Discrete symmetries, flavour \& BSM physics

Sebastian Jäger
US
University of Sussex

Amsterdam Particle Physics Symposium
Amsterdam, 30/11/11-02/12/11

Content

- Discrete symmetries \& flavour
- SM and beyond
- observables (selection)

Baryogenesis

- There are many photons ...

some baryons...

... and essentially no antibaryons in the universe

$$
\eta_{B}=\frac{n_{B}}{n_{\gamma}}=(6.3 \pm 0.3) \times 10^{-10}
$$

- Can arise dynamically from $B=0$ if sufficient...
(I) departure from equilibrium and
(2) C and CP violation and
(3) B violation

Thermal leptogenesis

- CP-violating V_{R} decay:

weak CPV phase in $Y_{v} \quad$ CP-conserving phase from loop
- Resulting net lepton numbers <L/> partially converted to by equilibrium sphalerons

C, P and T

- In local quantum field theory CPT is a symmetry

i.e. simultaneously $t \rightarrow-\mathrm{t}$

$$
x \rightarrow-x
$$

particles \rightarrow antiparticles (charge conjugation C) in particular CPT implies the existence of antiparticles with identical masses and lifetimes
(constructive proof at Lagrangian level, or more general proof in axiomatic field theory)

C and P violation

- $\mathrm{C}, \mathrm{P}, \mathrm{T}$ individually need not be symmetries
- chiral fermions violate C \& P maximally [no C,P partners]
- gauge-fermion theories (renormalisable, only spins 1 and $1 / 2$) preserve CP save for vacuum θ angle(s)
- example: SM gauge sector (neglect $\theta_{Q C D}$ for now)

$$
\begin{aligned}
\mathcal{L}_{\text {gauge }}= & \sum_{f} \bar{\psi}_{f} \gamma^{\mu} D_{\mu} \psi_{f}-\sum_{i, a} \frac{1}{4} g_{i} F_{\mu \nu}^{i a} F^{i a \mu \nu} \\
& f=Q_{L j}, u_{R j}, d_{R j}, L_{L j}, e_{R j} \quad j=1,2,3 \quad \text { chiral fermions }
\end{aligned}
$$

- conserves CP; large global flavour symmetry

$$
\begin{aligned}
& G_{\text {flavor }}=S U(3)^{5} \times U(1)_{B} \times U(1)_{A} \times U(1)_{L} \times U(1)_{E} \\
& \qquad Q_{L} \rightarrow e^{i(b / 3+a)} V_{Q_{L}} Q_{L}, u_{R} \rightarrow e^{i(b / 3-a)} V_{u_{R}} u_{R}, d_{R} \rightarrow e^{i(b / 3-a)} V_{d_{R}} d_{R} \\
& L_{L} \rightarrow e^{i(l+a)} V_{L} L_{L}, e_{R} \rightarrow e^{i(l+e-a)} V_{R} e_{R} \quad \text { Chivukula, Georgi 1987 }
\end{aligned}
$$

CP violation

- Vacuum θ angle(s) violate CP

$$
\mathcal{L} \supset-\theta \frac{g^{2}}{32 \pi^{2}} F_{\mu \nu}^{a} \tilde{F}^{\mu \nu a} \propto \vec{E}^{a} \cdot \vec{B}^{a}
$$

hadronic electric dipole moments (EDMs)

- CP violation generic if scalars are present SM Yukawa interactions: 9 masses

3 mixing angles

CP violation of this type requires 3 generations

- flavour symmetry broken to $U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$

Observables

- CP-violating, flavour-conserving neutron, electron, atomic EDM's advantage: ultraclean tests of SM and we "know" that BSM CP violation exists disadvantage: CP violation could be at scales >> TeV and possibly out of reach
- CP-violating, flavour-violating
$C P V$ in K, D, B, B_{s} mixing and mixing-decay interference direct CPV (CPV in decay) triple-product asymmetries advantage: various clean tests of SM disadvantage: TeV scale need not be CPV (see above)
- CP-conserving, flavour-violating

Rare K, (D,) B, Bs decays: BR's, kinematic distributions lepton flavour violation advantage: TeV physics is guaranteed to affect these disadvantage: fewer/less clean tests of SM

Unitarity triangle

Unitarity of $V \Rightarrow \begin{array}{ccc}V_{u b}^{*} V_{u d} & +V_{c b}^{*} V_{c d}+ & V_{t b}^{*} V_{t d}\end{array}=0$

Graphically,

suppression of flavour-changing neutral currents (FCNC) by loops and CKM hierarchy

This makes them sensitive to new physics!

