Discrete symmetries, flavour & BSM physics

Sebastian Jäger US University of Sussex

Amsterdam Particle Physics Symposium

Amsterdam, 30/11/11-02/12/11

Content

- Discrete symmetries & flavour
- SM and beyond
- observables (selection)

Baryogenesis

• There are many photons ...

... and essentially no antibaryons in the universe

$$\eta_B = \frac{n_B}{n_\gamma} = (6.3 \pm 0.3) \times 10^{-10}$$

Can arise dynamically from B=0 if sufficient...
 (1) departure from equilibrium and
 (2) C and CP violation and
 (3) B violation Sakharov 1967

Thermal leptogenesis

 Resulting net lepton numbers <L_I> partially converted to by equilibrium sphalerons

see Bjoern Garbrecht's talk

C, P and T

• In local quantum field theory CPT is a symmetry

(constructive proof at Lagrangian level, or more general proof in axiomatic field theory)

C and P violation

- C, P, T individually need not be symmetries
 - chiral fermions violate C & P maximally [no C,P partners]
 - gauge-fermion theories (renormalisable, only spins 1 and 1/2) preserve CP save for vacuum θ angle(s)
 - example: SM gauge sector (neglect θ_{QCD} for now)

$$\mathcal{L}_{\text{gauge}} = \sum_{f} \bar{\psi}_{f} \gamma^{\mu} D_{\mu} \psi_{f} - \sum_{i,a} \frac{1}{4} g_{i} F^{ia}_{\mu\nu} F^{ia\mu\nu}$$
$$f = Q_{Lj}, u_{Rj}, d_{Rj}, L_{Lj}, e_{Rj} \quad j = 1, 2, 3 \quad \text{chiral fermions}$$

• conserves CP; large global *flavour* symmetry $G_{\text{flavor}} = SU(3)^5 \times U(1)_B \times U(1)_A \times U(1)_L \times U(1)_E$ $Q_L \to e^{i(b/3+a)}V_{Q_L}Q_L, \ u_R \to e^{i(b/3-a)}V_{u_R}u_R, \ d_R \to e^{i(b/3-a)}V_{d_R}d_R$ $L_L \to e^{i(l+a)}V_LL_L, \ e_R \to e^{i(l+e-a)}V_Re_R$ Chivukula, Georgi 1987

CP violation

• Vacuum θ angle(s) violate CP

$$\mathcal{L} \supset -\theta \frac{g^2}{32 \pi^2} F^a_{\mu\nu} \tilde{F}^{\mu\nu a} \propto \vec{E}^a \cdot \vec{B}^a$$
P and CP odd hadronic electric dipole moments (EDMs)
• CP violation generic if scalars are present
SM Yukawa interactions: 9 masses 3 mixing angles
$$\mathcal{L}_Y = -\bar{u}_R Y_U \phi^{c\dagger} Q_L - \bar{d}_R Y_D \phi^{\dagger} D_L - \bar{e}_R Y_E \phi^{\dagger} E_L$$

$$Y_U = 1/v \operatorname{diag}(m_u, m_c, m_t) V_{\text{CKM}}$$

$$Y_D = 1/v \operatorname{diag}(m_d, m_s, m_b)$$

$$Y_E = 1/v \operatorname{diag}(m_e, m_\mu, m_\tau)$$

CP violation of this type requires 3 generations Kobayashi, Maskawa 1972

• flavour symmetry broken to $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

Observables

- CP-violating, flavour-conserving neutron, electron, atomic EDM's advantage: ultraclean tests of SM and we "know" that BSM CP violation exists disadvantage: CP violation could be at scales >> TeV and possibly out of reach
- CP-violating, flavour-violating

CPV in K,D, B, B_s mixing and mixing-decay interference direct CPV (CPV in decay) triple-product asymmetries *advantage: various clean tests of SM disadvantage: TeV scale need not be CPV (see above)*

• CP-conserving, flavour-violating

Rare K, (D,) B, B_s decays: BR's, kinematic distributions lepton flavour violation advantage: TeV physics is guaranteed to affect these disadvantage: fewer/less clean tests of SM

Unitarity triangle

suppression of flavour-changing neutral currents (FCNC) by loops and CKM hierarchy

This makes them sensitive to new physics!

