Amsterdam, Particle Physics Symposium, November 30th, 2011

R-parity Violation and SUSY Searches at the LHC

Herbi Dreiner

Physikshow trip to CERN Sept. 2010

OUTLINE

• **R-parity Violation** equally well motivated **R-Parity Conservation**

- Should dedicate comparable effort at the LHC
- What has been done?
- Top R-parity Violating Signatures (work in progress: T. Stefaniak, W. Porod)

SUSY LAGRANGIAN

- SUSY Lagrangian fixed by
 - gauge group: SU(3)xSU(2)xU(1)
 - particle content: L_i , \overline{E}_i , Q_i , \overline{U}_i , \overline{D}_i , H_u , H_d (chiral superfields)

$$L = \begin{pmatrix} N \\ E \end{pmatrix}_{L} \sim \begin{pmatrix} \phi_{\tilde{\nu}} + \epsilon \psi_{\nu} \\ \phi_{\tilde{e}} + \epsilon \psi_{e} \end{pmatrix}_{L}, \quad E^{c} \sim \phi_{\tilde{e}}^{*} + \epsilon \psi_{e_{R}}^{c}$$
$$Q = \begin{pmatrix} U \\ D \end{pmatrix}_{L} \sim \begin{pmatrix} \phi_{\tilde{u}} + \epsilon \psi_{u} \\ \phi_{\tilde{d}} + \epsilon \psi_{d} \end{pmatrix}_{L}, \quad U^{c} \sim \phi_{\tilde{u}}^{*} + \epsilon \psi_{u_{R}}^{c}, \quad D^{c} \sim \phi_{\tilde{d}}^{*} + \epsilon \psi_{d_{R}}^{c}$$

• Superpotential \longrightarrow

SUPERPOTENTIAL

 $W_{\text{MSSM}} = (h_e)_{ij} L_i H_d E_j^c + (h_d)_{ij} Q_i H_d D_j^c + (h_u)_{ij} Q_i H_u U_j^c + \mu H_d H_u$

• These terms give mass to quarks and leptons.

$$W_{\mathsf{RPV}} = \underbrace{\lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \kappa_i L_i H_u}_{\lambda''_{ijk}} + \underbrace{\lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k}_{\lambda''_{ijk}}$$

Lepton Number Violating Baryon Num. Viol.

• Do you only consider W_{MSSM} or include some or all of W_{RPV} ?

R-Parity MSSM

Advantages:

- Proton stable (Well should really consider P_6 instead of R_p)
- Automatic dark matter candidate: $\tilde{\chi}_1^0$

Disadvantages:

- \bullet Must add ν_R and Majorana scale ${\rm M_M}>10^{11}\,{\rm GeV}$
- No solution to strong CP problem

R-Parity MSSM & Axion

Advantages:

- Proton stable (Well should really consider P_6 instead of R_p)
- Automatic dark matter candidate: $\tilde{\chi}_1^0$
- Peccei Quinn axion solution to strong CP problem

Disadvantages:

 \bullet Must add ν_R and Majorana scale ${\rm M_M}>10^{11}\,{\rm GeV}$

Baryon Triality (B₃) SSM

•
$$W = W_{\text{MSSM}} + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \kappa_i L_i H_u$$

Advantages:

- Proton stable
- Automatic light neutrino masses
 - $\kappa LH_u \implies \nu_i$ and $\tilde{\chi}_i^0$ mix $\implies 1$ massive neutrino
 - at 1-loop $(LL\bar{E}, LQ\bar{D})$ generate other neutrino masses

Disadvantages:

- No dark matter candidate
- No solution to strong CP problem

B₃ **SSM & Axion**

• $W = W_{\text{MSSM}} + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \kappa_i L_i H_u$

Advantages:

- Proton stable
- Automatic light neutrino masses
- Automatic dark matter candidate: axion or axino

Disadvantages:

Theory Motivation

• Krauss & Wilczek: Discrete symmetries violated by quantum gravity

• Unless remnant of spont. broken gauge symmetry

⇒ "discrete gauge symmetry"

• Ibanez & Ross: if original U(1) gauge symmetry is anomaly-free

 \implies conditions on the remnant discrete symmetry

 \implies "anomaly-free discrete gauge symmetry"

• HD, Luhn, Thormeier: syst. study of all \mathbf{Z}_N with MSSM particle content

 \implies only 3 anomaly-free discrete gauge symmetries: P₆, R_p, B₃

Unification

- P_6 and B_p not compatible with simple unbroken GUT gauge group
- R_p dangerous dim-5 proton decay operators

