

Physics at LHCb

N. Serra on behalf of the LHCb Collaboration

- CP Violation in Beauty
- CP violation in Charm
- Some Rare decays

Detector thought for doing b-hadron measuements:
Very good momentum resolution and particle ID.
MUOW
TT/IT/OT \square system

LHCb Integrated Luminosity at 3.5 TeV in 2011

201I: I.I fb-1

CP Violation in beauty

ANTIMATTER'S

 GONE MISSING...WHEN DID THIS HAPPEN, SIR?

$V^{C K M}=$ CKM Matrix $=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$ where $\left(\begin{array}{c}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=V^{C K M}\left(\begin{array}{c}d \\ s \\ b\end{array}\right)$

Unitarity Triangle

β_{s} Triangle

Imposing Unitarity

$$
\begin{aligned}
& V_{u d}^{*} V_{c d}+V_{u s}^{*} V_{c s}+V_{u b}^{*} V_{c b}=0 \\
& V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0 \\
& V_{c d}^{*} V_{t d}+V_{c s}^{*} V_{t s}+V_{c b}^{*} V_{t b}=0 \\
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0 \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0
\end{aligned}
$$

CKM - matrix is measured very precisely.

 Great jobs done by B-factories and others, Less constrained γ-angle :$$
\mathrm{V}=68^{+13}-14 \quad \text { V. Niess (CKMFitter) EPS2011 }
$$

We can access γ via the interference between $\mathrm{b} \rightarrow \overline{\mathrm{c} u s}$ and $\mathrm{b} \rightarrow u \overline{c s}$, $e . g$. with $\mathrm{B} \rightarrow \bar{D} K$ and $\mathrm{B} \rightarrow D K$
where D and \bar{D} decay to a common final state

γ is the weak phase between $\mathrm{V}_{c b}$ and $\mathrm{V}_{u b}$

$$
V_{u b} V_{c s}^{*}
$$

CKM - matrix is measured very precisely.

 Great jobs done by B-factories and others, Less constrained γ-angle :$$
Y=68^{+13}-14 \quad \text { V. Niess (CKMFitter) EPS2011 }
$$

We can access γ via the interference between $\mathrm{b} \rightarrow \overline{\mathrm{c} u s}$ and $\mathrm{b} \rightarrow u \overline{c s}$, $e . g$. with $\mathrm{B} \rightarrow \bar{D} K$ and $\mathrm{B} \rightarrow D K$
where D and \bar{D} decay to a common final state

γ is the weak phase between $\mathrm{V}_{c b}$ and $\mathrm{V}_{u b}$

Color allowed

$V_{u b} V_{c s}^{*}$
Color suppressed

$B^{ \pm} \rightarrow D^{0} K^{ \pm}$
$C P$ eigenstate $D^{0} \rightarrow K^{+} K^{-}$
Cabibbo favoured $D^{0} \rightarrow K^{-} \pi^{+}$
Doubly cabibbo suppressed $D^{0} \rightarrow K^{+} \pi^{-}$
Time dependent analysis
R. Aleskan, I. Dunietz and B. Kayser, Z. Phys. C 54, 653 (1992)
$B_{s} \rightarrow D_{s}^{+} K^{-}$
$B^{0} \rightarrow D^{(*)+} \pi^{-}$
Dalitz analysis
A. Giri, Yu. Grossman, A Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003)
A. Bondar, Proceedings of BINP Special Analysis Meeting on Dalitz Analysis
$B^{ \pm} \rightarrow D^{0} K^{ \pm}$
$D \rightarrow K_{s}^{0} \pi \pi$

2010 data $\left(\mathrm{L}=35.5 \mathrm{pb}^{-1}\right)$
Ratio of branching fraction $\frac{B R\left(B^{ \pm} \rightarrow D K^{ \pm}\right)}{B R\left(B^{ \pm} \rightarrow D \pi^{ \pm}\right)}$
$R_{C F}^{K / \pi}=(6.30 \pm 0.38 \pm 0.40) \%$

