Searches for New Physics with the LHCb experiment

Amsterdam Particle Physics Symposium November 30th – December 2nd 2011

Wouter Hulsbergen (Nikhef) on behalf of the LHCb collaboration

1. the *virtual* energy frontier

discovery of NP in low-energy observables

selected topics: * CPV in mixing

* lepton flavour violation

2. the *absolute* energy frontier

discovery of NP by direct production of new particles

'complementary' to GPDs: forward acceptance

selected topics (plans only):
* top

* long-lived heavy particles

Neutral meson mixing

neutral meson flavour states mix via this loop diagram

heavy (H) and light (L) mass eigenstates are mixture of flavour states

Neutral meson mixing

neutral meson flavour states mix via this loop diagram

phenomenology described in terms of 5 observables

- M12 and Γ12: mixing amplitudes via off-shell and on-shell states, respectively
- CP violating phase $ilde{\phi}$ is their relative phase: $ilde{\phi}=rg(-M_{12}/\Gamma_{12})$
 - in SM close to zero both in Bs and Bd system

Experimental observables in B mixing

decay time allows to observe time-evolution

1. oscillation frequency:

$$A^{ ext{mix}}(t) \;=\; rac{N^{B^0\overline{B}^0|\overline{B}^0B^0}-N^{B^0B^0|\overline{B}^0\overline{B}^0}}{N^{B^0\overline{B}^0|\overline{B}^0B^0}+N^{B^0B^0|\overline{B}^0\overline{B}^0}}\;=\; \cos(\Delta m_q t)$$

2. CPV in mixing:

$$a_{fs} \equiv rac{N^{B^0 B^0} - N^{\overline{B}{}^0 \overline{B}{}^0}}{N^{B^0 B^0} + N^{\overline{B}{}^0 \overline{B}{}^0}} = rac{1 - |q/p|^4}{1 + |q/p|^4}$$

3. CPV in interference between mixing and decay (next slide)

Time-dependent CPV

common final state → mixing induced CPV

• if *f* is *CP eigenstate*, time dependent CP violation with pattern

$$A_{CP}(t) \;\equiv\; rac{N(\overline{B}^0 o f) - N(B^0 o f)}{N(\overline{B}^0 o f) + N(B^0 o f)} \;=\; rac{\sin \phi_f}{\phi_f} \, \sin(\Delta m_q t)$$

'golden' modes:

$$egin{array}{lll} B_d o \psi K_s: & \phi_{J/\psi K_s} = 2eta & \stackrel{SM}{=} 50^\circ - 55^\circ \ B_s o \psi \phi: & \phi_{J/\psi \phi} = -2eta_s & \stackrel{SM}{=} -2.1^\circ \pm 0.1^\circ \end{array}$$

(SM predictions from CKMFitter, PRD83,036004 and UFTit 2010)

- new phase in mixing $ightarrow \phi_f \ = \ \phi_f^{SM} \ + \ \delta ilde{\phi}^{ ext{NP}}$

New physics hints in mixing ?

TD CP violation in the B_s-system at LHCb

two most interesting modes:

- narrow ϕ resonance --> clean
- vector-vector final state

- BF about 20% of Bs->J/ $\psi \phi$
- vector-pseudo-scalar final state

TD CP violation in the B_s-system at LHCb

two most interesting modes:

- vector-vector final state

- BF about 20% of Bs->J/ $\psi \phi$
- vector-pseudo-scalar final state

Time-dependent CPV ($\Delta\Gamma \neq 0$)

common final state mixing induced CPV

• if **f** is *CP eigenstate*, time dependent CP violation with pattern

$$A_{CP}(t) \equiv \frac{N(\overline{B}^0) - N(B^0)}{N(\overline{B}^0) + N(B^0)} = \frac{\eta_f \sin(\phi_f) \sin(\Delta m_q t)}{\cosh(\Delta \Gamma_q t) - \eta_f \cos(\phi_f) \sinh(\Delta \Gamma_q t/2)}$$