Unitarity Triangle 2011

[UTfit obtain similar results]

The CKM picture of flavour & CP violation is consistent with observations.

Within the Standard Model, all parameters (except higgs mass) including CKM have been determined, with good precision

Flavour of the TeV scale

 Solutions to the hierarchy problem must bring in particles to cut off the top contribution to the weak scale (Higgs mass parameter).

• The new particles' couplings tend to break flavour (they do in all the major proposals for TeV physics)

 At least they will have CKM-like flavour violations (minimal flavour violation), so will always affect rare decays

Minimal flavour violation

• in this case, CKM parameters can be extracted unambiguously beyond the Standard Model

- however, this is a very restrictive scenario; typically does not apply to dynamical BSM models
- can be generalized (relaxed)

d'Ambrosio et al 2002 Kagan et al 2009

SUSY flavour

Supersymmetry associates a scalar with every SM fermion

Squark mass matrices are 6x6 with independent flavour structure:

3x3 flavour-violating - and *supersymmetry-breaking*

$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} \hat{m}_{\tilde{Q}}^{2} + m_{d}^{2} + D_{dLL} & v_{1}\hat{T}_{D} - \mu^{*}m_{d}\tan\beta \\ v_{1}\hat{T}_{D}^{\dagger} - \mu m_{d}\tan\beta & \hat{m}_{\tilde{d}}^{2} + m_{d}^{2} + D_{dRR} \end{pmatrix} \equiv \begin{pmatrix} (\mathcal{M}_{\tilde{d}}^{2})^{LL} & (\mathcal{M}_{\tilde{d}}^{2})^{LR} \\ (\mathcal{M}_{\tilde{d}}^{2})^{RL} & (\mathcal{M}_{\tilde{d}}^{2})^{RR} \end{pmatrix}$$

similar for up squarks, charged sleptons. 3x3 LL for sneutrinos

$$\left(\delta_{ij}^{u,d,e,\nu}\right)_{AB} \equiv \frac{\left(\mathcal{M}_{\tilde{u},\tilde{d},\tilde{e},\tilde{\nu}}^2\right)_{ij}^{AB}}{m_{\tilde{f}}^2}$$

33 flavour-violating parameters45 CPV (some flavour-conserving)

SUSY flavour (2)

K- \overline{K} , B_d- \overline{B}_d , B_s- \overline{B}_s mixing

 $\Delta F=1$ decays

B → K^{*}μ⁺μ⁻ B → K^{*}γ B → Kπ B_{s,d} → μ⁺μ⁻ K → πνν

SUSY flavour puzzle

$$\left(\delta^{u,d,e,\nu}_{ij}\right)_{AB} \equiv \frac{\left(\mathcal{M}^2_{\tilde{u},\tilde{d},\tilde{e},\tilde{\nu}}\right)^{AB}_{ij}}{m^2_{\tilde{f}}}$$

where are their effects?