2010 data $\left(\mathrm{L}=35.5 \mathrm{pb}^{-1}\right)$

Ratio of branching ratio $\frac{B R\left(B^{ \pm} \rightarrow D K^{ \pm}\right)}{B R\left(B^{ \pm} \rightarrow D \pi^{ \pm}\right)}$
$R_{C P_{+}}^{k / \pi}=(9.31 \pm 1.89 \pm 0.53) \%$

DK
 $\mathrm{B}^{-} \mathrm{GLW} \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}^{-}$

 $\left.r_{B} e^{i(\delta \partial \times}\right) \overline{\mathrm{D}} \mathrm{K}^{-}$$$
\mathrm{B}^{+} \rightarrow(\mathrm{KK})_{\mathrm{D}} \mathrm{~K}^{+}, \mathrm{DLL}_{\mathrm{K}}>4
$$

$\mathrm{B}^{+} \rightarrow(\mathrm{KK})_{\mathrm{D}} \pi^{+}, \mathrm{DLL}_{\mathrm{K}}<4$

$A_{C P_{ \pm}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P_{ \pm}}^{0} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P_{ \pm}}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P_{ \pm}}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C \Psi_{ \pm}}^{0} K^{+}\right)}=\frac{ \pm 2 r_{B} \sin \delta_{B} \sin \gamma}{1+r_{B}^{2} \pm 2 r_{B} \cos \delta_{B} \cos \gamma}$
$R_{C P_{ \pm}}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P_{ \pm}}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P_{ \pm}}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}=1+r_{B}^{2} \pm 2 r_{B} \cos \delta_{B} \cos \gamma$
M.Gronau, D.London, D.Wyler, PLB253,483(1991);PLB 265, 172(1991)

LHCb: PRELIMINARY

$$
\begin{aligned}
& R_{C P_{+}}=1.48 \pm 0.31 \pm 0.12 \\
& A_{C P_{+}}=0.07 \pm 0.18 \pm 0.07
\end{aligned}
$$

HFAG averages including LHCb results

- Significant signal (4σ) for suppressed mode in 343/pb-1.
- Data-driven methods for:
- PID efficiency
- Production and detection asymmetry
- $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}(\mathrm{K} \pi) \pi^{ \pm}$used as normalisation mode.

$R_{A D S}=\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{+}\right)}=r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \gamma \cos \left(\delta_{B}+\delta_{D}\right)$
$A_{A D S}=\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}=2 r_{B} r_{D} \sin \gamma \sin \left(\delta_{B}+\delta_{D}\right) / R_{A D S}$
D.Atwood,I.Dunietz,A.Soni,PRL78,3357(1997)

LHCb : PRELIMINARY
$R_{A D S}^{D K}=(1.66 \pm 0.39 \pm 0.24) \cdot 10^{-2}$
$A_{A D S}^{D K}=-0.39 \pm 0.17 \pm 0.02$
World Average (HFAG):
$R_{A D S}^{D K}=(1.6 \pm 0.3) \cdot 10^{-2}$
$A_{A D S}^{D K}=-0.58 \pm 0.21$

Large CP asymmetry, about 50\%!

HFAG average including LHCb results

D_K $\boldsymbol{\pi} \mathbf{K ~ A}_{\text {ADS }}$

HFAG

LP 2011
PRELIMINARY

Other channels which have the similar quark level interference can in principle be added to the measurement of V .

LHCb-CONF-2011-034
2010 data $\left(\mathrm{L}=37 \mathrm{pb}^{-1}\right)$

$\frac{B R\left(B^{-} \rightarrow D^{0} K^{-} \pi^{+} \pi^{-}\right)}{B R\left(B^{-} \rightarrow D^{0} \pi^{-} \pi^{+} \pi^{-}\right)}=(9.6 \pm 1.5 \pm 0.8) \cdot 10^{-2}$

LHCb-CONF-2011-036

2011 data $\left(\mathrm{L}=333 \mathrm{pb}^{-1}\right)$

$\frac{B R\left(\Lambda_{b}^{0} \rightarrow D^{0} p K^{-}\right)}{B R\left(\Lambda_{b}^{0} \rightarrow D^{0} p \pi^{-}\right)}=0.112 \pm 0.019_{-0.014}^{+0.011}$