Time-dependent CPV ($\Delta\Gamma \neq 0$)

common final state mixing induced CPV

• if *f* is *CP eigenstate*, time dependent CP violation with pattern

$$A_{CP}(t) \equiv \frac{N(\overline{B}^0) - N(B^0)}{N(\overline{B}^0) + N(B^0)} = \frac{\eta_f \sin(\phi_f) \sin(\Delta m_q t)}{\cosh(\Delta \Gamma_q t) - \eta_f \cos(\phi_f) \sinh(\Delta \Gamma_q t/2)}$$

• ambiguity: $(\phi_s, \Delta\Gamma_s) \longleftrightarrow (\pi - \phi_s, -\Delta\Gamma_s)$

Time-dependent CPV ($\Delta\Gamma \neq 0$)

common final state mixing induced CPV

• if *f* is *CP eigenstate*, time dependent CP violation with pattern

$$A_{CP}(t) \equiv \frac{N(\overline{B}^{0}) - N(B^{0})}{N(\overline{B}^{0}) + N(B^{0})} = \frac{\eta_{f} \sin(\phi_{f}) \sin(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t) - \eta_{f} \cos(\phi_{f}) \sinh(\Delta \Gamma_{q}t/2)}$$

- ambiguity: $(\phi_s, \Delta\Gamma_s) \longleftrightarrow (\pi \phi_s, -\Delta\Gamma_s)$
- CP eigenvalue of final state: $\eta_f = (-1)^L$
 - Bs->J/ψ f0: CP-odd
 - Bs->J/ $\psi \phi$: mixture of CP-odd and CP-even

→ needs 'angular analysis': include 4-body decay-angles in fit procedure

MLL fit for Bs->J/ $\psi \phi$

- MLL fit to mass, time, angles and flavour tag decision
- fit for **9** physics parameters
 - amplitudes: 3 sizes and 3 phases
 - Γ_{s} , $\Delta\Gamma_{s}$, ϕ_{s}
- Δm_s taken from $B_s -> D_s \pi$

 goodness of fit, using "pointto-point dissimilarity test" (*) gives P-value of 0.44

(*) see eg. M. Williams, JINST 5 (2010) P09004 [arXiv:1006.3019 [hep-ex]]

data

sig. component

bkg, component

cp-even sig. component

cp-odd sig. component s-wave component

Fit result for Bs->J/ $\psi \phi$

result for mixing parameters (preliminary, LHCb-CONF-2011-049)

$$\phi_s^{J/\psi\phi} = 0.13 \pm 0.18 \text{ (stat)} \pm 0.07 \text{ (syst) rad},$$

 $\Gamma_s = 0.656 \pm 0.009 \text{ (stat)} \pm 0.008 \text{ (syst) ps}^{-1}$
 $\Delta\Gamma_s = 0.123 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst) ps}^{-1}$

- most precise results for single experiment
- first 4σ evidence for non-zero $\Delta\Gamma_s$
- consistent with SM prediction

 $\phi^{J\psi\phi,SM}_{s} = -0.036 \pm 0.002$ $\Delta\Gamma^{
m SM} = 0.082 \pm 0.021
m ps^{-1}$

(Lenz and Nierste, arXiv: 1102.4274, CKM fitter, arXiv:1106.4041)

systematics:

- angular acceptance
- decay time acceptance

Standard Model

Fit result for Bs->J/ ψ f0

- fit to mass, time and flavour tag
- fit for 2 physics parameters
 - ▲ ΔΓ_s, φ_s
 - Γ_s : taken from B_s ->J/ $\psi \phi$
 - Δm_s : taken from $B_s \rightarrow D_s \pi$

- fit result (preliminary, LHCb-CONF-2011-051) $\phi_s = -0.45^{+0.45}_{-0.57} \Delta\Gamma_s = 0.128^{+0.057}_{-0.043}$
- fixing $\Delta \Gamma_{
 m s}$ to result from B_s->J/ $\psi \phi$ $\phi_s = -0.44 \pm 0.44 \pm 0.02$