Quantity	upper bound	Quantity	upper bound		
$\sqrt{ \text{Re}(\delta_{ds}^{\tilde{d}})_{LL}^2 }$	$4.0 imes 10^{-2}$	$\sqrt{ \text{Re}(\delta_{db}^{\tilde{d}})_{LL}^2 }$	9.8×10^{-2}		
$\sqrt{ \text{Re}(\delta_{ds}^{\tilde{d}})_{RR}^2 }$	4.0×10^{-2}	$\sqrt{ \text{Re}(\delta_{db}^{\tilde{d}})_{RR}^2 }$	9.8×10^{-2}	Quantity	upper bound
$\sqrt{ \text{Re}(\delta_{ds}^{\tilde{d}})_{LR}^2 }$	4.4×10^{-3}	$\sqrt{ \text{Re}(\delta_{db}^{\tilde{d}})_{LR}^2 }$	$3.3 imes 10^{-2}$	$\sqrt{ \mathrm{Re}(\delta^{\tilde{u}}_{uc})^2_{LL} }$	3.9×10^{-2}
$\sqrt{ \text{Re}(\delta_{ds}^{\tilde{d}})_{LL}(\delta_{ds}^{\tilde{d}})_{RR} }$	2.8×10^{-3}	$\sqrt{ \text{Re}(\delta_{db}^{\tilde{d}})_{LL}(\delta_{db}^{\tilde{d}})_{RR} }$	1.8×10^{-2}	$\sqrt{ \text{Re}(\delta^{\tilde{u}}_{ud})^2_{RR} }$	3.9×10^{-2}
$\sqrt{ \text{Im}(\delta_{ds}^{\tilde{d}}) ^2_{LL}}$	3.2×10^{-3}	$\sqrt{ \text{Re}(\delta_{sb}^{\tilde{d}})_{LL}^2 }$	4.8×10^{-1}	$\sqrt{ \text{Re}(\delta_{uc}^{\tilde{u}})_{LR}^2 }$	1.20×10^{-2}
$\sqrt{ \text{Im}(\delta_{ds}^{\tilde{d}})_{RR}^2 }$	3.2×10^{-3}	$\sqrt{ \text{Re}(\delta_{sb}^{\tilde{d}})_{RR}^2 }$	4.8×10^{-1}	$\sqrt{ \text{Re}(\delta_{uc}^{\tilde{u}})_{LL}(\delta_{uc}^{u})_{RR} }$	6.6×10^{-3}
$\sqrt{ \text{Im}(\delta_{ds}^{\tilde{d}})_{LR}^2 }$	$3.5 imes 10^{-4}$	$\sqrt{ \text{Re}(\delta_{sb}^{\tilde{d}})_{LR}^2 }$	1.62×10^{-2}	[Gabbiani et al 96; Misiak et al 97 these numbers from [SJ, 0808.204	
$\sqrt{ \text{Im}(\delta_{ds}^{\tilde{d}})_{LL}(\delta_{ds}^{\tilde{d}})_{RR} }$	2.2×10^{-4}	$\sqrt{ \mathrm{Re}(\delta^{\tilde{d}}_{sb})_{LL}(\delta^{\tilde{d}}_{sb})_{RR} }$	8.9×10^{-2}		

- elusiveness of deviations from SM in flavour physics seems to make MSSM look unnatural
- pragmatic point of view: flavour physics highly sensitive to MSSM parameters - and SUSY breaking mechanism in particular

Narped models may overcome both difficulties Flavour - warped ED

Flavour - warped ED (2)

 dominant contribution to FCNC usually *not* from brane contact terms but from tree-level KK boson exchange

non-minimal flavour violations !

• where are their effects?

Other scenarios

- fourth SM generation CKM matrix becomes 4x4, giving new sources of flavour and CP violation
- little(st) higgs model with T parity (higgs light because a pseudo-goldstone boson) finite, calculable 1-loop contributions due to new heavy particles with new flavour violating couplings

non-minimal flavour violation !

Unitarity Triangle revisited

Unitarity Triangle revisited

 γ and $|V_{ub}|$ determinations are robust against new physics as they do not involve loops.

Unitarity Triangle revisited

Of all constraints on the unitarity triangle, only the γ and $|V_{ub}|$ determinations are robust against new physics as they do not involve loops.

It is possible that the TRUE $(\bar{\rho}, \bar{\eta})$ lies here (for example)

"Tree" determinations

Only "robust" measurements of γ and $|V_{ub}|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM ΔI =3/2 contributions in B-> $\pi\pi$); a truly robust γ determination should not include B-> $\pi\pi$. Such determinations will be greatly improved by LHCb - N Serra's talk.

"Tree" determinations

Only "robust" measurements of γ and $|V_{ub}|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM ΔI =3/2 contributions in B-> $\pi\pi$); a truly robust γ determination should not include B-> $\pi\pi$. Such determinations will be greatly improved by LHCb - N Serra's talk.

