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Baryogenesis

• There are many photons ...       some baryons...

... and essentially no antibaryons in the universe

• Can arise dynamically from B=0 if sufficient...
(1) departure from equilibrium and
(2) C and CP violation and
(3) B violation

[WMAP]
[SDSS]

small splitting is induced by the soft supersymmetry breaking terms [42].

Another possibility which has been recently explored [16, 17] relies on the fact that ra-

diative effects, induced by the renormalization group (RG) running from high to low

energies, can naturally lead to a sufficiently small neutrino mass splitting at the lepto-

genesis scale. In the latter case, sufficiently large CP asymmetries are generated.

In the minimal seesaw scenario with only two heavy neutrinos the resulting baryon

asymmetry in the SM turns out to be below the observed value [16]. On the other

hand, this mechanism can be successfully implemented in its minimal supersymmetric

extension (MSSM) [17].

It has been shown [18] that the above problems in the SM can be overcome in a more

realistic scenario where the effects of a third heavy neutrino are also taken into account.

In [18], leptogenesis was studied in the framework of a model where there are three right-

handed neutrinos, with masses M1 ≈ M2 " M3. We will discuss this scenario below as

a special limit of the MLFV framework.

In view of the above, it is important to analyze leptogenesis in the extended MLFV

framework, where CP violation is allowed both at high and low energies. In the MLFV

scenario, right-handed neutrinos are assumed to be exactly degenerate at a high energy

scale. In the limit of exact degeneracy, no lepton-asymmetries can be generated. How-

ever, as previously emphasized, even if exact degeneracy is assumed at a high energy

scale, renormalization group effects lead to a splitting of right-handed neutrino masses

at the scale of leptogenesis, thus offering the possibility of viable leptogenesis in the

extended MLFV framework.

5.2 BAU in the RRL and Flavour Effects

In leptogenesis scenarios the baryon asymmetry of the universe ηB arises due to non-

perturbative sphaleron interactions that turn a lepton asymmetry into a baryon asym-

metry. The predicted value of ηB has to match the results of WMAP and the BBN

analysis for the primordial deuterium abundance [43]

ηB =
nB

nγ
= (6.3 ± 0.3) × 10−10. (49)

The lepton asymmetry is generated by out-of-equilibrium decays of heavy right-handed
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Thermal leptogenesis

• CP-violating νR decay:

• Resulting net lepton numbers <Ll> partially 
converted to <B> by equilibrium sphalerons

thermal Leptogenesis

CP asymmetric out of equilibrium decay of 
heavy neutrino generates an excess in L

!L is converted via sphalerons into desired 
excess in B needed to explain "B=(6.3±0.3)10-10

!M ! #(N-> L phi)
‘radiative resonant leptogenesis’

eta B = d * 1/K " eps

two regimes flavour / no flavour

Fukugita, Yanagida (86), see lecture by S. Davidson

Lepton Flavour Effects and Resonant Leptogenesis

Outline

• Resonant Leptogenesis
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• “Lepton Flavour Effects”

– Significant effects of individual lepton flavours on the dynamics
of leptogenesis

• Resonant τ -Leptogenesis

– A minimal variant of leptogenesis with potentially observable
LFV and the collider production of N

analysis for the primordial deuterium abundance [43]

ηB =
nB

nγ
= (6.3 ± 0.3) × 10−10. (49)

The lepton asymmetry is generated by out-of-equilibrium decays of heavy right-handed

Majorana neutrinos Ni and is proportional to the CP asymmetry εl
i with

εl
i =

Γ(Ni → Ll φ) − Γ(Ni → L̄l φ̄)
∑

l

[

Γ(Ni → Ll φ) + Γ(Ni → L̄l φ̄)
] , (50)

and l denoting the lepton flavour, that arises at one-loop order due to the interference

of the tree level amplitude with vertex and self-energy corrections.

A characteristic of the MLFV framework is that only admissable BAU with the help of

leptogenesis is radiative and thereby resonant leptogenesis. The mass splittings of the

right-handed neutrinos induced by the RGE are of similar size ∆M ∼ O(Mν YνY †
ν ) as

the decay widths Γ ∼ O(Mν YνY †
ν ). This is the condition of resonant leptogenesis. The

CP asymmetry is for the lepton flavour l given by

εl
i =

1

(YνY
†
ν )ii

∑

j

%((YνY
†
ν )ij(Yν)il(Y

†
ν )lj) g(M2

i , M2
j , Γ2

j) (51)

where g(M2
i , M2

j , Γ2
j) is an abbreviation for the full result given in [21]. The total CP

asymmetries εi are obtained summing over the lepton flavours l.

The baryon to photon number ratio ηB can then be calculated solving the Boltzmann

equations for the lepton asymmetry and converting it into ηB using suitable dilution

and sphaleron conversion factors. Which Boltzmann equation to use depends on the

temperature scale at which leptogenesis takes place. We will follow a simplistic approach

ignoring all subtleties generically coming into play in the intermediate regime between

different mechanisms at work. Our main conclusions, however, will not be affected by

this omission. We will simply divide the temperature scale into a region up to which all

three lepton flavours have to be taken into account and a region above which the single

flavour approximation works.

Below some temperature6 T µ
eq & 109−11 GeV muon and tau charged lepton Yukawa inter-

actions are much faster than the expansion H rendering the µ and τ Yukawa couplings in

equilibrium. The correct treatment in this regime requires the solution of lepton flavour

6Different results for T µ
eq can be found in the literature ranging from T µ

eq & 109 GeV [44, 45] to

T µ
eq & 1011 GeV [46]. We will chose T µ

eq & 1010 GeV in our analysis. The main conclusions are, however,

not affected by this choice.
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weak CPV phase in Yν CP-conserving phase from loop

temperature

scale factor

todayTreheat
T=MR

L asymmetry generated

radiation-dominated 
epoch begins

inflation ends, 
universe reheated

converted

see Bjoern Garbrecht’s talk



C, P and T
• In local quantum field theory CPT is a symmetry

e
+e

−

t
x

e
−

e
+

x
t

“rotation” by π 
in tx plane

i.e. simultaneously  t ➔-t                              (time reversal T)
                                x ➔-x                             (parity P - up to a rotation)
                                particles ➔ antiparticles (charge conjugation C)
in particular CPT implies the existence of antiparticles with identical 
masses and lifetimes

(constructive proof at Lagrangian level, or more general proof in 
axiomatic field theory)



C and P violation
• C, P, T individually need not be symmetries

• chiral fermions violate C & P maximally [no C,P partners] 

• gauge-fermion theories (renormalisable, only spins 1 and 
1/2) preserve CP save for vacuum θ angle(s)

• example: SM gauge sector (neglect θQCD  for now) 

• conserves CP; large global flavour symmetry

f = QLj , uRj , dRj , LLj , eRj j = 1, 2, 3

Lgauge =

∑

f

ψ̄fγµDµψf −
∑

i,a

1

4
giF

ia
µνF iaµν

chiral fermions

Gflavor = SU(3)5 × U(1)B × U(1)A × U(1)L × U(1)E

QL → ei(b/3+a)VQL
QL, uR → ei(b/3−a)VuR

uR, dR → ei(b/3−a)VdR
dR

LL → ei(l+a)VLLL, eR → ei(l+e−a)VReR Chivukula, Georgi 1987



CP violation
• Vacuum θ angle(s) violate CP

• CP violation generic if scalars are present
SM Yukawa interactions:

CP violation of this type requires 3 generations

• flavour symmetry broken to 

LY = −ūRYUφc†QL − d̄RYDφ†DL − ēRYEφ†EL

U(1)B × U(1)e × U(1)µ × U(1)τ

YU = 1/v diag(mu, mc, mt)VCKM

YD = 1/v diag(md, ms, mb)

YE = 1/v diag(me, mµ, mτ )

hadronic electric dipole 
moments (EDMs)

L ⊃ −θ
g2

32 π2
F a

µνF̃µν a
∝ #Ea

· #Ba

P and CP odd

9 masses       3 mixing angles

1 CP-violating 
phase

Kobayashi, Maskawa 1972



Observables
• CP-violating, flavour-conserving

   neutron, electron, atomic EDM’s
   advantage: ultraclean tests of SM and we
   “know” that BSM CP violation exists
   disadvantage: CP violation could be at scales >> TeV   
   and possibly out of reach

• CP-violating, flavour-violating
   CPV in K,D, B, Bs mixing and mixing-decay interference
   direct CPV (CPV in decay)
   triple-product asymmetries
   advantage: various clean tests of SM
   disadvantage:  TeV scale need not be CPV (see above)

• CP-conserving, flavour-violating
   Rare K, (D,) B, Bs decays: BR’s, kinematic distributions
   lepton flavour violation
   advantage: TeV physics is guaranteed to affect these
   disadvantage: fewer/less clean tests of SM



Unitarity triangleUnitarity triangle

Unitarity of V ⇒
V ∗

ubVud + V ∗
cbVcd + V ∗

tbVtd = 0

Aλ3(ρ + iη) − Aλ3 + Aλ3(1 − ρ − iη) = 0

Graphically,

γ

α

β

|Vub| |Vtd|

( , )ρ η

λVcb λVcb

1 (1, 0)(0, 0)

Vub = |Vub|e−iγ

Vtd = |Vtd|e−iβ

What B-mesons tell us about the Standard Model and “New Physics” – p.6

b ➞u l ν 
b ➞u q q
(tree-level 
Weak int.)            

requires top loop       

suppression of flavour-changing neutral currents (FCNC) 
by loops and CKM hierarchy
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This makes them sensitive to new physics!
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Summer 11

CKM
f i t t e r

Unitarity Triangle 2011

The CKM picture of flavour & CP violation is consistent with 
observations.

Within the Standard Model, all parameters (except higgs mass) 
including CKM have been determined, with good precision

B0  ➔ D+ π-

B± ➔ D0 K± 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS

[UTfit obtain similar results ]



Flavour of the TeV scale
• Solutions to the hierarchy problem must bring in particles 

to cut off the top contribution to the weak scale (Higgs 
mass parameter).  

• The new particles’ couplings tend to break flavour (they 
do in all the major proposals for TeV physics)

• At least they will have CKM-like flavour violations 
(minimal flavour violation), so will always affect rare 
decays
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Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

3

t
H ∝ y

2
t
Λ

2
UVH



Minimal flavour violation
• in this case, CKM parameters can be extracted 

unambiguously beyond the Standard Model

• however, this is a very restrictive scenario; typically does 
not apply to dynamical BSM models

• can be generalized (relaxed)

Buras, Gambino, Gorbahn, SJ, Silvestrini 2000

UTfit collaboration (Bona et al)

independent of details of new physics 
(particle content, masses, couplings)

 Kagan et al 2009
 ...