Combining Bs->J/ $\psi\phi$ and Bs->J/ ψ f0

simultaneous fit to both samples

 $\phi_s ~=~ 0.03 \pm 0.16 \pm 0.07$

(prelim, LHCb-CONF-2011-056)

 TDCPV gives no evidence for NP in Bs mixing yet

CDF/LHCb/D0 results

- next steps
 - resolve ambiguity by fitting S-wave phase in bins of M(KK) (Y. Xie et al., JHEP 0909:074, (2009))
 - add more data (2.5x more recorded!)
 - add same-side Kaon tagger (~1.5x more tagging power!)

What do we learn from this?

NP models usually only consider contributions to M₁₂

$$M_{12} = M_{12}^{\text{SM}} r^{\text{NP}} e^{i\tilde{\phi}}$$

$$mexpected mixing frequency?$$

$$\Delta m_s^{\text{lhcb}} = 17.725 \pm 0.041 \pm 0.026 \text{ ps}^{-1}$$

$$\Delta m_s^{\text{SM}} = 16.8^{+2.6}_{-1.5} \text{ ps}^{-1}$$

$$[\text{PRD.83, 036004 (2011)]}$$

$$\phi_s^{\text{SM}} = -0.036 \pm 0.002$$

$$\phi_s^{\text{SM}} = -0.036 \pm 0.002$$

$$[\text{PRD.83, 036004 (2011)]}$$

$$\Delta \Gamma^{\text{lhcb}} = 0.123 \pm 0.029 \pm 0.011 \text{ ps}^{-1}$$

$$\Delta\Gamma^{\rm SM}=0.082\pm0.021\rm{ps}^{-1}$$

[Lenz&Nierste,2011]

 $egin{aligned} \phi_s &= \phi_s^{SM} + ilde{\phi}^{ ext{NP}} \ \Delta\Gamma &pprox \Delta\Gamma^{SM}\cos(ilde{\phi}^{ ext{NP}}) \end{aligned}$

What do we learn from this?

NP models usually only consider contributions to M₁₂

$$M_{12} = M_{12}^{\rm SM} r^{\rm NP} e^{i\tilde{\phi}} \qquad \tilde{\phi} = \tilde{\phi}^{\rm SM} + \tilde{\phi}^{\rm NP}$$

constraints depend on assumed flavour structure of NP sector

$B_s \rightarrow \mu \mu$: shown by Niels Tuning this morning

no signals yet. what does this mean?

Constraints on New Physics from $B_s \rightarrow \mu \mu$

- in MSSM Bs->mumu receives contribution ~(tanβ)⁶
- leads to strong constraints, especially at large tanβ

tan β=30, A =0

1000

m_{1/2} [GeV]

for example, in CMSSM:

500

CMSSM

2000

1500

000

500

m₀ [GeV]

- strongest Bs->mumu constraints from ratio $\eta \equiv \left(\frac{BR(B_s \to \mu^+ \mu^-)}{BR(B_u \to \tau \nu)}\right) / \left(\frac{BR(D_s \to \tau \nu)}{BR(D \to \mu \nu)}\right)$
- for other recent analyses, see e.g. arXiv:1104.3572,

Combining BF(B_s $\rightarrow \mu\mu$) and ϕ_s

• in many models, correlation between enhancements in BF(Bs \rightarrow µµ) and ϕ_s

combining many flavour physics observables gives most powerful constraints

for overview see e.g. Buras, "Flavour theory: 2009", arXiv:0910.1032

Lepton Flavour Violation in B Decays

B-decays with **like-sign** di-muons probe 'medium-heavy' Majorana neutrinos

- limit on BF can be interpreted as limit on coupling between majorana neutrino and W and neutrino
- LHCb looks for different final states
 - in $B^+ \rightarrow \pi^- \mu^+ \mu^+$ and $B^+ \rightarrow K^- \mu^+ \mu^+$ arXiv:1110.0730 (hep-ex), submitted to PRL
 - in $B \to D \,\mu^+ \mu^+$ and $B \to D \,\pi \,\mu^+ \mu^+$, to be submitted to PRD soon