Certainly there is room for O(10%) NP in b->d transitions

"Tree" determinations

Only "robust" measurements of γ and $|V_{ub}|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM ΔI =3/2 contributions in B-> $\pi\pi$); a truly robust γ determination should not include B-> $\pi\pi$. Such determinations will be greatly improved by LHCb - N Serra's talk.

Certainly there is room for O(10%) NP in b->d transitions Moreover, b->s transitions are almost unrelated to (ρ , η). They are the domain of LHCb

$BR \propto |V_{ub}|^2$ in SM

two-Higgs doublet model (II): $BR(B \to \tau \nu) = BR(B \to \tau \nu)_{SM} \times \left|1 - \frac{M_B^2 \tan^2 \beta}{M_{H^+}^2}\right|^2$ could be NP in mixing; leading uncertainty is bag parameter

LHCb observables

• mixing

already detailed discussion yesterday consistent with SM (error still large) but O(1) mixing phase ruled out

• hadronic CPV

triple products ΔA_{CP} in D decays

• semileptonic B decays

constraints on Wilson coefficients

Freay, NoTehis is a narrow subset of what I find interesting.)

Exclusive decays at LHCb

final state	strong dynamics	#obs	NP enters through				
Leptonic			e \				
B → I+ I-	decay constant ⟨0 j¤ B⟩ ∝ f _B	O(1)	$b \longrightarrow H b \longrightarrow Z$				
semileptonic, radiative B → K [*] I ⁺ I ⁻ , K [*] γ	form factors $\langle \pi j^{\mu} B \rangle \propto f^{B\pi}(q^2)$	O(10) $s \rightarrow \gamma s \rightarrow Z \\ b \rightarrow \gamma s \rightarrow Z \\ b \rightarrow \gamma s \rightarrow Z \\ s \rightarrow \Sigma $				
charmless hadro Β → ππ, πK, φ¢	nic matrix element >, 〈ππ Q _i B〉	O(10	0) = b = b = b = b = b = b = b = b = b =				
Non-radiative modes also NP-sensitive via 4-fermion operators							
Decay constants and form factors accessible by QCD sum rules							
and, increasingly, by lattice QCD.							

QCD a big challenge particularly for nonleptonic modes

hadronic b→s transitions

• trees carry small CKM factor ~ λ^4 , hence sensitive to loops

• various "anomalies" or "puzzles" exist, of unclear significance

- $A_{CP}(B^+ \rightarrow \pi^0 K^+) \neq A_{CP}(B^0 \rightarrow \pi^- K^+)$ at 5σ
- dimuon charge asymmetry (mixing)

interpretation requires some knowledge of hadronic amplitudes

which observables are "clean"?

Physical amplitudes

• Any SM amplitude can be written $\mathcal{A}(\bar{B} \to M_1 M_2) = e^{-i\gamma} T_{M_1 M_2} + P_{M_1 M_2}$

 $\begin{array}{l} Q_i: \mbox{ operators in weak hamiltonian} \\ C_i: \mbox{ QCD corrections from short distances (< hc/m_b) & new physics} \\ \langle Q_i \rangle = \langle M_1 \ M_2 \ | \ Q_i \ | \ B \rangle: \ QCD \ at \ distances > hc/m_b, \ strong \ phases \\ \hline required for \ direct (decay \ rate) \ CP \ asymmetry \end{array}$

- presence of polarization trebles number of amplitudes
- angular analysis allows extraction of all 6 amplitudes

- presence of polarization trebles number of amplitudes
- angular analysis allows extraction of all 6 amplitudes
- already relative weak phases imply CP-violating "triple products", ie no strong phase knowledge required

Polarisation & NP

Triple-product asymmetries in B->φK^{*}

[Valencia 1989, ...]