Universal unitarity triangle (UUT)

d’Ambrosio et al 2002



Supersymmetry associates a scalar with every SM fermion

Squark mass matrices are 6x6 with independent flavour 
structure:

similar for up squarks, charged sleptons. 3x3 LL for sneutrinos

                                               
                                            

3x3 flavour-violating               

M
2

d̃
=





m̂2

Q̃
+ m2

d + DdLL v1T̂D − µ∗md tanβ

v1T̂
†
D − µmd tanβ m̂2

d̃
+ m2

d + DdRR



≡





(M2

d̃
)LL (M2

d̃
)LR

(M2

d̃
)RL (M2

d̃
)RR





(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃

                                              33 flavour-violating parameters 
                                              45 CPV (some flavour-conserving) 

SUSY flavour

- and supersymmetry-breaking               



                                               
                                            

K-K, Bd-Bd, Bs-Bs mixing
 
ΔF=1 decays            

SUSY flavour (2)
S. Jäger: Supersymmetry beyond minimal flavour violation 11

dAi dBj

dCidDj

d̃Dj d̃Ci

d̃Ai d̃Bj

(M2
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)ij

(M2
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)ij
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(a)
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)ij
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(b)

Fig. 3. Diagrams for meson-antimeson mixing. A, B, C, D denote chiralities of the quarks (and squarks). The blobs are flavour-
changing “mass insertions”.

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
be the case in GUT scenarios. There are always “mini-
mally flavour-violating” contributions, which are propor-
tional to the same CKM factors as the SM contributions.
Of interest here are the additional contributions due to
nonvanishing δu parameters. Neglecting terms suppressed
by small CKM elements or small Yukawa couplings, only
C1 receives a contribution [58]

C1 = −
GF α√

2π sin2 θW

M2
W

m2
q̃

×
1

20

[

([δũ
ij)LL]2 −

2

3
(δũ

ij)LL(δũ
it)LR(δũ

jt)
∗
LR

+
1

7
[(δũ

it)LR(δũ
jt)

∗
LR]2

]

. (65)

Note that the chargino contributions involve either a LL
mass insertion or a double LR one on each squark line;
for the latter, only those involving a stop can be relevant
according to Table 3. (For B − B̄ mixing, there may be
additional operators [59].)

If tanβ is large, there are in principle also terms pro-
portional to yb that could be important. In that case, how-
ever, Higgs double-penguin diagrams are often dominant
and require a modified treatment [60,61,62,63].

3.2.1 K − K̄ mixing and constraints on δ’s

K − K̄ oscillations proved their discovery potential in
estimating the charm quark mass before its observation
[64], as well as in the discovery of (indirect) CP violation

[65], later giving information on the CP-violating phase in
the CKM matrix. The possibility of large SUSY contribu-
tion was recognized early on [66,67,68,69,70], and ∆MK

and εK still provide the strongest FCNC constraints on
the MSSM parameters. The mass difference ∆MK and
the CP-violating parameter εK follow from the effective
∆F = 2 Hamiltonian,

∆MK ∝ 2
∑

i

Bi Re Ci, (66)

εK ∝
eiπ/4

√
2∆MK

∑

i

Bi Im Ci, (67)

where Bi ≡ 〈K|Qi|K̄〉. The hadronic matrix elements Bi

contain low-energy QCD effects and require nonperturba-
tive methods such as (numerical) lattice QCD, see e.g. [71,
72,73].8 Moreover, ∆MK is afflicted by long-distance con-
tributions which are believed to be not much larger than
the SM short-distance contribution but are difficult to es-
timate. Nevertheless, in view of the strong CKM suppres-
sion of the SM contribution, even a rough estimate of the
Bi translates into strong constraints on s → d flavour vi-
olation parameters. The procedure is as follows [1]:

– Write out the expression for the observable (here, εK

or ∆MK) as linear combination of (products of) δ-
parameters, inserting estimates of the hadronic matrix
elements.

– Require that each term at most saturates the experi-
mental result.

8 Usually, the hadronic matrix elements are normalized to
their values obtained from PCAC in ”vacuum-insertion ap-
proximation”. This normalization is included in the Bi here.

s d

ũL

Z

χ̃−

ũLt̃R

B ➔K*µ+µ- 

B ➔K*γ
B ➔Kπ 
Bs,d ➔µ+µ- 
K ➔πνν
...



SUSY flavour puzzle
d                                                      where are their effects?

 o

- elusiveness of deviations from SM in flavour physics
  seems to make MSSM look unnatural

- pragmatic point of view: flavour physics highly sensitive to MSSM 
  parameters - and SUSY breaking mechanism in particular

(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃

[Gabbiani et al 96; Misiak et al 97 ]
these numbers from [SJ, 0808.2044]



Flavour - warped ED
• v

Warped models may overcome both difficulties

Gherghetta & Pomarol;
                Huber & Shafi (00)

♦ 0-modes configuration looks similar to flat case. 

Higgs and KK states are localized on the IR. 

Π
2 Π

Φ

f�Φ�
Higgs

heavylight

Warped 5D

1st KK

Light fields have highly suppressed coupling to KK modes!

UV IR

9

[G Perez, talk at CKM 2010]

Higgs localized on  IR brane
light (heavy) fermions localized
near UV (IR) brane

hierarchical SM 
fermion masses

dangerous four-fermion 
operators with TeV 
suppression are 
“natural” on the IR brane

not so dangerous after 
taking into account 
localization of SM fermions
(“RS-GIM”)
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zero modes (~ ground 
state waves of a particle 
in a box) of fields present 
in the bulk.
They also have infinitely 
many massive modes (KK 
modes, ~higher states of 
particle in box)
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bulk



Flavour - warped ED (2)
• dominant contribution to FCNC usually not from brane 

contact terms but from tree-level KK boson exchange

• where are their effects?

λkmn

f (m)

f (n)

f ′ (m′)

f ′ (n′)
V (k)

f (m)

f (n)

f ′ (m′)

f ′ (n′)
h

Figure 1: Contributions to the effective four-fermion interactions arising from the tree-

level exchange of the gauge bosons V = γ, g, Z0, W±
and their KK excitations (left),

and of the Higgs boson (right).

3.1 Exchange of KK Photons and Gluons

We begin with a discussion of the interactions induced by the exchange of KK photons and

gluons. The graph on the left in Figure 1 shows an example of a diagram giving rise to such

contributions. The relevant sums over KK modes can be evaluated by means of (I:34). In the

case of KK photon exchange, we find that the effective Hamiltonian at low energies is given

by

H
(γ)
eff =

2πα

M2
KK

�

f,f �

Qf Qf �

�
1

2L

�
f̄γµf

� �
f̄ �γµf

��− 2
�
f̄Lγµ∆�

F fL + f̄Rγµ∆�
ffR

� �
f̄ �γµf

��

+ 2L
�
f̄Lγµ �∆F fL + f̄Rγµ �∆ffR

�
⊗

�
f̄ �

Lγµ
�∆F �f �

L + f̄ �
Rγµ

�∆f �f �
R

� �
.

(8)

Here the sum over fermions implicitly includes the sum over all KK modes. The matrices ∆�
A

have been defined in (I:122). These are infinite-dimensional matrices in the space of flavor

and KK modes. In addition, we have defined the new mixing matrices (with F = U,D and

f = u, d, and similarly in the lepton sector) [36]

��∆F

�
mn
⊗

��∆f �
�

m�n� =
2π2

L2�2

� 1

�

dt

� 1

�

dt� t2<

×
�
a(F )†

m C(Q)
m (φ) C(Q)

n (φ) a(F )
n + a(f)†

m S(f)
m (φ) S(f)

n (φ) a(f)
n

�

×
�
a(f �)†

m� C(f �)
m� (φ�

) C(f �)
n� (φ�

) a(f �)
n� + a(F �)†

m� S(Q)
m� (φ�

) S(Q)
n� (φ�

) a(F �)
n�

�
,

(9)

etc. Notice that the matrices �∆A ⊗ �∆B are not defined individually, but only as tensor

products, as indicated by the ⊗ symbol. The couplings to SM fermions are encoded in the

upper-left 3×3 blocks of each �∆A⊗ �∆B matrix. We emphasize that the result (8) is exact. In

particular, no expansion in powers of v2/M2
KK has been performed. The effective interactions

arising from KK gluon exchange have a very similar structure, except that we need to restrict

the sum over fermions in (8) to quarks and replace α Qf Qf � by αs ta ⊗ ta, where the color

matrices ta must be inserted inside the quark bi-linears.

The four-fermion operators induced by KK gluon exchange give the by far dominant (lead-

ing) contribution to the effective weak Hamiltonians describing K–K̄ (Bd,s–B̄d,s and D–D̄)

7

λkmn =

∫
dφw(φ)f (m)(φ)f (n)(φ)f (k)

V
(φ)

non-minimal flavour violations !          

Ymn ∝ f (m)(π)f (n)(π)

zero modes
 =SM particles

KK mode number

generation

KK mode coupling

SM Yukawa coupling



Other scenarios
• fourth SM generation

  CKM matrix becomes 4x4, giving new sources of flavour 
  and CP violation

• little(st) higgs model with T parity
  (higgs light because a pseudo-goldstone boson)
  finite, calculable 1-loop contributions due to new heavy
  particles with new flavour violating couplings

• ...

non-minimal flavour violation !          
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γ and |Vub| determinations are robust against new physics as they 
do not involve loops.
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It is possible that the TRUE           lies here  (for example)

B0  ➔ D+ π-

B± ➔ D0 K± 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS
Of all constraints on the unitarity triangle, only the
γ and |Vub| determinations are robust against new physics as they 
do not involve loops.

(ρ̄, η̄)
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Only “robust” measurements of γ and |Vub| . Note: the γ(α) constraint 
shown depends on assumptions (absence of BSM ΔI=3/2 contributions 
in B->ππ); a truly robust γ determination should not include B->ππ. 
Such determinations will be greatly improved by LHCb - N Serra’s talk.
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in B->ππ); a truly robust γ determination should not include B->ππ. 
Such determinations will be greatly improved by LHCb - N Serra’s talk.

