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Introduction 

• Enormous effort to search for Higgs signature in many 
decay channels 

• Results  many plots with signal,  
background expectations, each with  
(systematic) uncertainties, and data 

• Q: How do you conclude from  
this that you’ve seen the Higgs  
(or not)? 

– Want answer of type:  

‘We can exclude that the Higgs  
exist at 95% CL”, or “Probability 

that background only caused observed 
excess is 3·10-7 

• Here a short guide through how  
this is (typically) done 



Quantifying discovery and exclusion – Frequentist approach 

• Consider the simplest case – a counting experiment 

– Observable: N (the event count) 

– Model F(N|s): Poisson(N|s+b) with b=5 known exactly 

• Predicted distributions of N for various values of s 
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• Now make a measurement N=Nobs (example Nobs=7) 

• Can now define p-value(s), e.g. for bkg hypothesis 

– Fraction of future measurements with N=Nobs (or larger) if s=0 

 

 

 

 

 

 

 

 

 

  

Frequentist p-values – excess over expected bkg 
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• p-values of background hypothesis is used to quantify  
‘discovery’ = excess of events over background expectation 

• Another example: Nobs=15 for same model, what is pb? 
 
 

 

 

 

 
 

 

 

– Result customarily re-expressed as odds of a  

Gaussian fluctuation with equal p-value (3.5 sigma for above case) 

– NB: Nobs=22 gives pb < 2.810-7 (‘5 sigma’) 

 

 

 

 

 

 

 

  

Frequentist p-values - excess over expected bkg 
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Upper limits (one-sided confidence intervals) 

• Can also defined p-values for hypothesis with signal: ps+b 

– Note convention: integration range in ps+b is flipped 

 
 

 
 

 

 

 

 

 

 

 

• Convention: express result as value of s for which 
p(s+b)=5%  “s>6.8 is excluded at 95% C.L.” 
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p(s=15) = 0.00025 

p(s=10) = 0.007 
p(s=5)   = 0.13 

 

p(s=6.8) = 0.05 
 



Modified frequentist upper limits 

• Need to be careful about interpretation p(s+b) in terms 
of inference on signal only 

– Since p(s+b) quantifies consistency of signal plus background 

– Problem most apparent when observed data  

has downward stat. fluctations w.r.t background expectation 

• Example: Nobs =2 

 

 

• Modified approach to protect 
against such inference on s 

– Instead of requiring p(s+b)=5%, 

require  

 

 

 

 

 

  ps+b(s=0) = 0.04 

 
 s≥0 excluded at >95% C.L. ?! 
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for N=2 exclude s>3.4 at 95% C.L.s, for large N effect on limit is small as pb0 



p-values and limits on non-trivial analysis 

• Typical Higgs search result is not a simple number 
counting experiment, but looks like this: 

 

 

 

 

 

• Any type of result can be converted into a single 
number by constructing a ‘test statistic’  

– A test statistic compresses all signal-to-background  

discrimination power in a single number 

– Most powerful discriminators 

are Likelihood Ratios 
(Neyman Pearson)  

 
)ˆ|(

)|(
ln2






dataL

dataL
q 

-  Result is a distribution,  

   not a single number 
 

-  Models for signal and background 

   have intrinsic uncertainties 



The likelihood ratio test statistic 

• Definition: μ = signal strength / signal strength(SM) 

– Choose e.g likelihood with nominal signal strength in numerator (μ=1) 

 
 

 

 

 

 

• Illustration on model with no shape uncertainties 
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‘likelihood of best fit’ 

‘likelihood assuming nominal signal strength’ 
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On signal-like data q1 is small On background-like data q1 is large 



Distributions of test statistics 

• Value of q1 on data is now the ‘measurement’ 

• Distribution of q1 not calculable  
 But can obtain distribution from pseudo-experiments 

• Generate a large number of pseudo-experiments with a given value of mu,  

calculate q for each, plot distribution 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

• From qobs and these distributions, can then set limits 
similar to what was shown for Poisson counting example 
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q1 for  
experiments  
with signal 

q1 for experiments  
with background only 

Note analogy 
to Poisson 

counting 
example 



Incorporating systematic uncertainties 

• What happens if models have uncertainties 

 

 

– Introduction of additional model parameters θ that describe effect 

of uncertainties 
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Jet Energy Scale, 
QCD scale, 
luminosity, 
... 