$$\begin{split} \mathcal{A}_{T}^{(1)\mathrm{chg-avg}} &\equiv \frac{\left[\Gamma(S>0) + \Gamma(S>0)\right] - \left[\Gamma(S<0) + \Gamma(S<0)\right]}{\left[\Gamma(S>0) + \bar{\Gamma}(\bar{S}>0)\right] + \left[\Gamma(S<0) + \bar{\Gamma}(\bar{S}<0)\right]} & \text{[Datta, Duraisamy, London;} \\ &= -\frac{2\sqrt{2}}{\pi} \frac{\mathrm{Im}(A_{\perp}A_{0}^{*} - \bar{A}_{\perp}\bar{A}_{0}^{*})}{\left(|A_{0}|^{2} + |A_{\perp}|^{2} + |A_{\parallel}|^{2}\right) + \left(|\bar{A}_{0}|^{2} + |\bar{A}_{\perp}|^{2} + |\bar{A}_{\parallel}|^{2}\right)} & \text{[Datta, Duraisamy, London;} \\ \mathcal{A}_{T}^{(2)\mathrm{chg-avg}} &\equiv \frac{\left[\Gamma(\sin 2\phi > 0) + \bar{\Gamma}(\sin 2\bar{\phi} > 0)\right] - \left[\Gamma(\sin 2\phi < 0) + \bar{\Gamma}(\sin 2\bar{\phi} < 0)\right]}{\left[\Gamma(\sin 2\phi > 0) + \bar{\Gamma}(\sin 2\bar{\phi} > 0)\right] + \left[\Gamma(\sin 2\phi < 0) + \bar{\Gamma}(\sin 2\bar{\phi} < 0)\right]} \\ &= -\frac{4}{\pi} \frac{\mathrm{Im}(A_{\perp}A_{\parallel}^{*} - \bar{A}_{\perp}\bar{A}_{\parallel}^{*})}{\left(|A_{0}|^{2} + |A_{\perp}|^{2} + |A_{\parallel}|^{2}) + \left(|\bar{A}_{0}|^{2} + |\bar{A}_{\perp}|^{2} + |\bar{A}_{\parallel}|^{2}\right)} & . \end{split}$$

- HFAG data for the entire set of polarization amplitudes exists; Triple products at most 5-10% in either case [Gronau, Rosner 2011]
- A SM calculation in QCD factorization (based on the heavyquark expansion) is consistent with the HFAG data

[Beneke, Rohrer, Yang 2006]

 Also "fake" triple-product asymmetries which require strong phases - small in QCDF, small in obs.

Polarisation & NP

- Triple-product asymmetries in $B_s -> \varphi \varphi$
 - similar pair of TP asymmetries
 - time-dependence -> mixing-decay interference
 - one can define two combinations A_{U} , A_{V} sensitive to

 $Im[A_{\perp}(t)A_{i}^{*}(t) + \bar{A}_{\perp}(t)\bar{A}_{i}^{*}(t)] \qquad i=0, ||$

[Gronau, Rosner 2011]

- CDF $A_U = -0.007 \pm 0.064(stat) \pm 0.018(syst)$ [arXiv:1107.4999] $A_V = -0.120 \pm 0.064(stat) \pm 0.016(syst).$
- LHCb $A_U = -0.064 \pm 0.057 \ (stat.) \pm 0.014 \ (syst.)$ $A_V = -0.070 \pm 0.057 \ (stat.) \pm 0.014 \ (syst.)$ [LHCb-CONF-2011-052]
- No quantitative theoretical calculation exists at the moment but qualitatively it is clear that the SM predicts both TP asymmetries to be small (strong penguin domination)

Polarisation & NP

• 1/m_b expansion predicts a hierarchy $\bar{A}_0: \bar{A}_-: \bar{A}_+ = 1: \frac{\Lambda_{\text{QCD}}}{m_b}: \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^2$ in \bar{B} decay (+/- interchanged in B decays); [Korner, Goldstein 1979] however, the suppression of the negative-helicity amplitude is numerically spoiled by annihilation contributions [Kagan 2004]

[Beneke, Rohrer, Yang 2006]

- A nonvanishing *positive*-helicity amplitude could be a sign of NP and could even be turned into quantitative information on "right-handed currents" [Kagan 2004]
- The smallness (presumably) of the negative-helicity amplitude suppresses one of the two triple-product asymmetries, making it a probe of right-handed currents

CPV in D decays

• LHCb has measured the difference $\Delta A_{V} = A_{C} \left(P_{C}^{0} + K_{C}^{+} \right) - A_{C} \left(P_{C}^{0} + M_{C}^{+} \right) - A_{C} \left(P_{C}^{0}$

 $\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{sys.})]\% \quad \text{[LHCb-CONF-2011-061]}$

- SU(3) symmetry predicts equal and opposite sign, i.e. no cancellationeexpected
- but GIM cancellations suggest, in the SM, strong suppression of the penguin amplitude (|P/T| ~10⁻³)

 to explain in SM would need about an order of magnitude enhancement of the penguin amplitude. Current theoretical control much worse than for B decays.