Summary

R -parity Violation equally well motivated	R-Parity Conservation
---	------------------------------

R-Parity LHC Phenomenology

- SUSY Pair Production: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}$
- Lightest SUSY Particle (LSP) stable: $\tilde{\chi}_1^0$
- Signature: jets + missing transverse energy (MET) + leptons

RPC SUSY Searches at the LHC

- Signatures: (ATLAS & CMS)
 - jets + MET
 - *b*-jets + MET
 - 1 lepton + jets + MET
 - 2 leptons + MET
 - 2 photons + MET
 - 1 lepton + 1 photon + MET
 - stable colored particle(s)

*Only a selection of the available results leading to mass limits shown

SUSY

Mass scale [TeV]

B₃-Phenomenology: Lepton Number Violation

• charge current universality $(\pi \rightarrow e\nu)$

LOW-ENERGY BOUNDS ON λ , λ' (2 σ):

	$\lambda_{ijk}L_iL_j\bar{E}_k$	$\lambda'_{1jk}L_1Q_j\bar{D}_k$	$\lambda'_{2jk}L_2Q_j\bar{D}_k$	$\lambda'_{3jk}L_3Q_j\bar{D}_k$
weakest	0.07	0.28	0.56	0.52
strongest	0.05	$5. \cdot 10^{-4}$	0.06	0.11

• One operator at a time

• (almost all) Bounds scale with $(\tilde{m}/100) \, {\rm GeV}$

B₃-**Phenomenology: Main Changes**

1. Resonant/Associated Single SUSY Production possible

2. LSP is no longer stable

- 3. LSP $\in \{\chi_1^0, \chi_1^+, \tilde{\nu}_L, \tilde{\ell}_{L,R}^\pm, \tilde{\tau}_1^\pm, \tilde{q}_{L,R}, \tilde{g}\}$
- 4. In CMSSM/mSUGRA spectrum can differ

$\tilde{\tau}$ -LSP with $\Lambda = 0$

• SPS1a($M_0 = 100 \text{ GeV}, M_{1/2} = 250 \text{ GeV}$) chosen so χ_1^0 is LSP

 $M_{1/2} = 500 \text{ GeV}, A = -500 \text{ GeV}, \text{sgn}(\mu) = +1, \lambda'_{221} = 0.1$

Plethora of new Signatures

• With one dominant operator something like 441 possibilities

• Where to start?

• mSUGRA/RGEs; possible LSPs: $(\tilde{\chi}_1^0, \tilde{\tau}), (\tilde{\nu}, \tilde{\ell}_R)$

First Step: $\tilde{\chi}_1^0$ -LSP

• Pair production: $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{g}$

•
$$\tilde{\chi}_{1}^{0}$$
-LSP: $\tilde{\chi}_{1}^{0} \rightarrow \begin{cases} \ell^{\pm} + \ell^{\mp} + \not p_{T} & \mathsf{L}_{1}\mathsf{L}_{2,3}\bar{\mathsf{E}}_{1,2}, \mathsf{L}_{2}\mathsf{L}_{3}\bar{\mathsf{E}}_{1} \\ \ell^{\pm} + \tau^{\mp} + \not p_{T} & \mathsf{L}_{1,2}\mathsf{L}_{3}\bar{\mathsf{E}}_{3} \\ \ell^{\pm} + 2\,\mathsf{jets} & \mathsf{L}_{1,2}\mathsf{Q}_{\mathsf{i}}\bar{\mathsf{D}}_{\mathsf{k}} \\ \ell^{\pm} + 2\,\mathsf{jets} & \mathsf{L}_{1,2}\mathsf{Q}_{\mathsf{i}}\bar{\mathsf{D}}_{\mathsf{k}} \end{cases} \qquad \ell = e, \mu$

• Signatures: 4 charged leptons + p_T + jets $(e^+e^+\mu^-\mu^-+jets)$ like-sign dileptons + p_T + jets $(\ell^+\ell^++jets)$

LSP Decays in Detector

• Missing transverse energy diluted or absent

• Neutralino LSP decays:

•
$$LL\bar{E}$$
: $\tilde{\chi}_{1}^{0} \rightarrow \begin{pmatrix} ee \\ e\mu \\ e\tau \\ \mu\mu \\ \mu\tau \end{pmatrix} + \nu$

•
$$LQ\bar{D}$$
: $\tilde{\chi}_1^0 \rightarrow \begin{pmatrix} e, \mu, \tau \\ \nu \end{pmatrix} + 2 \text{ jets}$