Search for
$$B^+ \to K^- \mu^+ \mu^+$$
 and $B^+ \to \pi^- \mu^+ \mu^+$

- analysis strategy
 - use $B^+
 ightarrow J/\psi K^+$ for optimization and normalization
 - use $B^+ \rightarrow K^+ \mu^+ \mu^-$ sidebands to estimate combinatorial background

D decays also understudy: expect to improve B-factory limits by factor 100

LVF in tau decays: $au ightarrow \mu \mu \mu$

- $\tau \rightarrow \mu \mu \mu$ extremely rare in SM, but BF up to 10⁻⁸ in BSM
 - current limit: BF<2.1 10^-8 (Belle)</p>
- tau production at LHC almost exclusively from Ds and B decays
 - ~8 x 10⁹ taus per 1/fb in LHCb
 - trigger efficiency for $\tau \rightarrow 3\mu$ is ~50%
- analysis strategy: normalize to $D_s^+
 ightarrow \phi(\mu^+\mu^-)\pi^+$

sources of tau leptons at LHCb

Decay chain	Probability $(\%)$
$D_s \to \tau$	78.3
$D_s \to \tau$	68.9
$B_x \to D_s \to \tau$	9.4
$D^+ \to \tau$	4.9
$D^+ \to \tau$	4.7
$B_x \to D^+ \to \tau$	0.2
$B_x \to \tau$	16.8

- preliminary analysis of backgrounds: reach Belle limit with 2011 data
- LHCb can also put first limit on
 τ→pµµ at O(10⁻⁷) level
 with 2011 data

How about the *absolute* energy frontier?

- LHCb wasn't build for this, but still interesting
 - unique pseudo rapidity coverage: $2 < \eta < 5$
 - Iow pT lepton triggers
 - Iarge boost, precise vertexing (tau, B tagging)
- subset of things we (will) look at
 - W, Z, DY production in forward region (LHCb-CONF-2011-039)
 - sensitivity to parton distribution functions in previously unexplored territory
 - high energy tau leptons
 - calibrate using Z->tautau and lepton universality (LHCb-CONF-2011-041)
 - from there on, look for anomalous tau production (e.g. from SUSY)
 - top-anti-top production asymmetry
 - new long-lived, heavy particles

Example: W acceptance and asymmetry

17% (16%) of W- (W+) in LHCb acceptance MCFM LOVs=7 TeV MSTW2008 PDFs 1.4 1.2 0.8 0.6 0.4 0.2 Lepton Pseudorapidity W+/W- asymmetry vs eta 2 ATLAS+CMS+LHCb <mark>do⁺/dŋ - dơ/dŋ</mark> do⁺/dŋ + dơ/dŋ 0.3 √s=7 TeV Preliminary 0.1 $p_{T}^{I} > 20 \text{ GeV}$ ATLAS (extrapolated data, $W \rightarrow lv$) 35 pb⁻¹ CMS (W $\rightarrow \mu\nu$) 36 pb⁻¹ -0.1 LHCb (W $\rightarrow \mu\nu$) 36 pb⁻¹ MSTW08 prediction (MC@NLO, 90% C.L.) -0.2F CTEQ66 prediction (MC@NLO, 90% C.L.) HERA1.0 prediction (MC@NLO, 90% C.L.) -0.3 2.5 3.5 0 0.5 1.5 2 3 4 |η (LHCb-CONF-2011-039)

cross-section measurements at LHCb constrain PDFs which have large uncertainty at large rapidity