Another promising channel for the measurement of y are the decays $\mathrm{B}^{0} \rightarrow \mathrm{DK}^{* 0}$.
These modes are both color suppressed therefore it can exhibits an enhanced interference.
The yet unobserved CF decay $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}$ is a potentially dangerous background

The LHCb Coll. arXiv:1110.3676v3

$$
B R\left(\bar{B}_{s}^{0} \rightarrow D^{0} K^{* 0}\right)=(4.72 \pm 1.07(\text { stat }) \pm 0.48(\text { syst }) \pm 0.37(f s / f d) \pm 0.74(B R)) \cdot 10^{-4}
$$

Normalization with $\mathrm{B}^{0} \rightarrow D^{0} \rho^{0}$

Both $b \rightarrow c$ and $b \rightarrow u$ diagrams are colour allowed Time dependent analysis required
The first step is to observe the signal and measure the branching ratio

LHCb-CONF-2011-057

PRELIMINARY
Data sample split for the two magnet polarities.

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\right)=\left(1.97 \pm 0.18 \text { (stat.) }{ }_{-0.20}^{+0.19}(\text { syst. })_{-0.20}^{+0.19}\left(f_{s} / f_{d}\right)\right) \times 10^{-4}
$$

The direct and mixing CP asymmetries in $\mathrm{B}_{\mathrm{d}} \rightarrow \pi^{+} \pi^{-}$and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$ are related to the angle γ (need to use U -spin symmetry).

```
R.Fleischer PLB 459 (1999) 306
```

R. Fleischer and R. Knegjens EPJ c71 (2011)1532

Usng U-spin symmetry and neglecting penguin annihilation and exchange fopologies we expect $A_{C P}\left(B_{s}{ }^{0} \rightarrow \pi K\right) \sim A_{\pi} \pi^{\text {dir }}$

- $B^{0} \rightarrow K \pi$ - the most precise single measurement and first 5σ observation at hadron machine!
- First evidence of CP-violation in $B_{s} \rightarrow K \pi$ decay!

LHCb-CONF-2011-042

LHCb :
PRELIMINARY
$A_{C P}\left(B^{0} \rightarrow K \pi\right)=-0.088 \pm 0.011 \pm 0.008$
$A_{C P}\left(B_{s}^{0} \rightarrow K \pi\right)=0.27 \pm 0.08 \pm 0.02$

HFAG:

$$
A_{c p}\left(B^{0} \rightarrow K^{+} \pi\right)=0.098^{+0.012}-0.011
$$

A measurement of the $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$ lifetime can be used to put constraints on NP to the $\mathrm{B}_{\mathrm{s}}{ }^{0}$ mixing.
R. Fleischer and R. Knegjens, Eur. Phys. J. C71:1532, 2011

$\tau_{\text {LHCb }}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)=(1.44 \pm 0.10 \pm 0.01) p s$
$\tau_{C D F}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)=(1.53 \pm 0.18 \pm 0.02) p s$
The LHCb Coll. arXiv:1111.0521v2
$\tau_{S M}\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)=(1.39 \pm 0.032) p s$
$\tau_{H F A G}\left(B_{s}^{0}\right)=(1.48 \pm 0.02) p s$

See talk by W. Hulsbergen and talk by N. Tuning

Scalar triple products of momentum or

 spin vectors are T-odd, a real asymmetry implies CP asymmetry in (under CPT).A. Datta, M. Duraisamy, D. London Phys.Lett.B701:357-362,2011
M. Gronau and J.L. Rosner arxiv:1107.1232

CDF measurement (arXiv:1107.4999)
$A_{u}=-0.007 \pm 0.064($ stat $) \pm 0.018($ syst $)$
$A_{v}=-0.120 \pm 0.064($ stat $) \pm 0.016($ syst $)$

LHCb:
LHCb-CONF-2011-052

$$
\begin{aligned}
& A_{u}=-0.064 \pm 0.057(\text { stat }) \pm 0.014(\text { syst }) \\
& A_{v}=-0.070 \pm 0.057(\text { stat }) \pm 0.014(\text { syst })
\end{aligned}
$$

(b) $U<0$

CP Violation in charm

In the SM:

- Indirect CP violation in charm is expected to be small $\left(<10^{-3}\right)$ and process independent.