Moreover, b->s transitions are almost unrelated to (ρ,η). They
are the domain of  LHCb
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BR ∝ |Vub|2  in SM
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two-Higgs doublet model (II): BR(B → τν) = BR(B → τν)SM×

∣

∣

∣

∣

1 −

M2

B
tan2 β

M2

H+

∣

∣

∣

∣

2

could be NP in mixing; leading uncertainty is bag parameter



LHCb observables
• mixing

   already detailed discussion yesterday
   consistent with SM (error still large)
   but O(1) mixing phase ruled out

• hadronic CPV

   triple products
   ΔACP  in D decays

• semileptonic B decays

   constraints on Wilson coefficients

• (This is a narrow subset of what I find interesting.)
Alexey A Petrov (WSU & MCTP) LHCb Theory Workshop, CERN, 2011

New Physics in Bs-mixing

5

! Relate NP contributions in Bs mixing and rare decays

! Bs mixing data:

E.Golowich, J. Hewett, S. Pakvasa, A.A.P,
and G. Yeghiyan PRD83, 114017 (2011)

SM

NP 
This characterizes the size of NP “window” still possible in Bs-mixing.
This is what should be related to rare decays (same formulas...)

Friday, November 11, 11



 final state             strong dynamics       #obs    NP enters through    

Leptonic
              

semileptonic,
radiative

charmless hadronic

Non-radiative modes also NP-sensitive via 4-fermion operators
Decay constants and form factors accessible by QCD sum rules 
and, increasingly, by lattice QCD.

QCD a big challenge particularly for nonleptonic modes

O(1)                         

O(10)                         

O(100)                         

decay constant                     

form factors

matrix element              

B➔l+ l-

B➔ K*l+ l-, K*γ

B➔ππ, πK, ϕϕ, ...

⟨π|jµ|B⟩ ∝ fBπ(q2)

⟨0|jµ|B⟩ ∝ fB

⟨ππ|Qi|B⟩

Exclusive decays at LHCb
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hadronic b➞s transitions
•  trees carry small CKM factor ~ λ4,  hence sensitive to loops

                                    b➔s decays penguin-dominated in SM

•various “anomalies” or “puzzles” exist, of unclear significance

•  ACP(B+ ➔π0 K+)≠ACP(B0➔π- K+) at 5σ

•  dimuon charge asymmetry (mixing)

interpretation requires some knowledge of hadronic amplitudes

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6
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Physical amplitudes
• Any SM amplitude can be written 

  

A(B̄ → M1M2) = e
−iγ

TM1M2
+ PM1M2

TM1M2
= VuD|Vub|

[

C1〈Q
u
1 〉 + C2〈Q

u
2 〉 +

12
∑

i=3

Ci〈Qi〉
]

PM1M2
= VcD|Vcb|

[

C1〈Q
c
1〉 + C2〈Q

c
2〉 +

12
∑

i=3

Ci〈Qi〉
]

“tree”

“penguin”

Qi: operators in weak hamiltonian
Ci: QCD corrections from short distances (< hc/mb) & new physics
⟨Qi⟩=⟨M1 M2 | Qi | B⟩: QCD at distances > hc/mb, strong phases

tree W exchange penguins (QCD, 
magnetic, EW)

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
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hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6
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CKM factor   
(D=d or s)        

required for direct (decay rate) CP asymmetry



B➞V V
V.1 V1 → P1P ′

1, V2 → P2P ′
2

Let us consider decays in which each of the two vector mesons in B(s) → V1V2 decays into
two pseudoscalar mesons. This class of decays consists of charmless decays of B and Bs

mesons including B → φ(→ K+K−)K∗(→ Kπ) and Bs → φ(→ K+K−)φ(→ K+K−).
We denote by θ1 (θ2) the angle between the directions of motion of P1 (P2) in the V1 (V2)
rest frame and V1(V2) in the B rest frame. The angle between the planes defined by P1P ′

1

and P2P ′
2 in the B(s) rest frame will be denoted by φ as in Section II. The decay angular

distribution in these three angles is given in terms of the three transversity amplitudes
A0, A‖, A⊥ [26] (see also [25]):

dΓ

d cos θ1d cos θ2dφ
= N

(

|A0|2 cos2 θ1 cos2 θ2 +
|A‖|2

2
sin2 θ1 sin

2 θ2 cos
2 φ (20)

+
|A⊥|2

2
sin2 θ1 sin

2 θ2 sin
2 φ+

Re(A0A∗
‖)

2
√
2

sin 2θ1 sin 2θ2 cosφ

−
Im(A⊥A∗

0)

2
√
2

sin 2θ1 sin 2θ2 sinφ−
Im(A⊥A∗

‖)

2
sin2 θ1 sin

2 θ2 sin 2φ

)

.

Integrating over θ1 and θ2 and using
∫ 1

−1
cos2 θ d cos θ =

2

3
,

∫ 1

−1
sin2 θ d cos θ =

4

3
,
∫ 1

−1
sin 2θ d cos θ = 0 , (21)

one obtains the following distribution in φ:

dΓ

dφ
=

4

9
N

(

|A0|2 + 2|A⊥|2 sin2 φ+ 2|A‖|2 cos2 φ− 2Im(A⊥A
∗
‖) sin 2φ

)

. (22)

The last term in this angular distribution provides a potential T-odd asymmetry. Note that
the term involving Im(A⊥A∗

0) does not contribute to a T-odd asymmetry when integrating
over the angle θ1 or θ2.

One has now in analogy with Eqs. (2) and (3),

sinφ = (n̂V1
× n̂V2

) · p̂V1
, sin 2φ = 2(n̂V1

· n̂V2
)(n̂V1

× n̂V2
) · p̂V1

, (23)

where n̂Vi
(i = 1, 2) is a unit vector perpendicular to the Vi decay plane and p̂V1

is a unit
vector in the direction of V1 in the B(s) rest frame. A triple product (or more precisely
a T-odd) asymmetry is now defined similarly to Eq. (4) as an asymmetry between the
number of decays involving positive and negative values of sin 2φ [3]:

A(2)
T ≡

Γ(sin 2φ > 0)− Γ(sin 2φ < 0)

Γ(sin 2φ > 0) + Γ(sin 2φ < 0)

=
[
∫ π/2
0 +

∫ 3π/2
π ](dΓ/dφ)dφ− [

∫ π
π/2+

∫ 2π
3π/2](dΓ/dφ)dφ

∫ 2π
0 (dΓ/dφ)dφ

. (24)

Using (22) one obtains

A(2)
T = −

4

π

Im(A⊥A∗
‖)

|A0|2 + |A⊥|2 + |A‖|2
. (25)
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1 Introduction

In the Standard Model the flavour-changing neutral current (FCNC) decay B0
s → φφ

proceeds via a b̄ → s̄ss̄ penguin decay. The decay was first observed by the CDF col-

laboration in 2005 [1]. This mode provides an excellent probe of possible New Physics

contributions entering the FCNC decay or B0
s − B̄0

s mixing diagrams. One possible way

to study CP violation in this mode is to measure observable quantities related to triple

product asymmetries. Scalar triple products of three momentum or spin vectors are odd

under time reversal T . Triple product asymmetries can either be due to a T -violating
phase or a CP -conserving phase and final-state interactions. The former case (a true

asymmetry) implies, assuming CPT conservation, that CP is violated. A detailed review

of the phenomenology of triple product asymmetries is given in Ref [2].

B0
s

Φ

θ2θ1

K−

K+

K−

K+

φ φ

Figure 1: Decay angles defined in the helicity frame for the B0
s → φφ mode.

The decay rate as function of time, t, is given by [3]:

d4Γ

dtdΩ
∝|A0(t)|2 · f1(Ω) + |A�(t)|2 · f2(Ω) + |A⊥(t)|2 · f3(Ω)+

�(A∗
�(t)A⊥(t)) · f4(Ω) + �(A∗

0(t)A�(t)) · f5(Ω)+
�(A∗

0(t)A⊥(t)) · f6(Ω), (1)

where fi are the angular distribution functions, and Ω = (θ1, θ2,Φ) as defined in Fig. 1.

For the B0
s → φφ decay mode there are two observable triple products, U = sin 2Φ and

V = sin(±Φ) where the positive sign is taken if cos θ1 cos θ2 ≥ 0 and the negative sign

otherwise. These variables correspond to the interference terms f4 ∝ sin
2 θ1 sin

2 θ2 sin 2Φ
and f6 ∝ sin 2θ1 sin 2θ2 sinΦ in Equation 1. In the Standard Model the terms related to f4
and f6 vanish in the untagged decay rate for any value of t. A measurement of significant

asymmetries would be an unambigous signal for New Physics [2, 4].

Experimentally, extraction of the triple product asymmetries is a simple counting

exercise that does not require either flavour tagging or a time dependent analysis. The

1

(for Bs➔ϕϕ coefficients
are time-dependent due 

to oscillations)
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d cos θ1d cos θ2dφ
= N

(

|A0|2 cos2 θ1 cos2 θ2 +
|A‖|2

2
sin2 θ1 sin

2 θ2 cos
2 φ (20)

+
|A⊥|2

2
sin2 θ1 sin

2 θ2 sin
2 φ+

Re(A0A∗
‖)

2
√
2

sin 2θ1 sin 2θ2 cosφ

−
Im(A⊥A∗

0)

2
√
2

sin 2θ1 sin 2θ2 sinφ−
Im(A⊥A∗

‖)

2
sin2 θ1 sin

2 θ2 sin 2φ

)

.

Integrating over θ1 and θ2 and using
∫ 1

−1
cos2 θ d cos θ =

2

3
,

∫ 1

−1
sin2 θ d cos θ =

4

3
,
∫ 1

−1
sin 2θ d cos θ = 0 , (21)

one obtains the following distribution in φ:

dΓ

dφ
=

4

9
N

(

|A0|2 + 2|A⊥|2 sin2 φ+ 2|A‖|2 cos2 φ− 2Im(A⊥A
∗
‖) sin 2φ

)

. (22)

The last term in this angular distribution provides a potential T-odd asymmetry. Note that
the term involving Im(A⊥A∗

0) does not contribute to a T-odd asymmetry when integrating
over the angle θ1 or θ2.