Top anti-top A_FB

• at the Tevatron have $p\overline{p}
ightarrow t\overline{t}X$

$$\Delta y = y_t - y_{\overline{t}}$$
 $A_{\mathrm{FB}} = rac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$

 measurements at Tevatron show deviation from SM

Figure 1: Top-antitop production at the Tevatron. The ratio $O_{\rm SM}/O_{\rm exp}$ is displayed for the total cross section $\sigma_{t\bar{t}}$ and its invariant mass distribution $(d\sigma/dM_{t\bar{t}})^>$ for $M_{t\bar{t}} \in [0.8, 1.4]$ TeV. The inclusive asymmetry in the parton frame is shown for the lepton + jets channel, $(A_{\rm FB})_{l+j}^{t\bar{t}}$, besides its bin $(A_{\rm FB}^t)^>$ for high invariant mass $M_{t\bar{t}} > 0.45$ TeV, as well as for the dilepton channel, $(A_{\rm FB}^t)_{l\bar{t}}^{t\bar{t}}$. The asymmetry in the laboratory frame is denoted by $(A_{\rm FB}^t)^{\rm lab}$, and $A_{\rm FB}^t$ is the charged lepton asymmetry. Numbers correspond to the central measured values [1].

Top anti-top A_FB

Tevatron

LHC

top

top

anti-top

η

anti-top

• at the Tevatron have $p\overline{p}
ightarrow t\overline{t}X$

$$\Delta y = y_t - y_{ar t}$$

$$A_{\rm FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

• at the LHC have
$$pp
ightarrow t \overline{t} X$$

$$egin{aligned} \Delta |y| &= |y_t| - |y_{ar{t}}| \ A_c &= rac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)} \end{aligned}$$

ATLAS, 0.7/fb: $A_c = -0.024 \pm 0.016 \pm 0.023$

CMS, 1.09/fb: $A_c = -0.016^{+0.030}_{-0.030} {}^{+0.010}_{-0.019}$

Top anti-top asymmetry in LHCb

- LHCb doesn't have 4pi acceptance. proposal by Kagan e.a. (arXiv:1103.3747)
 - look for single top, then measure difference in top and anti-top production at large rapidity
 - most promising channel: t --> W b, with W --> $\mu\nu$ and one b-jet
- expected backgrounds
 - W + light jet
 - W + b jet (not from top)
 - b b-bar
 - single top
 - *...*
- measurement looks complicated, but not impossible
 - → time-scale: 'summer'

FIG. 1: The $t\bar{t}$ signal and background distributions as a function of the invariant mass of the candidate b and muon, $m_{b\mu}$, see text for details. The curves from top to bottom (at $m_{b\mu} = 100 \text{ GeV}$) are for $t\bar{t}$, Wj, single top, Wb, bb, and jj. (from arXiv:1103.3747)

note: generator simulation only!

Searches for long-lived heavy particles

- new long-lived heavy particles featured in many BSM models, e.g.
 - LSP in SUSY theories with a bit of R-parity violation
 - light right-handed neutrinos
 - R-hadrons
 - Hidden Valley
- for example, Strassler and Zurek: "Sector with non-abelian gauge group with a new quantum number "v"(analogous to charge → v = 0, ±1), which couple weakly to the standard model via higher-dimension operators, and which has a mass gap."

Search 1: heavy displaced vertices

- Iook for vertices in LHCb vertex detector
- main backgrounds
 - material interactions
 - B decays
- typical reach
 - 1ps 100ps
 - 10 Gev 100 GeV
- complementary ATLAS/CMS
 - more boost, smaller lifetime
 - high trigger efficiency
- work in progress ...

... first results expected in spring

Search 2: charged massive particles

- heavy, charged particle --> low velocity
 - ATLAS/CMS, DCF, D0: dE/dX
 - LHCb: cherenkov angle in RICH

$$\left. iggree \right\} \ \ m \ = \ {p\over \gammaeta}$$

 analysis in progress: not yet clear if backgrounds can be controlled sufficiently to set competitive limits

summary/outlook

- LHCb experiment concentrates on low-energy observables
 - CP violation (CKM metrology, CPV in mixing)
 - rare decays
 - lepton flavour violation

see talk by N. Serra tomorrow

- starting up effort to extend program to physics beyond flavour
 - exploit unique rapidity range, displaced vertex trigger
 - Iook at anomalous production of tau, top, long-lived heavy particles
- stay tuned!