Unitarity Triangle 2011

[UTfit obtain similar results]

The CKM picture of flavour \& CP violation is consistent with observations.

Within the Standard Model, all parameters (except higgs mass) including CKM have been determined, with good precision

Flavour of the TeV scale

- Solutions to the hierarchy problem must bring in particles to cut off the top contribution to the weak scale (Higgs mass parameter).

$$
\propto y_{t}^{2} \Lambda_{\mathrm{UV}}^{2}
$$

- The new particles' couplings tend to break flavour (they do in all the major proposals for TeV physics)

- At least they will have CKM-like flavour violations (minimal flavour violation), so will always affect rare decays

Minimal flavour violation

- in this case, CKM parameters can be extracted unambiguously beyond the Standard Model

Universal unitarity triangle (UUT)
Buras, Gambino, Gorbahn, SJ, Silvestrini 2000
independent of details of new physics (particle content, masses, couplings)

- however, this is a very restrictive scenario; typically does not apply to dynamical BSM models
- can be generalized (relaxed)

SUSY flavour

Supersymmetry associates a scalar with every SM fermion
Squark mass matrices are 6×6 with independent flavour structure:

3x3 flavour-violating - and supersymmetry-breaking

$$
\mathcal{M}_{\tilde{d}}^{2}=\left(\begin{array}{cc}
\hat{m}_{\tilde{Q}}^{2}+m_{d}^{2}+D_{d L L} & v_{1}\left(\overparen{T}_{D}-\mu^{*} m_{d} \tan \beta\right. \\
v_{1} \hat{T}_{D}^{\dagger}-\mu m_{d} \tan \beta & \hat{m}_{\tilde{d}}^{2}+m_{d}^{2}+D_{d R R}
\end{array}\right) \equiv\left(\begin{array}{cc}
\left(\mathcal{M}_{\tilde{d}}^{2}\right)^{L L} & \left(\mathcal{M}_{\tilde{d}}^{2}\right)^{L R} \\
\left(\mathcal{M}_{\tilde{d}}^{2}\right)^{R L} & \left(\mathcal{M}_{\tilde{d}}^{2}\right)^{R R}
\end{array}\right)
$$

similar for up squarks, charged sleptons. 3×3 LL for sneutrinos

$$
\left(\delta_{i j}^{u, d, e, \nu}\right)_{A B} \equiv \frac{\left(\mathcal{M}_{\tilde{u}, \tilde{d}, \tilde{e}, \tilde{\nu}}^{2}\right)_{i j}^{A B}}{m_{\tilde{f}}} \quad \begin{aligned}
& 33 \text { flavour-violating parameters } \\
& 45 \mathrm{CPV} \text { (some flavour-conserving) }
\end{aligned}
$$

SUSY flavour (2)

$K-\bar{K}, B_{d}-\bar{B}_{d}, B_{s}-\bar{B}_{s}$ mixing
$\Delta F=1$ decays

$$
\begin{aligned}
& \mathrm{B} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-} \\
& \mathrm{B} \rightarrow \mathrm{~K}^{+} \mathrm{Y} \\
& \mathrm{~B} \rightarrow \mathrm{~K} \Pi \\
& \mathrm{~B}_{\mathrm{s}, \mathrm{~d}} \rightarrow \mu^{+} \mu^{-} \\
& \mathrm{K} \rightarrow \pi \mathrm{TV}
\end{aligned}
$$

SUSY flavour puzzle

$$
\left(\delta_{i j}^{u, d, e, \nu}\right)_{A B} \equiv \frac{\left(\mathcal{M}_{\tilde{u}, \tilde{d}, \tilde{e}, \tilde{\nu}}^{2}\right)_{i j}^{A B}}{m_{\tilde{f}}^{2}}
$$

where are their effects?

Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L L}^{2}\right\|}$	4.0×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{R R}^{2}\right\|}$	4.0×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L R}^{2}\right\|}$	4.4×10^{-3}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L L}\left(\delta_{d s}^{d}\right)_{R R}\right\|}$	2.8×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L L}^{2}\right\|}$	3.2×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{R R}^{2}\right\|}$	3.2×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L R}^{2}\right\|}$	3.5×10^{-4}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L L}\left(\delta_{d s}^{d}\right)_{R R}\right\|}$	2.2×10^{-4}

Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L L}^{2}\right\|}$	9.8×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{R R}^{2}\right\|}$	9.8×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L R}^{2}\right\|}$	3.3×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L L}\left(\delta_{d b}^{d}\right)_{R R}\right\|}$	1.8×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L L}^{2}\right\|}$	4.8×10^{-1}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{R R}^{2}\right\|}$	4.8×10^{-1}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L R}^{2}\right\|}$	1.62×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L L}\left(\delta_{s b}^{d}\right)_{R R}\right\|}$	8.9×10^{-2}

Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u C}^{\tilde{u}}\right)_{L L}^{2}\right\|}$	3.9×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u d}^{u}\right)_{R R}^{2}\right\|}$	3.9×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u C}^{\bar{u}}\right)_{L R}^{2}\right\|}$	1.20×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u c}^{\tilde{u}}\right)_{L L}\left(\delta_{u c}^{u}\right)_{R R}\right\|}$	6.6×10^{-3}

- elusiveness of deviations from SM in flavour physics seems to make MSSM look unnatural
- pragmatic point of view: flavour physics highly sensitive to MSSM parameters - and SUSY breaking mechanism in particular

Flavour - warped ED

Higgs localized on IR brane
light (heavy) fermions localized
near UV (IR) brane
not so dangerous after taking into account localization of SM fermions ("RS-GIM")

Flavour - warped ED (2)

- dominant contribution to FCNC usually not from brane contact terms but from tree-level KK boson exchange

KK mode coupling

$$
\lambda_{k m n}=\int d \phi w(\phi) f^{(m)}(\phi) f^{(n)}(\phi) f_{V}^{(k)}(\phi)
$$

SM Yukawa coupling $\quad Y_{m n} \propto f^{(m)}(\pi) f^{(n)}(\pi)$
non-minimal flavour violations !

- where are their effects?

Other scenarios

- fourth SM generation

CKM matrix becomes 4×4, giving new sources of flavour and $C P$ violation

- little(st) higgs model with T parity
(higgs light because a pseudo-goldstone boson) finite, calculable 1-loop contributions due to new heavy particles with new flavour violating couplings

non-minimal flavour violation!

Unitarity Triangle revisited

Unitarity Triangle revisited

 y and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations are robust against new physics as they do not involve loops.

Unitarity Triangle revisited

Of all constraints on the unitarity triangle, only the y and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations are robust against new physics as they do not involve loops.
It is possible that the TRUE $(\bar{\rho}, \bar{\eta})$ lies here (for example)

"Tree" determinations

Only "robust" measurements of y and $\left|\mathrm{V}_{\mathrm{ub}}\right|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM $\Delta I=3 / 2$ contributions in $B->\pi \pi)$; a truly robust γ determination should not include $B->\pi \pi$. Such determinations will be greatly improved by LHCb - N Serra's talk.

Only "robust" measurements of y and $|\mathrm{Vub}|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM $\Delta I=3 / 2$ contributions in B->ாா); a truly robust γ determination should not include B->ாாा. Such determinations will be greatly improved by LHCb - N Serra's talk. Certainly there is room for $\mathrm{O}(10 \%) \mathrm{NP}$ in b ->d transitions

"Tree" determinations

Only "robust" measurements of y and $|\mathrm{Vub}|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM $\Delta I=3 / 2$ contributions in B->ாா); a truly robust γ determination should not include B->ாாा. Such determinations will be greatly improved by LHCb - N Serra's talk.
Certainly there is room for $\mathrm{O}(10 \%) \mathrm{NP}$ in b ->d transitions Moreover, b->s transitions are almost unrelated to (ρ, η). They are the domain of LHCb

Another view

2.8σ
$B R \propto\left|V_{u b}\right|^{2}$ in SM
two-Higgs doublet model (II): $B R(B \rightarrow \tau \nu)=B R(B \rightarrow \tau \nu)_{\mathrm{SM}} \times\left|1-\frac{M_{B}^{2} \tan ^{2} \beta}{M_{H^{+}}^{2}}\right|^{2}$ could be NP in mixing; leading uncertainty is bag parameter

LHCb observables

- mixing
already detailed discussion yesterday consistent with SM (error still large) but $\mathrm{O}(1)$ mixing phase ruled out
- hadronic CPV

triple products
$\Delta A_{c p}$ in D decays
- semileptonic B decays
constraints on Wilson coefficients
- (This is a narrow subset of what I find interesting.)