One has now in analogy with Eqs. (2) and (3),

sinφ = (n̂V1
× n̂V2

) · p̂V1
, sin 2φ = 2(n̂V1

· n̂V2
)(n̂V1

× n̂V2
) · p̂V1

, (23)

where n̂Vi
(i = 1, 2) is a unit vector perpendicular to the Vi decay plane and p̂V1

is a unit
vector in the direction of V1 in the B(s) rest frame. A triple product (or more precisely
a T-odd) asymmetry is now defined similarly to Eq. (4) as an asymmetry between the
number of decays involving positive and negative values of sin 2φ [3]:

A(2)
T ≡

Γ(sin 2φ > 0)− Γ(sin 2φ < 0)

Γ(sin 2φ > 0) + Γ(sin 2φ < 0)

=
[
∫ π/2
0 +

∫ 3π/2
π ](dΓ/dφ)dφ− [

∫ π
π/2+

∫ 2π
3π/2](dΓ/dφ)dφ

∫ 2π
0 (dΓ/dφ)dφ

. (24)

Using (22) one obtains

A(2)
T = −

4

π

Im(A⊥A∗
‖)

|A0|2 + |A⊥|2 + |A‖|2
. (25)
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In the Standard Model the flavour-changing neutral current (FCNC) decay B0
s → φφ

proceeds via a b̄ → s̄ss̄ penguin decay. The decay was first observed by the CDF col-

laboration in 2005 [1]. This mode provides an excellent probe of possible New Physics

contributions entering the FCNC decay or B0
s − B̄0

s mixing diagrams. One possible way

to study CP violation in this mode is to measure observable quantities related to triple

product asymmetries. Scalar triple products of three momentum or spin vectors are odd

under time reversal T . Triple product asymmetries can either be due to a T -violating
phase or a CP -conserving phase and final-state interactions. The former case (a true

asymmetry) implies, assuming CPT conservation, that CP is violated. A detailed review

of the phenomenology of triple product asymmetries is given in Ref [2].
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Figure 1: Decay angles defined in the helicity frame for the B0
s → φφ mode.

The decay rate as function of time, t, is given by [3]:

d4Γ

dtdΩ
∝|A0(t)|2 · f1(Ω) + |A�(t)|2 · f2(Ω) + |A⊥(t)|2 · f3(Ω)+

�(A∗
�(t)A⊥(t)) · f4(Ω) + �(A∗

0(t)A�(t)) · f5(Ω)+
�(A∗

0(t)A⊥(t)) · f6(Ω), (1)

where fi are the angular distribution functions, and Ω = (θ1, θ2,Φ) as defined in Fig. 1.

For the B0
s → φφ decay mode there are two observable triple products, U = sin 2Φ and

V = sin(±Φ) where the positive sign is taken if cos θ1 cos θ2 ≥ 0 and the negative sign

otherwise. These variables correspond to the interference terms f4 ∝ sin
2 θ1 sin

2 θ2 sin 2Φ
and f6 ∝ sin 2θ1 sin 2θ2 sinΦ in Equation 1. In the Standard Model the terms related to f4
and f6 vanish in the untagged decay rate for any value of t. A measurement of significant

asymmetries would be an unambigous signal for New Physics [2, 4].

Experimentally, extraction of the triple product asymmetries is a simple counting

exercise that does not require either flavour tagging or a time dependent analysis. The

1

(for Bs➔ϕϕ coefficients
are time-dependent due 

to oscillations)



B➞V V

• presence of polarization trebles number of amplitudes

• angular analysis allows extraction of all 6 amplitudes
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2
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mesons including B → φ(→ K+K−)K∗(→ Kπ) and Bs → φ(→ K+K−)φ(→ K+K−).
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and P2P ′
2 in the B(s) rest frame will be denoted by φ as in Section II. The decay angular
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√
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√
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The decay rate as function of time, t, is given by [3]:
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where fi are the angular distribution functions, and Ω = (θ1, θ2,Φ) as defined in Fig. 1.

For the B0
s → φφ decay mode there are two observable triple products, U = sin 2Φ and

V = sin(±Φ) where the positive sign is taken if cos θ1 cos θ2 ≥ 0 and the negative sign

otherwise. These variables correspond to the interference terms f4 ∝ sin
2 θ1 sin

2 θ2 sin 2Φ
and f6 ∝ sin 2θ1 sin 2θ2 sinΦ in Equation 1. In the Standard Model the terms related to f4
and f6 vanish in the untagged decay rate for any value of t. A measurement of significant

asymmetries would be an unambigous signal for New Physics [2, 4].
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exercise that does not require either flavour tagging or a time dependent analysis. The

1

(for Bs➔ϕϕ coefficients
are time-dependent due 

to oscillations)



B➞V V

• presence of polarization trebles number of amplitudes

• angular analysis allows extraction of all 6 amplitudes
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two pseudoscalar mesons. This class of decays consists of charmless decays of B and Bs

mesons including B → φ(→ K+K−)K∗(→ Kπ) and Bs → φ(→ K+K−)φ(→ K+K−).
We denote by θ1 (θ2) the angle between the directions of motion of P1 (P2) in the V1 (V2)
rest frame and V1(V2) in the B rest frame. The angle between the planes defined by P1P ′

1

and P2P ′
2 in the B(s) rest frame will be denoted by φ as in Section II. The decay angular

distribution in these three angles is given in terms of the three transversity amplitudes
A0, A‖, A⊥ [26] (see also [25]):
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(
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+
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Integrating over θ1 and θ2 and using
∫ 1

−1
cos2 θ d cos θ =
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3
,

∫ 1

−1
sin2 θ d cos θ =

4

3
,
∫ 1

−1
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The last term in this angular distribution provides a potential T-odd asymmetry. Note that
the term involving Im(A⊥A∗

0) does not contribute to a T-odd asymmetry when integrating
over the angle θ1 or θ2.
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where n̂Vi
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where fi are the angular distribution functions, and Ω = (θ1, θ2,Φ) as defined in Fig. 1.

For the B0
s → φφ decay mode there are two observable triple products, U = sin 2Φ and

V = sin(±Φ) where the positive sign is taken if cos θ1 cos θ2 ≥ 0 and the negative sign

otherwise. These variables correspond to the interference terms f4 ∝ sin
2 θ1 sin

2 θ2 sin 2Φ
and f6 ∝ sin 2θ1 sin 2θ2 sinΦ in Equation 1. In the Standard Model the terms related to f4
and f6 vanish in the untagged decay rate for any value of t. A measurement of significant

asymmetries would be an unambigous signal for New Physics [2, 4].

Experimentally, extraction of the triple product asymmetries is a simple counting

exercise that does not require either flavour tagging or a time dependent analysis. The
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(for Bs➔ϕϕ coefficients
are time-dependent due 
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Polarisation & NP
• Triple-product asymmetries in B->ϕK*

• HFAG data for the entire set of polarization amplitudes 
exists; Triple products at most 5-10% in either case

• A SM calculation in QCD factorization (based on the heavy-
quark expansion) is consistent with the HFAG data

• Also “fake” triple-product asymmetries which require strong 
phases - small in QCDF, small in obs.

[Datta, Duraisamy, London; 
Gronau, Rosner 2011]

[Gronau, Rosner 2011]

amplitudes is dominated by a magnitude, |Aλ|, a single CP-conserving phase, δλ, and a
single CP-violating phase, φλ (which amounts to assuming no direct CP violation),

Aλ = |Aλ|eiδλeiφλ , Āλ = |Aλ|eiδλe−iφλ (λ = 0, ‖,⊥) , (34)

implies
Im(A⊥A

∗
0 − Ā⊥Ā

∗
0) = 2|A⊥||A0| cos(δ⊥ − δ0) sin(φ⊥ − φ0) . (35)

This “true” CP violating quantity is nonzero also when the CP-conserving phase difference
δ⊥ − δ0 vanishes, provided that the CP-violating phase difference φ⊥ − φ0 between the two
transversity amplitudes A⊥ and A0 is nonzero. In contrast, a quantity occurring in the
difference of rates for B(s) and B̄(s),

Im(A⊥A
∗
0 + Ā⊥Ā

∗
0) = 2|A⊥||A0| sin(δ⊥ − δ0) cos(φ⊥ − φ0) , (36)

is not CP-violating as it is nonzero also when CP-violating phases vanish. Such a quantity
will sometimes be referred to as a “fake” asymmetry.

It is interesting to note that the CP-violating quantities Im(A⊥A∗
0−Ā⊥Ā∗

0) and Im(A⊥A∗
‖−

Ā⊥Ā∗
‖) occur in triple product asymmetries for CP-averaged decay rates. We denote partial

decay rates for B(s) → f and B̄(s) → f̄ by Γ(B(s) → f) and Γ̄(B̄(s) → f̄), respectively.
The charge-averaged decay rate is [Γ(B(s) → f) + Γ̄(B̄(s) → f̄)]/2, and a triple product
asymmetry defined for this rate is given by:

A(2)chg−avg
T ≡

[Γ(sin 2φ > 0) + Γ̄(sin 2φ̄ > 0)]− [Γ(sin 2φ < 0) + Γ̄(sin 2φ̄ < 0)]

[Γ(sin 2φ > 0) + Γ̄(sin 2φ̄ > 0)] + [Γ(sin 2φ < 0) + Γ̄(sin 2φ̄ < 0)]

= −
4

π

Im(A⊥A∗
‖ − Ā⊥Ā∗

‖)

(|A0|2 + |A⊥|2 + |A‖|2) + (|Ā0|2 + |Ā⊥|2 + |Ā‖|2)
. (37)

As noted above the numerator is genuinely CP-violating. A second charge-averaged asym-
metry, defined with respect to the variables S ≡ sign(cos θ1 cos θ2) sinφ for B(s) and S̄ ≡
sign(cos θ̄1 cos θ̄2) sin φ̄ for B̄(s), is proportional to Im(A⊥A∗

0 − Ā⊥Ā∗
0):

A(1)chg−avg
T ≡

[Γ(S > 0) + Γ̄(S̄ > 0)]− [Γ(S < 0) + Γ̄(S̄ < 0)]

[Γ(S > 0) + Γ̄(S̄ > 0)] + [Γ(S < 0) + Γ̄(S̄ < 0)]

= −
2
√
2

π

Im(A⊥A∗
0 − Ā⊥Ā∗

0)

(|A0|2 + |A⊥|2 + |A‖|2) + (|Ā0|2 + |Ā⊥|2 + |Ā‖|2)
. (38)

Similarly, one may define charge-averaged asymmetries for decays in which one vector
meson decays to a pseudoscalar pair while the other meson decays into a lepton pair. For
these decays one finds

A(2)$,chg−avg
T =

2

π

Im(A$
⊥A

$∗
‖ − Ā$

⊥Ā
$∗
‖ )

(|A$
0|2 + |A$

⊥|2 + |A$
‖|2) + (|Ā$

0|2 + |Ā$
⊥|2 + |Ā$

‖|2)
,

A(1)$,chg−avg
T =

√
2

π

Im(A$
⊥A

$∗
0 − Ā$

⊥Ā
$∗
0 )

(|A$
0|2 + |A$

⊥|2 + |A$
‖|2) + (|Ā$

0|2 + |Ā$
⊥|2 + |Ā$

‖|2)
. (39)
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[Valencia 1989, ...]