Semileptonic decay

- kinematics described by dilepton invariant mass q² and three angles
- Systematic theoretical description based on heavy-quark expansion (Λ/m_b) for q² << m²(J/ ψ) (SCET) Beneke, Feldmann, Seidel 01 also for q² >> m²(J/ ψ) (OPE) Grinstein et al; Beylich et al 2011 Theoretical uncertainties on form factors, power corrections

see also Bobeth et al 2008,10, 11; Egede et al 2009,2010; Alok et al 2010, Altmannshofer et al 2011 for recent analyses

Constraints on NP

A very brief history of flavour

1934 Fermi proposes Hamiltonian for beta decay

 $H_W = -G_F(\bar{p}\gamma^\mu n)(\bar{e}\gamma_\mu\nu)$

1956-57 Lee&Yang propose parity violation to explain "θ-τ paradox".
 Wu et al show parity is violated in β decay
 Goldhaber et al show that the neutrinos produced in ¹⁵²Eu K-capture always have negative helicity

1957 Gell-Mann & Feynman, Marshak & Sudarshan

 $H_W = -G_F(\bar{\nu}_\mu \gamma^\mu P_L \mu)(\bar{e}\gamma_\mu P_L \nu_e) - G(\bar{p}\gamma^\mu P_L n)(\bar{e}\gamma_\mu P_L \nu_e) + \dots$

V-A current-current structure of weak interactions. Conservation of vector current proposed Experiments give $G = 0.96 G_F$ (for the vector parts) 1960-63 To achieve a universal coupling, Gell-Mann&Levy and Cabibbo propose that a certain superposition of neutron and Λ particle enters the weak current. Flavour physics begins!

1964 Gell-Mann gives hadronic weak current in the quark model $H_W = -G_F J^{\mu} J^{\dagger}_{\mu}$

 $J^{\mu} = \bar{u}\gamma^{\mu}P_L(\cos\theta_c d + \sin\theta_c s) + \bar{\nu}_e\gamma^{\mu}P_L e + \bar{\nu}_{\mu}\gamma^{\mu}P_L\mu$

1964 CP violation discovered in Kaon decays (Cronin&Fitch)

1960-1968 J_μ part of triplet of weak gauge currents. Neutral current interactions predicted and, later, observed at CERN.

However, the predicted flavour-changing neutral current (FCNC) processes such as $K_L \rightarrow \mu^+ \mu^-$ are *not* observed!

1970 To explain the absence of $K_L \rightarrow \mu^+ \mu^-$, Glashow, Iliopoulos & Maiani (GIM) couple a "charmed quark" to the formerly "sterile" linear combination $-\sin \theta_c d_L + \cos \theta_c s_L$

The doublet structure eliminates the Zsd coupling!

- 1971 Weak interactions are renormalizable ('t Hooft)
- 1972 Kobayashi & Maskawa show that CP violation requires extra particles, for example a third doublet. CKM matrix
- 1974 Gaillard & Lee estimate loop contributions to the K_L-K_S mass difference Bound m_c < 5 GeV

1974 Charm quark discovered

1977 т lepton and bottom quark discovered

- 1983 W and Z bosons produced
- 1987 ARGUS measures B_d B_d mass difference First indication of a heavy top

The diagram depends quadratically on m_t

1995 top quark discovered at CDF & D0

2012- **?** SUSY, new strong interactions, extra dimensions, ...