Exclusive decays at LHCb

final state strong dynamics \#obs NP enters through

Leptonic

$$
\begin{equation*}
B \rightarrow 1^{+} I^{-} \tag{1}
\end{equation*}
$$

decay constant
$\langle 0| j^{\mu}|B\rangle \propto f_{B}$
form factors
$\langle\pi| j^{\mu}|B\rangle \propto f^{B \pi}\left(q^{2}\right)$
charmless hadronic matrix element $B \rightarrow \pi \pi, \pi K, \phi \phi, \ldots \quad\langle\pi \pi| Q_{i}|B\rangle$
semileptonic, radiative

$$
\mathrm{B} \rightarrow \mathrm{~K}^{*} \mathrm{I}^{+} \mathrm{I}, \mathrm{~K}^{*} \mathrm{Y}
$$

$$
\langle\pi| j^{\mu}|B\rangle \propto f f^{B \pi}\left(q^{2}\right)
$$

O(100)

Non-radiative modes also NP-sensitive via 4-fermion operators Decay constants and form factors accessible by QCD sum rules and, increasingly, by lattice QCD.

QCD a big challenge particularly for nonleptonic modes

hadronic $b \rightarrow s$ transitions

- trees carry small CKM factor $\sim \lambda^{4}$, hence sensitive to loops $b \rightarrow s$ decays penguin-dominated in SM

-various "anomalies" or "puzzles" exist, of unclear significance
- $\operatorname{Acp}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right) \neq \mathrm{A}_{c p}\left(\mathrm{~B}^{0} \rightarrow \pi^{-} \mathrm{K}^{+}\right)$at 5σ
- dimuon charge asymmetry (mixing)
interpretation requires some knowledge of hadronic amplitudes
which observables are "clean"?

Physical amplitudes

- Any SM amplitude can be written

$$
\begin{aligned}
& \mathcal{A}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=e^{-i \gamma} T_{M_{1} M_{2}}+P_{M_{1} M_{2}} \\
& T_{M_{1} M_{2}}=V_{u D}\left|V_{u b}\right|\left[C_{1}\left\langle Q_{1}^{u}\right\rangle+C_{2}\left\langle Q_{2}^{u}\right\rangle+\sum_{i=3}^{12} C_{i}\left\langle Q_{i}\right\rangle\right] \quad \text { "tree" } \\
& P_{M_{1} M_{2}}=V_{c D}\left|V_{c b}\right|\left[C_{1}\left\langle Q_{1}^{c}\right\rangle+C_{2}\left\langle Q_{2}^{c}\right\rangle+\sum_{i=3}^{12} C_{i}\left\langle Q_{i}\right\rangle\right] \quad \text { "peng } \\
& \text { (DM dactor }
\end{aligned}
$$

Qi: operators in weak hamiltonian
C_{i} : QCD corrections from short distances (< hc/mb) \& new physics $\left\langle Q_{i}\right\rangle=\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle$: QCD at distances $>h c / m_{b}$, strong phases

$B \rightarrow V V$

(for $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi$ coefficients are time-dependent due to oscillations)

$B \rightarrow V V$

(for $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi$ coefficients are time-dependent due to oscillations)

$B \rightarrow V V$

$$
\begin{aligned}
& \frac{d \Gamma}{d \cos \theta_{1} d \cos \theta_{2} d \phi}=N\left(\left|A_{0}\right|^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{\left|A_{\|}\right|^{2}}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos ^{2} \phi\right. \\
&+\frac{\left|A_{\perp}\right|^{2}}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2} \phi+\frac{\operatorname{Re}\left(A_{0} A_{\|}^{*}\right)}{2 \sqrt{2}} \sin 2 \theta_{1} \sin 2 \theta_{2} \cos \phi \\
&\left.-\frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{2 \sqrt{2}} \sin 2 \theta_{1} \sin 2 \theta_{2} \sin \phi-\frac{I m\left(A_{\perp} A_{\|}^{*}\right)}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi\right)
\end{aligned}
$$