[Beneke, Rohrer, Yang 2006]



Polarisation & NP
• Triple-product asymmetries in Bs->ϕϕ

- similar pair of TP asymmetries
- time-dependence -> mixing-decay interference
- one can define two combinations AU , AV sensitive to
       

• CDF

• LHCb

• No quantitative theoretical calculation exists at the moment 
but qualitatively it is clear that the SM predicts both TP 
asymmetries to be small (strong penguin domination)

[Gronau, Rosner 2011]

We are interested in interference terms A∗
i (t)Ak(t) and Ā∗

i (t)Āk(t). Using Eqs. (43) and
(47) one obtains

A∗
i (t)Ak(t) = [g∗+A

∗
i + (q/p)∗g∗−Ā

∗
i ][g+Ak + (q/p)g−Āk]

= A∗
iAk[|g+|2 + (q/p)(Āk/Ak)g

∗
+g−] + Ā∗

i Āk[|g−|2 + (p/q)(Ak/Āk)g+g
∗
−]

=
e−Γt

2

[

A∗
iAk

(

cosh(∆Γt/2) + cos(∆mt) + ηke
−2iφk [− sinh(∆Γt/2) + i sin(∆mt)]

)

+Ā∗
i Āk

(

cosh(∆Γt/2)− cos(∆mt) + ηke
2iφk [− sinh(∆Γt/2)− i sin(∆mt)]

)]

.

(49)

Inserting A∗
iAk = |Ai||Ak|ei(δk−δi)ei(φk−φi), Ā∗

i Āk = ηiηk|Ai||Ak|ei(δk−δi)e−i(φk−φi), implies for
i = 0, ‖, k =⊥,

A∗
i (t)A⊥(t) = e−Γt|Ai||A⊥|ei(δ⊥−δi) [i sin(φ⊥ − φi) cosh(∆Γt/2) + cos(φ⊥ − φi) cos(∆mt)

− i sin(φ⊥ + φi) sinh(∆Γt/2)− i cos(φ⊥ + φi) sin(∆mt)] , (50)

leading to

Im[A∗
i (t)A⊥(t)]

= e−Γt|Ai||A⊥| (cos(δ⊥ − δi)[sin(φ⊥ − φi) cosh(∆Γt/2)− sin(φ⊥ + φi) sinh(∆Γt/2)

− cos(φ⊥ + φi) sin(∆mt)] + sin(δ⊥ − δi) cos(φ⊥ − φi) cos(∆mt)) . (51)

Similarly one has

Im[Ā∗
i (t)Ā⊥(t)]

= e−Γt|Ai||A⊥| (cos(δ⊥ − δi) [sin(φ⊥ − φi) cosh(∆Γt/2)− sin(φ⊥ + φi) sinh(∆Γt/2)

+ cos(φ⊥ + φi) sin(∆mt)]− sin(δ⊥ − δi) cos(φ⊥ − φi) cos(∆mt)) . (52)

Thus

Im[A⊥(t)A
∗
i (t) + Ā⊥(t)Ā

∗
i (t)] = 2|A⊥||Ai|e−Γt cos(δ⊥ − δi)

[sin(φ⊥ − φi) cosh(∆Γt/2)− sin(φ⊥ + φi) sinh(∆Γt/2)] . (53)

This time-dependent result agrees with (44) at t = 0. It demonstrates for arbitrary time a
behavior of a genuine CP violating quantity which does not vanish for nonzero weak phases
and requires no strong phases.

The two “true” CP violating time-integrated triple product asymmetries (i = 0, ‖) for
untagged decays are proportional to

Γ
∫ ∞

0
Im[A⊥(t)A

∗
i (t) + Ā⊥(t)Ā

∗
i (t)]dt = 2|A⊥||Ai| cos(δ⊥ − δi)

(

sin(φ⊥ − φi)− sin(φ⊥ + φi)(∆Γ/2Γ) +O[(∆Γ/2Γ)2]
)

. (54)

We conclude that sizable CP violating TP asymmetries do not require direct CP violation.
They do require however that the weak phases dominating Ai (i = 0, ‖) and A⊥ differ from
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i= 0 , ||

[LHCb-CONF-2011-052]

asymmetry, AU , is defined as:

AU =
N+ −N−

N+ +N−
, (2)

where N+ (N−) is the number of events with U > 0 (U < 0). Similarly AV is defined as,

AV =
M+ −M−

M+ +M−
, (3)

where M+ (M−) is the number of events with V > 0 (V < 0).

The CDF collaboration have recently reported first measurements of these quantities

based on a sample of 295 events [5]:

AU = −0.007± 0.064(stat)± 0.018(syst)

AV = −0.120± 0.064(stat)± 0.016(syst). (4)

2 Detector and data sample

The LHCb detector is a forward spectrometer [6] providing charged particle reconstruc-

tion in the pseudorapidity range 1.9 < η < 4.9. The detector elements are placed along

the beam line of the LHC starting with the Vertex Locator, a silicon strip device that

surrounds the proton-proton interaction region. This is used to reconstruct both interac-

tion vertices and the decay vertices of long-lived hadrons, and to measure their locations

with high precision. It also contributes to the measurement of track momenta, along with

a large area silicon strip detector located upstream of a dipole magnet with a bending

power of about 4 Tm and a combination of silicon strip detectors and straw drift-tubes

placed downstream. Two Ring Imaging Cherenkov detectors (RICHes) are used to iden-

tify charged hadrons. Further downstream, an Electromagnetic Calorimeter is used for

photon and electron identification, followed by a Hadron Calorimeter and a Muon system

consisting of alternating layers of iron and chambers (MWPC and triple-GEM) that dis-

tinguishes muons from hadrons. The calorimeters and muon system are used to provide

first-level hardware triggering.

The first trigger level allows the selection of events with B hadronic decays using the

transverse energy of hadrons measured in the calorimeter system. The event information

is subsequently sent to a software trigger, implemented in a dedicated processor farm,

which performs a further selection of events for later offline analysis.

The dataset used for this analysis consists of 340 pb
−1

of pp collision data collected at

a centre-of-mass energy of
√
s = 7 TeV with the LHCb detector between March and July

2011. During this period all detector components were fully operational and in a stable

condition.

3 Event selection

The event selection criteria were recursively optimized using a data-driven approach based

on the use of sWeights [7] to separate signal (S) and background (B) with the aim of maxi-

2

the combinatorial background from the φ mass distribution. The resulting distribution
is shown in Fig. 5. A fit to a relativistic P wave Breit-Wigner is superimposed. It can
be seen that with the current level of statistics this gives a good description of the data.
As a test, a fit was performed allowing for a flat component to model a possible S wave
contribution. The fraction of the latter returned by the fit is (1 ± 1 %) which supports
the hypothesis that the S wave contribution it is small.

Including the systematic uncertainties the asymmetries calculated from the mass fit
results are :

AU = −0.064± 0.057 (stat.)± 0.014 (syst.) (5)

AV = −0.070± 0.057 (stat.)± 0.014 (syst.), (6)

where both K+K− pairs have masses within ±12 MeV/c2 of the nominal value of the φ
mass.

Source AU AV Chosen uncertainty
Acceptance 0.0100 0.0020 0.010

Mass model for Signal and Background 0.0040 0.0004 0.004
Impact parameter cuts 0.0030 0.0100 0.010

Total systematic uncertainty 0.014

Table 2: Summary of the systematic uncertainty on the triple product asymmetry
measurement. The total systematic uncertainty is the quadratic sum of the largest of the
individual components.

6 Summary

The triple product asymmetries in the B0
s → φφ decay mode are measured to be:

AU = −0.064± 0.057 (stat.)± 0.014 (syst.) (7)

AV = −0.070± 0.057 (stat.)± 0.014 (syst.), (8)

where both K+K− pairs have masses within ±12 MeV/c2 of the nominal value of the
φ mass. These results are in good agreement with the values reported by the CDF
collaboration [5]. Since the results are dominated by statistical uncertainties they will
improve when the full dataset collected during the 2011 running period is analysed.
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Polarisation & NP
• 1/mb expansion predicts a hierarchy

in B decay (+/- interchanged in B decays);
however, the suppression of the negative-helicity amplitude 
is numerically spoiled by annihilation contributions

• A nonvanishing positive-helicity amplitude could be a sign of 
NP and could even be turned into quantitative information 
on “right-handed currents”

• The smallness (presumably) of the negative-helicity 
amplitude suppresses one of the two triple-product 
asymmetries, making it a probe of right-handed currents

Figure 4: Transverse-to-longitudinal amplitude ratios for B̄0 → K̄∗φ. The contours indicate
the dependence of the negative-helicity theory prediction on annihilation (left) and
spectator scattering (right) parameters, with all other input fixed at central val-
ues. Additionally, the values implied by current measurements [26, 27, 29] for both
helicities are shown.

6. Penguin-dominated decays

The 14 decay modes that we study in this section are characterised by the dominant role of the
colour-allowed QCD penguin amplitude α̂p

4 ≡ αp
4 + βp

3 , which includes a penguin-annihilation
term. Of these the 11 ∆S = 1 modes have branching fractions up to 105, and some of them
have already been studied extensively experimentally including polarisation.

Due to their common dominant amplitude the theoretical errors in this class of decays are
common to all representatives. As explained in Section 3.2, the negative-helicity penguin
amplitude α̂p−

4 is particularly uncertain due to a potentially large penguin weak annihilation
contribution [6]. In addition, non-factorisation of spectator scattering also affects the transverse
amplitude of final states containing ω or φ mesons, mostly through the flavour-singlet penguin
amplitude αp−

3 . An important issue of the subsequent analysis will be whether theoretical
calculations are compatible with the observation of large transverse polarisation, and whether
uncertainties can be controlled to the point that useful predictions can be made.