• Very few R-parity violating searches performed to-date

• Can maybe still use MET searches?

$$M_0 = 150 \text{ GeV}, \ M_{1/2} = 400 \text{ GeV}, \ A_0 = 0, \ \tan \beta = 5, \ \operatorname{sgn}(\mu) = +$$

 $\lambda_{121} = \lambda'_{121} = 0.001$

Tim Stefaniak

$$M_{\tilde{\chi}^0_1}=$$
 162 , $M_{\tilde{\tau}_1}=$ 214 , $M_{\tilde{t}_1}=$ 650 , $M_{\tilde{q}}=$ 865 , $M_{\tilde{g}}=$ 935 GeV

ATLAS Search

• Resonant sneutrino production, followed by leptonic decay

• This requires two dominant operators

• Assume sneutrino is the LSP (or decay to LSP suppressed)

*Only a selection of the available results leading to mass limits shown

SUSY

Mass scale [TeV]

RPV and Leptoquarks

- Can also consider \tilde{q} -LSP
- Dominant $L_e Q_i \overline{D}_j$ operator

• Signature: *eejj*

• Can also have $\nu\nu jj$, or $\mu\mu jj$ ($L_{\mu}QD$)

		ATLAS Exotics Search	nes* - 95% CL Lower Limits	(Status: BSM-LHC 2011)		
	Large ED (ADD) : monojet	<i>L</i> =1.00 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 τεν Μ _D (δ=2	ΔΤΙΔΟ		
	$UED: \gamma\gamma + E_{T,miss}$	L=1.07 fb ⁻¹ (2011) [Preliminary]	1.22 TeV Compact. scale 1/R	Preliminary		
nsions	RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	L=36 pb ⁻¹ (2010) [ATLAS-CONF-2011-044]	920 Gev Graviton mass	c		
	RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm ee/\mu\mu}$	L=1.08-1.21 fb ⁻¹ (2011) [arXiv:1108.1582]	1.63 Tev Graviton mass	$Ldt = (0.031 - 1.60) \text{ fb}^{-1}$		
lime	RS with g_{aggKK}/g_s =-0.20 : $H_T + E_{T,miss}$	L=1.04 fb ⁻¹ (2011) [ATLAS-CONF-2011-123]	840 Gev KK gluon mass	√ s = 7 TeV		
tra o	Quantum black hole (QBH) : m_{dijet} , $F(\chi)$	<i>L</i> =36 pb ⁻¹ (2010) [arXiv:1103.3864]	3.67 Τεν <i>Μ_D</i> (δ=	6)		
ΕX	QBH : High-mass $\sigma_{t+\chi}$	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070]	2.35 TeV M _D			
	ADD BH (M_{th}/M_{D} =3) : multijet Σp_{T} , N_{jets}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 τεν Μ _D (δ=6)			
	ADD BH ($M_{\rm th}/M_{\rm D}$ =3) : SS dimuon $N_{\rm ch. part.}$	L=31 pb ⁻¹ (2010) [ATLAS-CONF-2011-065]	1.20 Τεν <i>Μ_D</i> (δ=6)			
~	qqqq contact interaction : $F_{\chi}(m_{\text{dijet}})$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesian limit)]	6.7 TeV	Λ		
C	qq $\mu\mu$ contact interaction : $m_{\mu\mu}$	<i>L</i> =42 pb ⁻¹ (2010) [arXiv:1104.4398]	4.9 TeV Л			
~	SSM : m _{ee/uu}	L=1.08-1.21 fb ⁻¹ (2011) [arXiv:1108.1582]	1.83 TeV Z' mass			
>	$SSM: m_{T,e/\mu}$	L=1.04 fb ⁻¹ (2011) [arXiv:1108.1316]	2.15 Tev W' mass			
\sim	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	<i>L</i> =35 pb ⁻¹ (2010) [arXiv:1104.4481] 376 GeV	1 st gen. LQ mass			
T(Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, μ vjj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV	2 nd gen. LQ mass			
	4^{th} generation : coll. mass in $Q_1 \overline{Q}_4 \rightarrow WqWq$	270 GeV L=37 pb ⁻¹ (2010) [ATLAS-CONF-2011-022] Q, mass				
	4 th generation : $d_{4}\overline{d}_{4} \rightarrow WtWt$ (2-lep SS)	$L=34 \text{ pb}^{-1}$ (2010) [arXiv:1108.0366] 290 GeV d_A	mass			
	$T\overline{T}_{4th \text{ dep}} \rightarrow t\overline{t} + A_0A_0 : 1 \text{ -lep } + \text{ jets } + E_{T \text{ miss}}$	L=1.04 fb ⁻¹ (2011) [Preliminary] 420 GeV	T mass			
	Techni-hadrons : dilepton, $m_{ee/\mu\mu}$	L=1.08-1.21 fb ⁻¹ (2011) [ACONF-2011-125] 470 G	ev ρ_{-}/ω_{T} mass (for $m(\rho_{-}/\omega_{T})$ - $m(\pi_{T})$ =	100 GeV)		
er	Major. neutr. (LRSM, no mixing) : 2-lep + jets	<i>L</i> =34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115]	780 GeV N mass (for $m(W_p) = 1$ TeV	()		
Oth	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115]	1.350 TeV W mass (for 230 <	<i>m</i> (N) < 700 GeV)		
	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow \mu\mu$)=1) : $m_{\mu\nu}$ (like sign)	L=1.6 fb ⁻¹ (2011) [ATLAS-CONF-2011-127375 GeV	H ^{±±} mass			
	Excited quarks : m_{dilet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311]	2.99 TeV Q* Mass			
	Axigluons : <i>m</i> _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311]	3.32 TeV Axialuor	mass		
	Color octet scalar : m _{dijet}	$L=1.0 \text{ fb}^{-1}$ (2011) [arXiv:1108.6311]	1 92 TeV Scalar resonan	ce mass		
		10 ⁻¹	1	10 10 ²		