(for $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi$ coefficients are time-dependent due to oscillations)

- presence of polarization trebles number of amplitudes
- angular analysis allows extraction of all 6 amplitudes

$B \rightarrow V V$

$$
\begin{aligned}
& \frac{d \Gamma}{d \cos \theta_{1} d \cos \theta_{2} d \phi}=N\left(\left|A_{0}\right|^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{\left|A_{\|}\right|^{2}}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos ^{2} \phi\right. \\
&+\frac{\left|A_{\perp}\right|^{2}}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2} \phi+\frac{\operatorname{Re}\left(A_{0} A_{\|}^{*}\right)}{2 \sqrt{2}} \sin 2 \theta_{1} \sin 2 \theta_{2} \cos \phi \\
&\left.-\frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{2 \sqrt{2}} \sin 2 \theta_{1} \sin 2 \theta_{2} \sin \phi-\frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right)}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi\right)
\end{aligned}
$$

(for $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi$ coefficients are time-dependent due to oscillations)

- presence of polarization trebles number of amplitudes
- angular analysis allows extraction of all 6 amplitudes
- already relative weak phases imply CP-violating "triple products", ie no strong phase knowledge required

Polarisation \& NP

- Triple-product asymmetries in B-> $\phi \mathrm{K}^{*}$

$$
\begin{aligned}
\mathcal{A}_{T}^{(1) \text { chg-avg }} & \equiv \frac{[\Gamma(S>0)+\bar{\Gamma}(\bar{S}>0)]-[\Gamma(S<0)+\bar{\Gamma}(\bar{S}<0)]}{[\Gamma(S>0)+\bar{\Gamma}(\bar{S}>0)]+[\Gamma(S<0)+\bar{\Gamma}(\bar{S}<0)]} \quad \begin{array}{l}
\text { [Datta, Duraisamy, London; } \\
\text { Gronau, Rosner 2011] }
\end{array} \\
& =-\frac{2 \sqrt{2}}{\pi} \frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}-\bar{A}_{\perp} \bar{A}_{0}^{*}\right)}{\left(\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)+\left(\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}\right)} \\
\mathcal{A}_{T}^{(2) c h g-\text { avg }} & \equiv \frac{[\Gamma(\sin 2 \phi>0)+\bar{\Gamma}(\sin 2 \bar{\phi}>0)]-[\Gamma(\sin 2 \phi<0)+\bar{\Gamma}(\sin 2 \bar{\phi}<0)]}{[\Gamma(\sin 2 \phi>0)+\bar{\Gamma}(\sin 2 \bar{\phi}>0)]+[\Gamma(\sin 2 \phi<0)+\bar{\Gamma}(\sin 2 \bar{\phi}<0)]} \\
& =-\frac{4}{\pi} \frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}-\bar{A}_{\perp} \bar{A}_{\|}^{*}\right)}{\left(\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)+\left(\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}\right)} .
\end{aligned}
$$

- HFAG data for the entire set of polarization amplitudes exists; Triple products at most $5-10 \%$ in either case
[Gronau, Rosner 2011]
- A SM calculation in QCD factorization (based on the heavyquark expansion) is consistent with the HFAG data
[Beneke, Rohrer, Yang 2006]
- Also "fake" triple-product asymmetries which require strong phases - small in QCDF, small in obs.