6.1. The B → φK∗ system and the transverse penguin amplitude

We begin with a discussion of the B → φK∗ modes. A complete angular analysis is available for
B → φK∗0 [26, 29], which allows us to extract the complex amplitude ratios Ā±/Ā0 from data.
This is shown in Figure 4, which compares this result to the theoretical calculation of Ā−/Ā0.
(The experimental result for Ā+/Ā0 is in very good agreement with the expectation that the
plus-helicity amplitude should be strongly suppressed.) The left plot in the figure shows the
theoretical range from a variation of the uncertainties in weak annihilation alone (parameter
XA), the right plot displays the same information for spectator scattering (parameter XH).
Since all values for inside the contour are theoretically allowed for Ā−/Ā0, it is evident that
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3. B → V V amplitudes

The decay amplitudes follow from the matrix elements 〈V1V2|Heff|B̄〉 of the effective Hamilto-
nian (conventions as in [31])

Heff =
GF√

2

∑

p=u,c

λ(D)
p






C1Q

p
1 + C2Q

p
2 +

∑

i=3,...10,7γ,8g

CiQ
p
i






+ h. c. (9)

with D ∈ {d, s} and λ(D)
p = VpbV ∗

pD. A quark model [1] or naive factorisation analysis indicates
a hierarchy of helicity amplitudes

Ā0 : Ā− : Ā+ = 1 :
ΛQCD

mb
:

(
ΛQCD

mb

)2

(10)

for B̄ meson decays. (For B decays exchange − ↔ +.) This is a consequence of the left-
handedness of the weak interaction and the fact that high-energy QCD interactions conserve
helicity.

In naive factorisation one considers only the four-quark operators in Heff and approximates
their matrix elements by the matrix elements of two currents [32]. The helicity amplitudes
Ah

B̄→V1V2
are proportional to

Ah
V1V2

≡
GF√

2
〈V h

1 |(q̄sb)V −A|B̄qs
〉〈V h

2 |(q̄q′)V |0〉 (11)

in this approximation. Evaluating this expression (conventions for the form factors as in [33])
we obtain

A0
V1V2

=
iGF√

2
m2

BfV2
AB→V1

0 (0), A±
V1V2

=
iGF√

2
mBm2fV2

FB→V1

± (0) (12)

with the definitions

FB→V1

± (q2) ≡ (1 +
m1

mB
)AB→V1

1 (q2) ∓ (1 −
m1

mB
)V B→V1(q2). (13)

The transverse amplitudes A±
V1V2

are suppressed by a factor m2/mB relative to A0
V1V2

. In

addition, the axial-vector and vector contributions to FB→V1

+ (0) cancel in the heavy-quark
limit, due to an exact form factor relation [33, 34]. Thus F−/A0 ∼ 1, F+/A0 ∼ O(ΛQCD/mB),
and (10) follows.

The dominance of the longitudinal amplitude indicated by (10) leads to the well-known
expectation that fL should be close to unity. Experimental data for penguin-dominated B
decays is in conflict with this expectation thus motivating theoretical studies beyond the naive-
factorisation approximation.

3.1. The QCD factorisation approach for B → V V

We use the QCD factorisation approach [23, 24] to compute the matrix elements 〈V1V2|Qi|B̄〉
of the effective Hamiltonian. In this framework they can be expressed (at leading power
in an expansion of the amplitude in ΛQCD/mB) in terms of form factors, meson light-cone

4

[Kagan 2004]

[Beneke, Rohrer,Yang 2006]

[Kagan 2004]

[Korner, Goldstein 1979]



• LHCb has measured the difference
   ΔACP = ACP(D0 ➔K+K-) - ACP(D0 ➔π+π-)     (see N Serra’s talk)

• SU(3) symmetry predicts equal and opposite sign, i.e. no 
cancellation expected

• but GIM cancellations suggest, in the SM, strong suppression 
of the penguin amplitude (|P/T| ~10-3) 

• to explain in SM would need about an order of magnitude 
enhancement of the penguin amplitude. Current theoretical 
control much worse than for B decays.

CPV in D decays

[LHCb-CONF-2011-061]

Result

Significance: 3.5 σ

15

∆ACP = [−0.82± 0.21(stat.)± 0.11(sys.)]%

Where to look for direct CPV
•Remember: need (at least) two contributing amplitudes 

with different strong and weak phases to get CPV.

•Singly-Cabibbo-suppressed modes with gluonic penguin 
diagrams very promising
• Several classes of NP can contribute
• ... but also non-negligible SM contribution

5

Search for CPV in D0→ K+K-(!0),!+!"(!0)  
SCS = Single Cabibbo Suppressed 

47!

•  CP violation in these modes is predicted to be !             in SM. !

•  SCS decays are uniquely sensitive to new physics in                   processes.!

F. Buccella et al., Phys. Rev. D51, 3478 (1995)  
S. Bianco et al., Riv. Nuovo Cim. 26N7, 1(2003) 
Y. Grossman et al., Phys. Rev. D75, 036008 (2007)                      

Evidence of CP violation with present experimental sensitivity would be sign of New Physics!

•  Time-integrated CP asymmetry get contributions from the 3 different CP 
violation sources: decay, mixing, interference between mixing and decay. 

from time-dependent mixing/CPV analyses!

Today: difference between ACP(D0 → K+ K!),  ACP(D0 → π+ π!)
•Expectation from U-spin: Adir(KK) = !Adir(ππ)...
•Conclusion could be softened by large U-spin violation in power 

corrections [Kagan] Grossman, Kagan & Nir, PRD 75, 036008 (2007)

∝ VubV
∗

cb = O(λ5)∝ VusV
∗

cs
= O(λ)



Semileptonic decay

• kinematics described by dilepton invariant mass q2 and 
three angles

• Systematic theoretical description based on heavy-quark 
expansion (Λ/mb) for q2 << m2(J/ψ)  (SCET)
also for q2 >> m2(J/ψ) (OPE)
Theoretical uncertainties on form factors, power corrections
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Bd➔K*µ+µ-

• Most well-known observable: forward-backward asymmetry

• Many more observables to consider
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Figure 9: Left and centre plot: CP asymmetries A7 and A8 in the SM (blue band) and three
FBMSSM scenarios as described in the text. Right plot: correlation between the integrated asym-
metries 〈A7〉 and 〈A8〉 in the FBMSSM. Blue circle: SM, green diamond: FBMSSMI, red square:
FBMSSMII , orange triangle: FBMSSMIII.
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Figure 10: The observables S4, S5 and Ss
6 in the SM (blue band) and the three FBMSSM scenarios

FBMSSMI,II,III.

asymmetry 〈A7〉. One observes that large effects in 〈A7〉 are correlated with large shifts in
the zeros towards lower values.

In order to identify signs in the CP asymmetries which are favoured in this model one
must include additional observables in the analysis. To this end we also investigate the direct
CP asymmetry in the b → sγ decay ACP(b → sγ), the electric dipole moments of the electron
and the neutron de and dn and the mixing induced CP asymmetry SφKS

. We recall that
in [62] striking correlations between these observables have been found. In particular, the
desire to explain the anomaly observed in SφKS

through the presence of flavour conserving
but CP-violating phases implied a positive ACP(b → sγ), by an order of magnitude larger
than its SM tiny value and de, dn at least as large as 10−28 e cm.

The left plot of Fig. 12 shows the correlation between 〈A7〉 and SφKS
. We find that a value

of SφKS
$ 0.44, as indicated by the present data [85], implies a positive value for 〈A7〉 in the

range [0.05, 0.2] and then also a negative value for 〈A8〉 in the range [−0.11,−0.03]. In addition
to the two scenarios discussed above, we have chosen also a third scenario, FBMSSMIII,
indicated as orange triangle in the plots of Figs. 9, 11 and 12, that gives SφKS

close to the
experimental value. This scenario is shown in Figs. 9 and 10 as the orange bands and we find
that while one still can get almost maximal effects in 〈A7〉 and 〈A8〉 the effects in S4, S5 and
Ss

6 are much less pronounced.
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see also Bobeth et al 2008,10, 11; Egede et al 2009,2010; Alok et al 2010, Altmannshofer et al 2011 for recent analyses

Ali et al ; Beneke et al; ...
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Figure 7: The forward-backward asymmetry in a) B+ → ρ+"+"−, b) B− → ρ−"+"−,
and c) the CP-averaged B → ρ0"+"− decay. The solid (dashed) line shows the next-to-
leading (leading) order result. The band represents the theoretical error due to hadronic
uncertainties.

The next-to-leading order prediction of the forward-backward asymmetry for the
B → K∗"+"− decay has been discussed in detail in our previous paper [3]. For the

b → s transitions the term C(u)
9,⊥(q2) is negligible, because the corresponding Rut is very

small. Hence there is no difference between B and B̄ decay, and the asymmetry zero is
determined by the zero of the real part of C(t)

9,⊥(q2). In [3] we found that the next-to-
leading order correction shifts the zero by 30%, but once this correction is included, a
precise measurement of the location of the zero translates into a determination of the
Wilson coefficient C9 with an accuracy of about 10%. Our updated result for the position
of the forward-backward asymmetry zero reads

q2
0 [K

∗0] = 4.36+0.33
−0.31 GeV2, q2

0[K
∗+] = 4.15+0.27

−0.27 GeV2. (38)

The small difference compared to [3] is due to the different treatment of form factors
and the inclusion of isospin breaking power corrections in the present analysis.

In case of B → ρ "+"− decays there exists an important new contribution from
C(u)

9,⊥(q2). As a consequence, the decays of B or B̄, neutral or charged B mesons to
ρ "+"− may show significantly different forward-backward asymmetries. When α is near
90◦ as expected in the Standard Model, we may approximate eiα " i sin α, and therefore
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Figure 9: Forward-backward asymmetry dAFB(B− → K∗−!+!−)/dq2 at next-
to-leading order (solid center line) and leading order (dashed). The band re-
flects all theoretical uncertainties from parameters and scale dependence com-
bined.

for q2 ∼ Λ2
QCD, but perturbative for q2 ∼ mbΛQCD. Furthermore, the non-perturbative

contribution is formally power-suppressed when the lepton invariant mass spectrum is
integrated from 0 to some q2 of order mbΛQCD.

5.2 Forward-backward asymmetry

The QCD factorization approach proposed here leads to an almost model-independent
theoretical prediction for the forward-backward asymmetry [30]. It has been noted in
[31] that the location of the forward-backward asymmetry zero is nearly independent of
particular form factor models. An explanation of this fact was given in [32], where it
has been noted that the form factor ratios on which the asymmetry zero depends are
predicted free of hadronic uncertainties in the combined heavy quark and large energy
limit. In [4] the effect of the (factorizable) radiative corrections to the form factor ratios
has been studied and has been found to shift the position of the asymmetry zero about
5% towards larger values. We are now in the position to discuss the effect of both,
factorizable and non-factorizable radiative corrections to next-to-leading order in the
strong coupling constant on the location of the asymmetry-zero, and hence to complete
our earlier analysis.