Incorporating systematic uncertainties 
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Likelihood includes  
auxiliary measurement terms that 
constrains the nuisance parameters θ 
(shape is flat, log-normal, gamma, or 
Gaussian) 
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Dealing with nuisance parameters in the test statistic 

• Uncertainty quantified by nuisance parameters are 
incorporated in test statistic using a profile likelihood ratio  
 

 

 

 

 

 

 

 
 

• Interpretation of observed value of  
qμ in terms of p-value again based  
on expected distribution obtained 
from pseudo-experiments 

 

 

 

 

 

  ˆ0(with a constraint                 ) 

‘likelihood of best fit’ 

‘likelihood of best fit for a  
given fixed value of μ’ 
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Dealing with nuisance parameters in the test statistic 

• Uncertainty quantified by nuisance parameters are 
incorporated using a profile likelihood ratio test statistic 
 

 

 

 

 

 

 

 
 

• Interpretation of observed value of  
qμ in terms of p-value again based  
on expected distribution obtained 
from pseudo-experiments 

 

 

 

 

 

  ˆ0(with a constraint                 ) 

‘likelihood of best fit’ 

‘likelihood of best fit for a  
given fixed value of μ’ 

μ=0.35 μ=1.0 μ=1.8 μ=2.6 



Putting it all together for one Higgs channel 

• Result from data D(x) 

• PDF F(x|mH,μ,θ) that models  
the data for a given true Higgs  
mass hypothesis 
 
 
 

• Construct test statistic 

 

• Obtain expected distributions  
of qμ for various μ 

– Determine ‘discovery’ p-value 

and signal exclusion limit 

• Repeat for each assumed mH.. 
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Example – 95% Exclusion limit vs mH for HWW 

Example point: ≈3 x SM HWW cross-section excluded at mH=125 GeV 

Example point: ≈0.5 x SM HWW cross-section excluded at mH=165 GeV 

Higgs with 1.0x SM cross-section excluded at 95% CL for mH in range [150,~187] 

Expected exclusion limit 

for background-only hypothesis 



Combining Higgs channels (and experiments) 

• Procedure: define joint likelihood 

 

 

 

 

 

 

• Correlations between θWW,θγγ etc and between 
θATLAS,θCMS requires careful consideration! 

• The construction profile likelihood ratio test statistic 
from joint likelihood and proceed as usual 
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A word on the machinery 

• Common tools (RooFit/RooStats - all available in ROOT) 
have been developed in past 2/3 years to facilitate 
these combinations 

– Analytical description of likelihood of each component stored and 
delivered in a uniform language (‘RooFit workspaces’) 

– Construction of joint likelihood technically straightforward 
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Example – joint ATLAS/CMS Higgs exclusion limit 
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Switching from ‘exclusion’ to ‘discovery’ formulation 
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‘likelihood of best fit’ 

‘likelihood assuming background only’ 
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Comb: p-value of background-only hypothesis (‘discovery’) 

Note that ‘peak’ around 160 GeV 

reflects increased  
experimental sensitivity not SM 

prediction of Higgs mass 

Expected p-value for background 

hypothesis of a data sample 
containing SM Higgs boson 

 



Comb: p-value of background-only hypothesis (‘discovery’) 

Example point: at mH≈150 GeV probability  

to obtain observed event count (or larger)  
here from background only is ~0.0015% (~3σ) 
 

But need to be careful with local p-values 

 

Search is executed for a wide mH mass range. 
 

Odds to find a local p-value of e.g.  

1% anywhere in mass range  
(the ‘global p-value’) is larger than 1% 

 

Can a estimate trial factor (global p/local p) 
and obtain estimate of global significance 

by using trial factor as correction  
 



Conclusions 

• We are early awaiting more data! 
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