Polarisation \& NP

- Triple-product asymmetries in $\mathrm{B}_{\mathrm{s}^{-}}>\phi \phi$
- similar pair of TP asymmetries
- time-dependence -> mixing-decay interference
- one can define two combinations A_{u}, A_{v} sensitive to

$$
\operatorname{Im}\left[A_{\perp}(t) A_{i}^{*}(t)+\bar{A}_{\perp}(t) \bar{A}_{i}^{*}(t)\right] \quad \mathrm{i}=0, \|
$$

[Gronau, Rosner 2011]

- CDF $\quad A_{U}=-0.007 \pm 0.064$ (stat) ± 0.018 (syst)

$$
A_{V}=-0.120 \pm 0.064(\text { stat }) \pm 0.016(\text { syst }) .
$$

- LHCb $\quad A_{U}=-0.064 \pm 0.057$ (stat.) ± 0.014 (syst.)

$$
A_{V}=-0.070 \pm 0.057(\text { stat. }) \pm 0.014 \text { (syst.) }
$$

- No quantitative theoretical calculation exists at the moment but qualitatively it is clear that the SM predicts both TP asymmetries to be small (strong penguin domination)

Polarisation \& NP

- $1 / \mathrm{m}_{\mathrm{b}}$ expansion predicts a hierarchy $\overline{\mathcal{A}}_{0}: \overline{\mathcal{A}}_{-}: \overline{\mathcal{A}}_{+}=1: \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}:\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2}$ in \bar{B} decay (+/- interchanged in B decays); however, the suppression of the negative-helicity amplitude is numerically spoiled by annihilation contributions
[Kagan 2004]

- A nonvanishing positive-helicity amplitude could be a sign of NP and could even be turned into quantitative information on "right-handed currents"
[Kagan 2004]
- The smallness (presumably) of the negative-helicity amplitude suppresses one of the two triple-product asymmetries, making it a probe of right-handed currents

CPV in D decays

- LHCb has measured the difference

$$
\begin{aligned}
& \Delta \mathrm{A}_{\mathrm{CP}}=\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)-\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{\Pi}^{+} \mathrm{\Pi}^{-}\right) \quad \text { (see } \mathrm{N} \text { Serra's talk) } \\
& \left.\left.\Delta A_{C P}=[-0.82 \pm 0.21 \text { (stat. }) \pm 0.11 \text { (sys. }\right)\right] \% \quad \text { [LHcb-conf-2011-061] }
\end{aligned}
$$

- $\operatorname{SU}(3)$ symmetry predicts equal and opposite sign, i.e. no cancellation expected
- but GIM cancellations suggest, in the SM, strong suppression of the penguin amplitude ($|\mathrm{P} / \mathrm{T}| \sim 10^{-3}$)

- to explain in SM would need about an order of magnitude enhancement of the penguin amplitude. Current theoretical control much worse than for B decays.

Semileptonic decay

- kinematics described by dilepton invariant mass q^{2} and three angles
- Systematic theoretical description based on heavy-quark expansion ($\wedge / \mathrm{m}_{\mathrm{b}}$) for $\mathrm{q}^{2} \ll \mathrm{~m}^{2}(\mathrm{~J} / \Psi)$ (SCET) Beneke, Feldmann, Seidel 01 also for $\mathrm{q}^{2} \gg \mathrm{~m}^{2}(\mathrm{~J} / \psi)$ (OPE) Grinstein et al; Beylich et al 2011 Theoretical uncertainties on form factors, power corrections

$\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$

Ali et al ; Beneke et al; ..

- Most well-known observable: forward-backward asymmetry

- Many more observables to consider

Krueger, Matias; ...

Constraints on NP

A very brief history of flavour

1934 Fermi proposes Hamiltonian for beta decay

$$
H_{W}=-G_{F}\left(\bar{p} \gamma^{\mu} n\right)\left(\bar{e} \gamma_{\mu} \nu\right)
$$

1956-57 Lee\&Yang propose parity violation to explain " θ paradox".
Wu et al show parity is violated in β decay Goldhaber et al show that the neutrinos produced in ${ }^{152} \mathrm{Eu}$ K-capture always have negative helicity

1957 Gell-Mann \& Feynman, Marshak \& Sudarshan

$$
H_{W}=-G_{F}\left(\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)-G\left(\bar{p} \gamma^{\mu} P_{L} n\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)+\ldots
$$

V-A current-current structure of weak interactions.
Conservation of vector current proposed
Experiments give $G=0.96 \mathrm{G}_{\mathrm{F}}$ (for the vector parts)

1960-63 To achieve a universal coupling, Gell-Mann\&Levy and Cabibbo propose that a certain superposition of neutron and \wedge particle enters the weak current.
Flavour physics begins!
1964 Gell-Mann gives hadronic weak current in the quark model
$H_{W}=-G_{F} J^{\mu} J_{\mu}^{\dagger}$
$J^{\mu}=\bar{u} \gamma^{\mu} P_{L}\left(\cos \theta_{c} d+\sin \theta_{c} s\right)+\bar{\nu}_{e} \gamma^{\mu} P_{L} e+\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu$
1964 CP violation discovered in Kaon decays (Cronin\&Fitch)
1960-1968 J_{μ} part of triplet of weak gauge currents. Neutral current interactions predicted and, later, observed at CERN.