We define the forward-backward (FB) asymmetry (normalized to the differential de-
cay rate dΓ(B− → K∗−!+!−)/dq2) by

dAFB

dq2
≡

1

dΓ/dq2

(

∫ 1

0
d(cos θ)

d2Γ

dq2d cos θ
−

∫ 0

−1
d(cos θ)

d2Γ

dq2d cos θ

)

(72)

Our result for the FB asymmetry is shown in Figure 9 to LO and NLO accuracy. From
(64) it is obvious that dAFB/dq2 ∝ Re (C9,⊥(q2)), and therefore the FB asymmetry van-
ishes if Re (C9,⊥(q2

0)) = 0. At leading order this translates into the relation

C9 + Re(Y (q2
0)) = −

2MBmb

q2
0

Ceff
7 , (73)
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zero crossing to 
0.3 GeV2 in SM

 Krueger, Matias; ...

B Ñ K ˚ �`�´ DATA USED IN FIT

data in q2-bins for: xBry, xAFBy, xFLy

r1.0, 6.0s, r14.18, 16.0s, r16.0, 19.2s GeV2

angular analysis in θ� and θK ˚ : each q2-bin

1

Γ

dΓ

dcos θK ˚
“ 3

2
FL cos2 θK ˚ ` 3

4
p1 ´ FLq sin2θK ˚ ,

1

Γ

dΓ

dcos θ�
“ 3

4
FL sin2θ� ` 3

8
p1 ´ FLqp1 ` cos2θ�q ` AFB cos θ�

Bobeth/Hiller/van Dyk/Wacker CERN November 11, 2011 7 / 23



Constraints on NP
Bobeth et al 1111.2558

see also Descotes-Genon et al 2011, 
Altmannshofer, Paradisi, Straub 2011

GLOBAL FIT OF C9 AND C10 – COMPLEX
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FIT OF C9 AND C10 – REAL = NO CP VIOLATION
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ñ zero crossing of AFB

solution A:
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solution D:
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allowing for new 
CP violation      

not allowing for 
new CP violation      

Standard Model

global fit to semileptonic decay data



A very brief history of flavour
1934   Fermi proposes Hamiltonian for beta decay

1956-57   Lee&Yang propose parity violation to explain “θ-τ
           paradox”.
           Wu et al show parity is violated in β decay
           Goldhaber et al show that the neutrinos produced in
           152Eu K-capture always have negative helicity

1957   Gell-Mann & Feynman, Marshak & Sudarshan

            V-A current-current structure of weak interactions.
            Conservation of vector current proposed
            Experiments give G = 0.96 GF (for the vector parts)

HW = −GF (p̄γµn)(ēγµν)

−G(p̄γµPLn)(ēγµPLνe) + . . .HW = −GF (ν̄µγµPLµ)(ēγµPLνe)



1960-63  To achieve a universal coupling, Gell-Mann&Levy
          and Cabibbo propose that a certain superposition of
          neutron and Λ particle enters the weak current.
          Flavour physics begins!

1964  Gell-Mann gives hadronic weak current
          in the quark model

1964  CP violation discovered in Kaon decays (Cronin&Fitch)

1960-1968 Jµ part of triplet of weak gauge
         currents. Neutral current interactions
         predicted and, later, observed at CERN.

However, the predicted flavour-changing
neutral current (FCNC) processes
such as KL ➔µ+µ- are not observed!

HW = −GF J
µ
J
†
µ

Jµ = ūγµPL(cos θcd + sin θcs) + ν̄eγ
µPLe + ν̄µγµPLµ

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6

d u

e ν

GF =
g2

4
√

2M2

W

4 S. Jäger: Supersymmetry beyond minimal flavour violation

uLi

dLj

W± i Vij g γµPL

uLi

d̃Lj

w̃+ i Vij

√
2g PR

ũLi

dLj

w̃− i Vij

√
2g PL

ui

dj

H± i Vij (cosβ yujPL+sinβ ydjPR)

uLi

d̃Rj

h̃+ i Vij sinβ ydjPR

ũRi

dLj

h̃− i Vij cosβ yuiPL

Fig. 1. Flavour-changing vertices involving fermions in the
super-CKM basis.

for small to moderate (< 30) values of tanβ but can give
rise to a distinctive pattern at larger values even for mini-
mal flavour violation. We will not discuss these effects; for
a recent review see [20]. Most of the constraints discussed
below still apply in that case, but there may be stronger
ones.

2.2 Origin of (new) flavour violation: supersymmetry
breaking

The superpotential (1) does not break supersymmetry spon-
taneously at tree level. Because of supersymmetric non-
renormalization theorems [21,22,23], this remains true to
all orders in perturbation theory. Neither is electroweak
symmetry broken, at any order.

Observations exclude the presence of mass-degenerate
superpartners for many of the SM particles, which tells
us that supersymmetry is broken. The standard picture
is that supersymmetry breaking occurs in a hidden sector
of SM gauge singlets, via the condensation of an auxiliary
(F or D) component of one or more superfields X . Gauge
symmetry then requires any superpotential couplings be-
tween the visible and hidden sectors to be nonrenormaliz-
able.5 In many cases of interest, all low-energy effects of
supersymmetry breaking can be represented by such effec-
tive nonrenormalizable superpotential, gauge-kinetic, and
Kähler terms, as in

Wbreak = AU
ij
〈X〉
M

UC
i Hu · Qj, (13)

fbreak = Ma
〈X〉
M

WA
a WA

a , (14)

and

Kbreak = KQ
ij

〈XX†〉
M2

Q†
ie

2gaVaQj . (15)

Here AU
ij , Ma, and KQ

ij are dimensionless coefficients. 〈X〉 =

θ2FX is the vacuum expectation value of a hidden-sector
superfield, and the SUSY-breaking terms in the Lagrangian
are found by replacing K → K + Kbreak and W → W +
Wbreak + fbreak in (2). This can be illustrated as follows.
The MSSM, by assumption, does not have any direct renor-
malizable couplings to the hidden sector. Assume then
that the lightest “messenger”, i.e., degree of freedom that
couples both to the field X and to the MSSM fields, has
mass M . Below its mass scale, it can be integrated out of
the theory, giving rise to operators as in (13)–(15). This is
what happens, for example, in models of gauge mediation
(see below).

The term Wbreak from above gives rise to an extra
contribution

∆LA = T U
ij q̃i · huũc

j + h.c.,

T U
ij =

FX

M
AU

ij (16)

5 The one exception is a possible coupling Hu ·HdX, without
imposing further global symmetries.
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1970  To explain the absence of KL ➔µ+µ- , Glashow,
          Iliopoulos & Maiani (GIM) couple a “charmed quark”
          to the formerly “sterile” linear combination
        
          The doublet structure eliminates the Zsd coupling!

1971  Weak interactions are renormalizable (‘t Hooft)

1972  Kobayashi & Maskawa show that CP violation requires
          extra particles, for example a third doublet. CKM matrix

1974  Gaillard & Lee estimate loop
          contributions to the KL-KS mass
          difference
          Bound mc < 5 GeV

1974  Charm quark discovered

− sin θcdL + cos θcsL
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1977  τ lepton and bottom quark discovered 

1983  W and Z bosons produced

1987  ARGUS measures Bd - Bd mass difference
         First indication of a heavy top

        The diagram depends quadratically on mt

1995 top quark discovered at CDF & D0

2012-                        SUSY, new strong interactions,
                                 extra dimensions, ...
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b q

W W

u, c, t

u, c, t
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hk
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(e)

d

b

b̄

d̄
t

t

Standard Model
All matter is composed of twelve “flavors” of spin-1/2 fermion,
including three neutrinos, each with different mass.

(
uL

dL

)
uR

dR

(
cL

sL

)
cR

sR

(
tL
bL

)
tR
bR

Q = +2/3
Q = −1/3(

νeL

eL

) −
eR

(
νµL

µL

) −
µR

(
ντ L

τL

) −
τR

Q = 0
Q = −1

Almost all interaction is due to gauge forces. Colored fermions feel
the strong interactions due to the gluon field Gµ. They and the
charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:

W+

dL uL

but not
dR uR

W+

What B-mesons tell us about the Standard Model and “New Physics” – p.3

?



Summary/outlook

• Theories of the electroweak scale bring in new particles 
which contribute to flavour and CP-violating observables

• Consistency of CKM fit and the Φs measurements disfavor 
large BSM CP violation (but some tensions in b->d exist, 
and there is similar (or greater) room in b->s)

• interesting direct CP asymmetry observation in D decays. 
Much larger than previous SM estimates, but theoretically 
challenging

• many more observables, including CP-conserving ones 
(rare semileptonic/radiative/hadronic decays) that have not 
been analysed or still have large statistical uncertainties 
could show signs of new physics
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B➔πK direct CP puzzle
 

data: ACP(B+ ➔π0 K+) -  ACP(B0➔π- K+) = 0.14 ± 0.03    (expt) 

In general, only isospin relation
ACP(B+ ➔π0 K+)+ACP(B0 ➔π0 K0) ≈  ACP(B0➔π- K+)+ACP(B+➔π0 K0)

how small are the “small” amplitude ratios C/T and PEW/T

[Gronau 2005; Gronau & Rosner 2006]   

A(B0 ➔π- K+)   =    T eiγ       +       P     +    PcEW

- A(B+ ➔π0 K+)  =   (T+C) eiγ       +    P    +     PEW    +    PcEW

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6
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[Belle collab: in Nature (2008)]   
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〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ
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KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)→ P(pP) + �̄(p�̄) + �(p�)

1) q2 = m2

�̄�
= (p�̄ + p� )2 = (pB − pP)2 4m2

� � q2 � (MB −MP)2

2) cos θ� with θ�∠(�pB ,�p�̄) in �̄�-c.m. system −1 � cos θ� � 1

general problem in b → {d , s}+ �̄� due to Op’s: [s̄Γq][q̄Γ�b] and [s̄Γb][q̄Γ�q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B → P + �̄�] = A[B → P + �̄�]SD−FCNC

+A[B → P + (q̄q)→ P + �̄�]LD

b s

qq

l

l

for B → K + �̄� (q2
max ≈ 22.9 GeV

2
):

q = u, d , s light resonances below q2 � 1 GeV
2

suppr. by small QCD-peng. Wilson coeff. or CKM λ̂u

q = c start @ q2 ∼ (MJ/ψ)2 ≈ 9.6 GeV
2
, (Mψ�)2 ≈ 13.6 GeV

2

⇒ usually A[B → P + �̄�]SD−FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25

Form factor                  
(lattice, QCD sum rules)

q = charm / u / d / s
not calculable in terms of form factors[Fig C Bobeth]



Long-distance effects
• no known way to treat charm resonance region to 

the necessary precision (would need << 1% to 
see short-distance contribution) 
“solution”: cut out 6 GeV2 < q2 < 14 GeV2

above (high-q2) charm loops calculable in OPE
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Grinstein et al; Beylich et al 2011

at low q2 , long-distance charm effects also suppressed, but photon can 
now be emitted from spectator withouth power suppression

Figure 1: Leading contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross marks
the possible insertions of the virtual photon line.

with αs ≡ αs(µ). The sign convention for O7,8 corresponds to a negative C7,8 and
+igsTA, +igemef for the ordinary quark–gauge-boson vertex (ef = −1 for the lepton
fields). We will present our result in terms of “barred” coefficients C̄i (for i = 1, . . . , 6),
defined as certain linear combinations of the Ci as described in Appendix A. The linear
combinations are chosen such that the C̄i coincide at leading logarithmic order with the
Wilson coefficients in the standard basis [7].

