2) - F^{(n_f, 0)}(x, Q^2)$$

 $F^{(n_f+1)}(x, Q^2)$: massless-scheme structure function $F^{(n_f)}(x, Q^2)$: massive-scheme structure function \Rightarrow inclusion of the mass suppressed terms $F^{(n_f,0)}(x, Q^2)$: massless limit of $F^{(n_f)}(x, Q^2) \Rightarrow$ subtraction of the double counting terms

- At the moment, three possibilities:
 - FONLL-A: $\mathcal{O}(\alpha_s)$ PDFs + $\mathcal{O}(\alpha_s)$ coefficient functions (NNPDF2.1 NLO set),
 - FONLL-B: $\mathcal{O}(\alpha_s)$ PDFs + $\mathcal{O}(\alpha_s^2)$ coefficient functions,
 - FONLL-C: $\mathcal{O}(\alpha_s^2)$ PDFs + $\mathcal{O}(\alpha_s^2)$ coefficient functions (NNPDF2.1 NNLO set).
- $\mathcal{O}(\alpha_s^2)$ coefficient functions available only in the NC and not the CC sector.
- NNPDF2.1 is presently available in all the above schemes.

Higgs and ttbar: gluon luminosity

W and Z production: light flavor decomposition

Collider-only fit

- No fixed target data
- No low energy troubles (nuclear corrections, higher twists...)
- HERA + Tevatron:
 - Good accuracy for gluon
 - Loss of accuracy for flavor separation and strange
 - What about HERA + Tevatron + LHC?

W lepton asymmetry data

Tevatron parton kinematics 7 TeV LHC parton kinematics 10⁹ 10⁹ WJS2008 WJS201 x, _ = (M/1.96 TeV) exp(±y) $x_{1,2} = (M/7 \text{ TeV}) \exp(\pm y)$ 10⁸ Q = M10⁸ Q = MM = 7 TeV107 107 $10^{-2} \le x \le 0.2$ 10° M = 1 TeV 10⁶ M = 1 TeV 105 Q^2 (GeV²) 10⁵ (GeV²) S 10⁴ M = 100 GeV 5 M = 100 GeV 10⁴ C ð CATLAS 10³ 4HCB 9 number 10³ y = **y** = 2 4 10² 10² M = 10 GeV M = 10 GeV fixed HERA 10 fixed target HERA 10 target 10° 10-6 10-4 10-3 10-1 10-5 10-2 10° 10-7 10⁰ 10⁻² 10-5 10-3 10-6 104 10-1 10-7 10⁰ х