However, the predicted flavour-changing neutral current (FCNC) processes such as $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$are not observed!

1970 To explain the absence of $K_{L} \rightarrow \mu^{+} \mu^{-}$, Glashow, Iliopoulos \& Maiani (GIM) couple a "charmed quark" to the formerly "sterile" linear combination
$-\sin \theta_{c} d_{L}+\cos \theta_{c} s_{L}$
The doublet structure eliminates the Zsd coupling!
1971 Weak interactions are renormalizable ('t Hooft)
1972 Kobayashi \& Maskawa show that CP violation requires extra particles, for example a third doublet. CKM matrix

1974 Gaillard \& Lee estimate loop contributions to the $\mathrm{K}_{\mathrm{L}}-\mathrm{K}_{\mathrm{s}}$ mass difference
Bound $\mathrm{m}_{\mathrm{c}}<5 \mathrm{GeV}$

1974 Charm quark discovered

1977 т lepton and bottom quark discovered
1983 W and Z bosons produced
1987 ARGUS measures $B_{d}-B_{d}$ mass difference First indication of a heavy top

The diagram depends quadratically on m_{t}

1995 top quark discovered at CDF \& D0
\(\left.$$
\begin{array}{|lc|cc|c||c|}\hline\binom{u_{L}}{d_{L}} & u_{R} \\
d_{R} & \binom{c_{L}}{s_{L}} & c_{R} & \left(\begin{array}{c}t_{L} \\
s_{R}\end{array}\right. & \left.\begin{array}{c}t_{R} \\
b_{L}\end{array}\right) & Q=+2 / 3 \\
b_{R} & Q=-1 / 3 \\
\hline\binom{\nu_{e L}}{e_{L}} & - & \binom{\nu_{\mu_{L}}}{\mu_{L}} & - & \left(\begin{array}{c}\nu_{\tau_{L}} \\
\mu_{R}\end{array}
$$\right. \& -

\tau_{L}\end{array}\right) \quad\)| τ_{R} |
| :--- |

2012-

SUSY, new strong interactions, extra dimensions, ...

Summary/outlook

- Theories of the electroweak scale bring in new particles which contribute to flavour and CP-violating observables
- Consistency of CKM fit and the Φ_{s} measurements disfavor large BSM CP violation (but some tensions in b->d exist, and there is similar (or greater) room in b->s)
- interesting direct CP asymmetry observation in D decays. Much larger than previous SM estimates, but theoretically challenging
- many more observables, including CP-conserving ones (rare semileptonic/radiative/hadronic decays) that have not been analysed or still have large statistical uncertainties could show signs of new physics

BACKUP

$B \rightarrow$ KK direct CP puzzle

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{~B}^{0} \rightarrow \mathrm{\Pi}^{-} \mathrm{K}^{+}\right)=\mathrm{T} \mathrm{e}^{\mathrm{iy}}+\mathrm{P}+\mathrm{P}_{\mathrm{EW}} \\
& -\mathrm{A}\left(\mathrm{~B}^{+} \rightarrow \Pi^{0} \mathrm{~K}^{+}\right)=(\mathrm{T}+\mathrm{C}) \mathrm{e}^{\mathrm{iY}}+\mathrm{P}+\mathrm{P}_{\mathrm{EW}}+\mathrm{P}^{\mathrm{c}} \mathrm{EW}
\end{aligned}
$$

data: $\mathrm{Acp}_{\mathrm{cp}}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)-\mathrm{AcP}_{\mathrm{cP}}\left(\mathrm{B}^{0} \rightarrow \mathrm{~T}^{-} \mathrm{K}^{+}\right)=0.14 \pm 0.03$ (expt)
[Belle collab: in Nature (2008)]
In general, only isospin relation [Gronau 2005; Gronau \& Rosner 2006]
$\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \mathrm{T}^{0} \mathrm{~K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \mathrm{~m}^{0} \mathrm{~K}^{0}\right) \approx \mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \mathrm{~m}^{-} \mathrm{K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \mathrm{T}^{0} \mathrm{~K}^{0}\right)$
how small are the "small" amplitude ratios C / T and $\mathrm{P}_{\mathrm{Ew}} / \mathrm{T}$