As for form factors and non-leptonic two-body decays there exist two distinct classes
of non-factorizable effects. (By “non-factorizable” we mean all those corrections that are
not contained in the definition of the QCD form factors for heavy-to-light transitions.
For example, the familiar leading-order diagrams shown in (a) and (b) of Figure 1 are
factorizable.) The first class involves diagrams in which the spectator quark in the B
meson participates in the hard scattering. This effect occurs at leading order in an
expansion in the strong coupling constant only through a weak annihilation diagram
[Figure 1c]. The relevant diagrams at next-to-leading order are shown as (a) and (b) in
Figure 2 below and in Figure 3. They contribute at order α0,1

s to the functions Ta in
(1). Diagrams of this form have already been considered (for q2 = 0) in [8]. However,
bound state model wave-functions (rather than light-cone distribution amplitudes) were
used and no attempt was made to systematically expand the hard scattering amplitude
in 1/mb. As a consequence, the result of [8] for B̄ → K∗γ depends on an infrared cut-off.
This difficulty is resolved in the present factorization approach. The second class contains
all diagrams shown in the second row of Figure 2 below. Here the spectator quark is
connected to the hard process represented by the diagram only through soft interactions.
The result is therefore proportional to the form factor ξa and the hard-scattering part
gives an αs-correction to the functions Ca in (1).

In this section we present the results of the calculation of these diagrams. Some of the
results needed for diagrams of the second class can be extracted from work on inclusive
radiative decays [9, 10] and we have made use of these results as indicated below. The
conventions for the form factors and light-cone distribution amplitudes for B mesons
and light mesons are those of [4].

2.1 Notation and leading-order result

Since the matrix elements of the semi-leptonic operators O9,10 can be expressed through
B → K∗ form factors, non-factorizable corrections contribute to the decay amplitude
only through the production of a virtual photon, which then decays into the lepton pair.

3

Figure 2: Non-factorizable contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross
marks the possible insertions of the virtual photon line. Diagrams that follow
from (c) and (e) by symmetry are not shown. Upper line: hard spectator scat-
tering. Lower line: diagrams involving a B → K∗ form factor (the spectator
quark line is not drawn for these diagrams).

T (f)
⊥,−(u, ω) = T (f)

‖,−(u, ω) = 0 (22)

The non-factorizable correction is obtained by computing matrix elements of four-quark
operators and the chromomagnetic dipole operator represented by diagrams (a) and (b)
in Figure 2. The projection on the meson distribution amplitudes is straightforward. In
the result we keep only the leading term in the heavy quark limit, expanding the ampli-
tude in powers of the spectator quark momentum whenever this is permitted by power
counting. In practice this means keeping all terms that have one power of the spectator
quark momentum in the denominator. Such terms arise either from the gluon propagator
that connects to the spectator quark line or from the spectator quark propagator, when
the photon is emitted from the spectator quark line. We then find:

T (nf)
⊥, +(u, ω) = −

4ed C eff
8

u + ūq2/M2
B

+
MB

2mb

[

eut⊥(u, mc) (C̄2 + C̄4 − C̄6)

+ ed t⊥(u, mb) (C̄3 + C̄4 − C̄6 − 4mb/MB C̄5) + ed t⊥(u, 0) C̄3

]

(23)

T (nf)
⊥,−(u, ω) = 0 (24)

T (nf)
‖, + (u, ω) =

MB

mb

[

eut‖(u, mc) (C̄2 + C̄4 − C̄6) + ed t‖(u, mb) (C̄3 + C̄4 − C̄6)

+ ed t‖(u, 0) C̄3

]

(25)

T (nf)
‖,− (u, ω) = eq

MBω

MBω − q2 − iε

[

8 C eff
8

ū + uq2/M2
B

+
6MB

mb

(

h(ūM2
B + uq2, mc) (C̄2 + C̄4 + C̄6) + h(ūM2

B + uq2, mb) (C̄3 + C̄4 + C̄6)

7

possible photon 
attachments more significant for b ➔s transitions

small Wilson coefficients

long-distance “resonance” effects as in top figure (q=u,d,s) CKM and power suppressed

The results of this paper are restricted to the kinematic region in which the energy
of the final state meson scales with the heavy quark mass in the heavy quark limit.
In practice we identify this with the region below the charm pair production threshold
q2 < 4m2

c ≈ 7 GeV2. The various form factors appearing in (7)-(9) are then related by
symmetries [5, 4]. Adopting the notation of [4], (7)-(9) simplify to

T1(q
2) ≡ T⊥(q2) = ξ⊥(q2)

[

C eff
7 δ1 +

q2

2mbMB
Y (q2)

]

, (12)

T2(q
2) =

2E

MB
T⊥(q2), (13)

T3(q
2) −

MB

2E
T2(q

2) ≡ T‖(q
2) = −ξ‖(q

2)
[

C eff
7 δ2 +

MB

2mb
Y (q2) δ3

]

, (14)

where E = (M2
B − q2)/(2MB) refers to the energy of the final state meson and ξ⊥,‖ refer

to the form factors in the heavy quark and high energy limit. The factors δi are defined
such that δi = 1 + O(αs). The αs-corrections have been computed in [4] and will be
incorporated into the next-to-leading order results later on. The appearance of only
two independent structures is a consequence of the chiral weak interactions and helicity
conservation, and hence holds also after including next-to-leading order corrections [4,
12]. We therefore present our results in terms of the invariant amplitudes T⊥, ‖(q2), which
refer to the decay into a transversely and longitudinally polarized vector meson (virtual
photon), respectively. At next-to-leading order we represent these quantities in the form

Ta = ξa

(

C(0)
a +

αsCF

4π
C(1)

a

)

+
π2

Nc

fBfK∗, a

MB
Ξa

∑

±

∫ dω

ω
ΦB,±(ω)

∫ 1

0
du ΦK∗, a(u) Ta,±(u, ω), (15)

where CF = 4/3, Nc = 3, Ξ⊥ ≡ 1, Ξ‖ ≡ mK∗/E, and Ta,±(u, ω) is expanded as

Ta,±(u, ω) = T (0)
a,±(u, ω) +

αsCF

4π
T (1)

a,±(u, ω). (16)

fK∗, ‖ denotes the usual K∗ decay constant fK∗. fK∗,⊥ refers to the (scale-dependent)
transverse decay constant defined by the matrix element of the tensor current. The
leading-order coefficient C(0)

a follows by comparison with Eqs. (12) and (14) setting δi = 1.
To complete the leading-order result we have to compute the weak annihilation am-

plitude of Figure 1c, which has no analogue in the inclusive decay and generates the
hard-scattering term T (0)

a,±(u, ω) in (15). To compute this term we perform the projec-
tion of the amplitude on the B meson and K∗ meson distribution amplitude as explained
in [4]. The four diagrams in Figure 1c contribute at different powers in the 1/mb expan-
sion. It turns out that the leading contribution comes from the single diagram with the
photon emitted from the spectator quark in the B meson, because this allows the quark
propagator to be off-shell by an amount of order mbΛQCD, the off-shellness being of order
m2

b for the other three diagrams. With the convention that the K∗ meson momentum
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Figure 9: Forward-backward asymmetry dAFB(B− → K∗−!+!−)/dq2 at next-
to-leading order (solid center line) and leading order (dashed). The band re-
flects all theoretical uncertainties from parameters and scale dependence com-
bined.

for q2 ∼ Λ2
QCD, but perturbative for q2 ∼ mbΛQCD. Furthermore, the non-perturbative

contribution is formally power-suppressed when the lepton invariant mass spectrum is
integrated from 0 to some q2 of order mbΛQCD.

5.2 Forward-backward asymmetry

The QCD factorization approach proposed here leads to an almost model-independent
theoretical prediction for the forward-backward asymmetry [30]. It has been noted in
[31] that the location of the forward-backward asymmetry zero is nearly independent of
particular form factor models. An explanation of this fact was given in [32], where it
has been noted that the form factor ratios on which the asymmetry zero depends are
predicted free of hadronic uncertainties in the combined heavy quark and large energy
limit. In [4] the effect of the (factorizable) radiative corrections to the form factor ratios
has been studied and has been found to shift the position of the asymmetry zero about
5% towards larger values. We are now in the position to discuss the effect of both,
factorizable and non-factorizable radiative corrections to next-to-leading order in the
strong coupling constant on the location of the asymmetry-zero, and hence to complete
our earlier analysis.

We define the forward-backward (FB) asymmetry (normalized to the differential de-
cay rate dΓ(B− → K∗−!+!−)/dq2) by

dAFB

dq2
≡

1

dΓ/dq2

(

∫ 1

0
d(cos θ)

d2Γ

dq2d cos θ
−

∫ 0

−1
d(cos θ)

d2Γ

dq2d cos θ

)

(72)

Our result for the FB asymmetry is shown in Figure 9 to LO and NLO accuracy. From
(64) it is obvious that dAFB/dq2 ∝ Re (C9,⊥(q2)), and therefore the FB asymmetry van-
ishes if Re (C9,⊥(q2

0)) = 0. At leading order this translates into the relation

C9 + Re(Y (q2
0)) = −

2MBmb

q2
0

Ceff
7 , (73)
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light cone distribution amplitudes 
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