Statistical aspects of Higgs analyses

W. Verkerke (NIKHEF)

Introduction

- Enormous effort to search for Higgs signature in many decay channels
- Results → many plots with signal, background expectations, each with (systematic) uncertainties, and data
- Q: How do you conclude from this that you've seen the Higgs (or not)?
 - Want answer of type:
 `We can exclude that the Higgs exist at 95% CL", or "Probability that background only caused observed excess is 3.10-7
- Here a short guide through how this is (typically) done

Quantifying discovery and exclusion – Frequentist approach

- Consider the simplest case a counting experiment
 - Observable: N (the event count)
 - Model F(N|s): Poisson(N|s+b) with b=5 known exactly
- Predicted distributions of **N** for various values of **s**

Frequentist p-values – excess over expected bkg

- Now make a measurement $N=N_{obs}$ (example $N_{obs}=7$)
- Can now define p-value(s), e.g. for bkg hypothesis
 - Fraction of future measurements with N=Nobs (or larger) if s=0

Frequentist p-values - excess over expected bkg

- p-values of background hypothesis is used to quantify 'discovery' = excess of events over background expectation
- Another example: $N_{obs} = 15$ for same model, what is p_b ?

- Result customarily re-expressed as odds of a Gaussian fluctuation with equal p-value (3.5 sigma for above case)
- NB: N_{obs} =22 gives p_b < 2.810-7 (`5 sigma')

Upper limits (one-sided confidence intervals)

- Can also defined p-values for hypothesis with signal: p_{s+b}
 - Note convention: integration range in p_{s+b} is flipped

 Convention: express result as value of s for which p(s+b)=5% → "s>6.8 is excluded at 95% C.L."

Modified frequentist upper limits

- Need to be careful about interpretation p(s+b) in terms of inference on signal only
 - Since p(s+b) quantifies consistency of signal *plus* background
 - Problem most apparent when observed data has downward stat. fluctations w.r.t background expectation
- Example: N_{obs} = 2
 - → $p_{s+b}(s=0) = 0.04$

s≥0 excluded at >95% C.L. ?!

- Modified approach to protect against such inference on s
 - Instead of requiring p(s+b)=5%, require

$$CL_s \equiv \frac{p_{s+b}}{1-p_b} = 5\%$$

for N=2 exclude s>3.4 at 95% C.L.s, for large N effect on limit is small as $p_b \rightarrow 0$

p-values and limits on non-trivial analysis

• Typical Higgs search result is not a simple number counting experiment, but looks like this:

- Result is a distribution, not a single number
- Models for signal and background have intrinsic uncertainties

- Any type of result can be converted into a single number by constructing a 'test statistic'
 - A test statistic compresses all signal-to-background discrimination power in a single number
 - Most powerful discriminators are Likelihood Ratios (Neyman Pearson)

$$q_{\mu} = -2\ln\frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

The likelihood ratio test statistic

- Definition: μ = signal strength / signal strength(SM)
 - Choose e.g likelihood with nominal signal strength in numerator (μ =1)

'likelihood assuming nominal signal strength'

$$q_1 = -2 \ln \frac{L(data \mid \mu = 1)}{L(data \mid \hat{\mu})} \quad \hat{\mu} \text{ is best fit value of } \mu$$
'likelihood of best fit'

• Illustration on model with no shape uncertainties

On signal-like data q1 is **small**

On background-like data q1 is large

Distributions of test statistics

- Value of q₁ on data is now the `measurement'
- Distribution of q₁ not calculable
 → But can obtain distribution from pseudo-experiments
 - Generate a large number of pseudo-experiments with a given value of mu, calculate q for each, plot distribution

 From q_{obs} and these distributions, can then set limits similar to what was shown for Poisson counting example

Incorporating systematic uncertainties

• What happens if models have uncertainties

$$L(data \mid \mu) \rightarrow L(data \mid \mu, \vec{\theta}) \qquad Jet \, Energy \, Scale, \\ QCD \, scale, \\ Iuminosity, \\ luminosity, \\ QCD \, scale, \\ Iuminosity, \\ Iuminosity,$$

– Introduction of additional model parameters θ that describe effect of uncertainties

Incorporating systematic uncertainties

Likelihood includes *auxiliary measurement* terms that constrains the nuisance parameters θ (shape is flat, log-normal, gamma, or Gaussian)

 $L(data \mid \mu, \theta) = Poisson(N_i \mid \mu \cdot s_i(\theta) + b_i(\theta))(p(\tilde{\theta}, \theta))$

Dealing with nuisance parameters in the test statistic

 Uncertainty quantified by nuisance parameters are incorporated in test statistic using a profile likelihood ratio

$$q_{\mu} = -2\ln \frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

$$\widetilde{q}_{\mu} = -2\ln \frac{L(data \mid \mu, \hat{\theta}_{\mu})}{L(data \mid \hat{\mu}, \hat{\theta})}$$

'likelihood of best fit for a given fixed value of μ'

'likelihood of best fit'

(with a constraint $0 \leq \hat{\mu} \leq \mu$)

 Interpretation of observed value of qµ in terms of p-value again based on expected distribution obtained from pseudo-experiments

Dealing with nuisance parameters in the test statistic

 Uncertainty quantified by nuisance parameters are incorporated using a profile likelihood ratio test statistic

 Interpretation of *observed* value of qµ in terms of p-value again based on expected distribution obtained from pseudo-experiments

Putting it all together for one Higgs channel

- Result from data D(x)
- PDF F(x|m_H,μ,θ) that models the data for a given true Higgs mass hypothesis

- Construct test statistic
- Obtain expected distributions of q_{μ} for various μ
 - Determine 'discovery' p-value and signal exclusion limit
- Repeat for each assumed m_{H..}

Example – 95% Exclusion limit vs m_H for $H \rightarrow WW$

Higgs with 1.0x SM cross-section excluded at 95% CL for m_H in range [150,~187]

Combining Higgs channels (and experiments)

• Procedure: define joint likelihood

$$L(\mu, \theta_{LHC}) = L_{ATLAS}(\mu, \theta_{ATLAS}) \cdot L_{CMS}(\mu, \theta_{CMS}) \cdot \dots$$

- Correlations between θ_{WW} , $\theta_{\gamma\gamma}$ etc and between θ_{ATLAS} , θ_{CMS} requires careful consideration!
- The construction profile likelihood ratio test statistic from joint likelihood and proceed as usual

$$\tilde{q}_{\mu} = -2\ln\frac{L(data \mid \mu, \hat{\hat{\theta}}_{\mu})}{L(data \mid \hat{\mu}, \hat{\theta})}$$

A word on the machinery

- Common tools (RooFit/RooStats all available in ROOT) have been developed in past 2/3 years to facilitate these combinations
 - Analytical description of likelihood of each component stored and delivered in a uniform language ('RooFit workspaces')
 - Construction of joint likelihood technically straightforward

Example – joint ATLAS/CMS Higgs exclusion limit

Switching from 'exclusion' to 'discovery' formulation

'exclusion'

'discovery'

 $\tilde{q}_0 = 34.7$

 $\tilde{q}_0 = 0$

'likelihood assuming µ signal strength' 'likelihood assuming background only'

Comb: p-value of background-only hypothesis ('discovery')

Comb: p-value of background-only hypothesis ('discovery')

Conclusions

• We are early awaiting more data!