$B \rightarrow$ KK direct CP puzzle

data: $\mathrm{Acp}_{\mathrm{CP}}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)-\mathrm{A}_{\mathrm{cP}}\left(\mathrm{B}^{0} \rightarrow \mathrm{~T}^{-} \mathrm{K}^{+}\right)=0.14 \pm 0.03$ (expt)
[Belle collab: in Nature (2008)]
In general, only isospin relation [Gronau 2005; Gronau \& Rosner 2006]
$\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \pi^{0} \mathrm{~K}^{0}\right) \approx \mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \mathrm{~T}^{-} \mathrm{K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \mathrm{T}^{0} \mathrm{~K}^{0}\right)$
how small are the "small" amplitude ratios C / T and $\mathrm{P}_{\mathrm{Ew}} / \mathrm{T}$

$B \rightarrow$ TK direct CP puzzle

data: $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)-\mathrm{A}_{c P}\left(\mathrm{~B}^{0} \rightarrow \pi^{-} \mathrm{K}^{+}\right)=0.14 \pm 0.03$ (expt)
[Belle collab: in Nature (2008)]
In general, only isospin relation [Gronau 2005; Gronau \& Rosner 2006]
$\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \pi^{0} \mathrm{~K}^{0}\right) \approx \mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \pi^{-} \mathrm{K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{0}\right)$
how small are the "small" amplitude ratios C / T and $\mathrm{P}_{\mathrm{Ew}} / \mathrm{T}$

$B \rightarrow$ KK direct CP puzzle

data: $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)-\mathrm{A}_{c P}\left(\mathrm{~B}^{0} \rightarrow \pi^{-} \mathrm{K}^{+}\right)=0.14 \pm 0.03$ (expt)
[Belle collab: in Nature (2008)]
In general, only isospin relation [Gronau 2005; Gronau \& Rosner 2006]
$\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \pi^{0} \mathrm{~K}^{0}\right) \approx \mathrm{Acp}\left(\mathrm{B}^{0} \rightarrow \pi^{-} \mathrm{K}^{+}\right)+\mathrm{Acp}\left(\mathrm{B}^{+} \rightarrow \pi^{0} \mathrm{~K}^{0}\right)$
how small are the "small" amplitude ratios C / T and $\mathrm{P}_{\mathrm{EW}} / \mathrm{T}$

Theoretical description

partly short distance

$\because \leqslant$
Form factor
$\mathrm{T}_{1,2,3} \times \mathrm{C}_{7}$
(lattice, QCD sum rules) Wilson coefficient (may receive NP corrections)
partly long distance

$$
q=\operatorname{charm} / \mathrm{u} / \mathrm{d} / \mathrm{s}
$$ not calculable in terms of form factors

LOnO-OiSt?

no known way to treat charm resonance region to the necessary precision (would need $\ll 1 \%$ to see short-distance contribution)
"solution": cut out $6 \mathrm{GeV}^{2}<\mathrm{q}^{2}<14 \mathrm{GeV}^{2}$
above (high-q ${ }^{2}$) charm loops calculable in OPE
Grinstein et al; Beylich et al 2011
at low q^{2}, long-distance charm effects also suppressed, but photon can now be emitted from spectator withouth power suppression

long-distance "resonance" effects as in top figure ($q=u, d, s$) CKM and power suppressed

- uncertainty due to mainly form
factor precision (will improve); light cone distribution amplitudes (will to some degree improve)

cut at $1 \mathrm{GeV}^{2}$ is an ad-hoc procedure to remove/ reduce uncertainty from 'light resonances' however interesting physics in this region ($\mathrm{C}_{7}, \mathrm{C}_{7}{ }^{\prime}$)