*Only a selection of the available results leading to mass limits shown

Mass scale [TeV]

$\tilde{\tau}$ -LSP Phenomenology

• Dominant production mechanisms @ LHC: $\tilde{q}\tilde{q}, \ \tilde{g}\tilde{g}, \ \tilde{q}\tilde{g}$

• Signature determined by cascade decays:

$$\tilde{q} \longrightarrow \ldots \longrightarrow \chi_1^0 \longrightarrow \tau^{\pm} \tilde{\tau}^{\mp}$$

- How does the $\tilde{\tau}$ -LSP decay?
- Depends on dominant operator, e.g. $\lambda_{231}L_{\mu}L_{ au}E_e$

Simple leptonic two-body decay; easy to detect

• Get like-sign dilepton signature + extra τ 's

4-Body $\tilde{\tau}$ -Decays

• How about if $\lambda'_{211}L_{\mu}Q_2\bar{D}_2$? Would expect a 4-body decay

• But through RGEs generate couplings $\lambda_{233}L_{\mu}L_{\tau}\bar{E}_{\tau}$, which violates μ -number, but conserves τ -number.

• Must calculate case by case if 4-body or 2-body decay dominates

• Work in progress by ATLAS (Bonn group involved: Desch, Fleischmann, ...)

2 More Searches: Resonant $\tilde{\ell}, \tilde{\nu}$ Production

with Tim Stefaniak

• One dominant operator: $L_2 Q_i \overline{D}_j$

• Dijet resonance: compare with ATLAS and CMS searches (1 fb^{-1})

• Prompt like-sign μ 's, compare with ATLAS search

Resonant Slepton Production Xsection

• $\lambda' = 0.01$

• CTEQ6m PDFs

CMS, 1.0 fb⁻¹

Resonant Dijet Search

• Mass range search ATLAS (CMS) 0.9 TeV (1 TeV)- 4.0 TeV (4.1 TeV)

• Simulated 25,000 signal events for each slepton mass

TOP (10) RPV MODELS

(Work in progress: Tim Stefaniak, Werner Porod, Ben Allanach)

- LLE: (a) $(\tilde{\chi}_1^0, \tilde{\tau})$ -LSP
 - (b) pair production
 - (c) detached vertices
- LQD: (a) $(\tilde{\chi}_1^0, \tilde{\tau})$ -LSP
 - (b) pair production
 - (c) resonant production
 - (d) detached vertices

• UDD: ?

Conclusions & Outlook

- Tried to argue that RPC and RPV equally well motivated
- Experimental effort almost exclusively on RPC so far
- Shown some simple well motivated signatures: multileptons, likesign dileptons, dijet resonance bumps
- Compared resonant slepton production directly to existing ATLAS and CMS searches
- Outline of a top 10 list of signatures

Physikshow trip to Berlin: Weltmaschine Exhib.

Totally Unexpected

[V9D] assern mostgel2