Summary/outlook

- Theories of the electroweak scale bring in new particles which contribute to flavour and CP-violating observables
- Consistency of CKM fit and the Φ_s measurements disfavor large BSM CP violation (but some tensions in b->d exist, and there is similar (or greater) room in b->s)
- interesting direct CP asymmetry observation in D decays. Much larger than previous SM estimates, but theoretically challenging
- many more observables, including CP-conserving ones (rare semileptonic/radiative/hadronic decays) that have not been analysed or still have large statistical uncertainties could show signs of new physics

BACKUP

B→πK direct CP puzzle

 $A(B^0 \rightarrow \pi^- K^+) = T e^{i\gamma} + P + P^c_{EW}$

 $-A(B^{+} \rightarrow \pi^{0} K^{+}) = (T+C) e^{i\gamma} + P + P_{EW} + P^{c}_{EW}$

data: $A_{CP}(B^+ \rightarrow \pi^0 K^+) - A_{CP}(B^0 \rightarrow \pi^- K^+) = 0.14 \pm 0.03$ (expt) [Belle collab: in Nature (2008)]

In general, only isospin relation [Gronau 2005; Gronau & Rosner 2006] $A_{CP}(B^+ \rightarrow \pi^0 K^+) + A_{CP}(B^0 \rightarrow \pi^0 K^0) \approx A_{CP}(B^0 \rightarrow \pi^- K^+) + A_{CP}(B^+ \rightarrow \pi^0 K^0)$

$B \rightarrow \pi K$ direct CP puzzle $A(B^0 \rightarrow \pi^- K^+) = T e^{i\gamma}$9 W (+ P Pew $-A(B^+ \rightarrow \pi^0 K^+) = (T+C) e^{i\gamma}$ +**P**^c_{EW} amplitudes

data: $A_{CP}(B^+ \rightarrow \pi^0 K^+) - A_{CP}(B^0 \rightarrow \pi^- K^+) = 0.14 \pm 0.03$ (expt) [Belle collab: in Nature (2008)]

In general, only isospin relation [Gronau 2005; Gronau & Rosner 2006] $A_{CP}(B^+ \rightarrow \pi^0 K^+) + A_{CP}(B^0 \rightarrow \pi^0 K^0) \approx A_{CP}(B^0 \rightarrow \pi^- K^+) + A_{CP}(B^+ \rightarrow \pi^0 K^0)$

B→πK direct CP puzzle

data: $A_{CP}(B^+ \rightarrow \pi^0 K^+) - A_{CP}(B^0 \rightarrow \pi^- K^+) = 0.14 \pm 0.03$ (expt) [Belle collab: in Nature (2008)]

In general, only isospin relation [Gronau 2005; Gronau & Rosner 2006] $A_{CP}(B^+ \rightarrow \pi^0 K^+) + A_{CP}(B^0 \rightarrow \pi^0 K^0) \approx A_{CP}(B^0 \rightarrow \pi^- K^+) + A_{CP}(B^+ \rightarrow \pi^0 K^0)$

B→πK direct CP puzzle

data: $A_{CP}(B^+ \rightarrow \pi^0 K^+) - A_{CP}(B^0 \rightarrow \pi^- K^+) = 0.14 \pm 0.03$ (expt) [Belle collab: in Nature (2008)]

In general, only isospin relation [Gronau 2005; Gronau & Rosner 2006] $A_{CP}(B^+ \rightarrow \pi^0 K^+) + A_{CP}(B^0 \rightarrow \pi^0 K^0) \approx A_{CP}(B^0 \rightarrow \pi^- K^+) + A_{CP}(B^+ \rightarrow \pi^0 K^0)$

Theoretical description

Long-distance effects

no known way to treat charm resonance region to the necessary precision (would need << 1% to see short-distance contribution) "solution": cut out 6 GeV² < q² < 14 GeV²

above (high-q²) charm loops calculable in OPE

Grinstein et al; Beylich et al 2011

at *low* q², long-distance charm effects also suppressed, but photon can now be emitted from *spectator* withouth power suppression

Beneke, Feldmann, Seidel 01

long-distance "resonance" effects as in top figure (q=u,d,s) CKM and power suppressed

however interesting physics in this region (C7, C7')