- CP violation in the decay (different amplitude for a process and its conjugate) is process dependent:
- Negligibly small for Cabibbo favoured processes
- At the level of 10^{-3} possible for Cabibbo suppressed decays

$\triangle A_{\text {ap }}$ in charm at LHCb

The CP violation of the decays $D \rightarrow K K$ and $D \rightarrow$ pipi is expected to besmall $O\left(10^{-3}\right)$ in the $S M$.

New physics can contribute enhancing this asymmetry (depending on the model)

Using U-spin symmetry $A_{C P}(K K)$ and $A_{C P}(\pi \pi)$ are expected of similar size and opposite sign.

$$
A_{\text {raw }}=\frac{N\left(D^{*+} \rightarrow D^{0}(h h) \pi^{+}\right)-N\left(D^{*-} \rightarrow \bar{D}^{0}(h h) \pi^{-}\right)}{N\left(D^{*+} \rightarrow D^{0}(h h) \pi^{+}\right)+N\left(D^{*-} \rightarrow \bar{D}^{0}(h h) \pi^{-}\right)}=A_{C P}(h h)+A_{D}(h h)+A_{D}\left(\pi_{s}\right)+A_{P}\left(D^{*}\right)
$$

$\triangle \mathrm{A}_{\mathrm{CP}}$ between KK and $\pi \pi$ is very robust:

- For decays in h^{+h} (self-conjugate) of D^{0} the term $A_{D}(h h)=0$
- The production asymmetry cancels out $A_{p}\left(D^{*}\right)=0$
- At first order also $A_{D}\left(\pi_{s}\right)$ cancels out

$$
\Delta A_{C P} \approx A_{R A W}(K K)-A_{R A W}(\pi \pi)
$$

$$
\left.A_{\text {raw }}=\frac{N\left(D^{*+} \rightarrow D^{0}\right) h h\left(\pi^{+}-N\left(D^{*-} \rightarrow D\right.\right.}{N\left(D^{*+} \rightarrow D^{0}(h h) \pi^{+}\right)+N\left(D^{*-} \rightarrow \bar{D}\right)}(h h) \pi^{-}\right) \quad=A_{C P}(h h)+A_{D}(h h)+A_{D}\left(\pi_{s}\right)+A_{P}\left(D^{*}\right)
$$

$\triangle \mathrm{A}_{\mathrm{CP}}$ between KK and $\pi \pi$ is very robust:

- For decays in h^{+h} (self-conjugate) of D^{0} the term $A_{D}(h h)=0$
- The production asymmetry cancels out $A_{p}\left(D^{*}\right)=0$
- At first order also $A_{D}\left(\pi_{s}\right)$ cancels out

$$
\Delta A_{C P} \approx A_{R A W}(K K)-A_{R A W}(\pi \pi)
$$

$$
A_{\text {raw }}=\frac{N\left(D^{*+} \rightarrow D^{0}(h h) \pi^{+}\right)-N\left(D^{*-} \rightarrow \bar{D}^{0}(h h) \pi^{-}\right)}{N\left(D^{*+} \rightarrow D^{0}(h h) \pi^{+}\right)+N\left(D^{*-} \rightarrow \bar{D}^{0}(h h) \pi^{-}\right)}=A_{C P}(h h)+A_{D}(h h)+A_{D}\left(\pi_{s}\right)+A_{P}\left(D^{*}\right)
$$

$\triangle \mathrm{A}_{\mathrm{CP}}$ between KK and $\pi \pi$ is very robust:

- For decays in h^{+h} (self-conjugate) of D^{0} the term $A_{D}(h h)=0$
- The production asymmetry cancels out $A_{p}\left(D^{*}\right)=0$
- At first order also $A_{D}\left(\pi_{s}\right)$ cancels out

$$
\Delta A_{C P} \approx A_{R A W}(K K)-A_{R A W}(\pi \pi)
$$

CDF (arXiv: $1111.5023 \mathrm{v1}$)

$$
\begin{aligned}
& a_{C P}\left(D^{0} \rightarrow \pi \pi\right)=(0.22 \pm 0.24 \pm 0.11) \% \\
& a_{C P}\left(D^{0} \rightarrow K K\right)=(-0.24 \pm 0.22 \pm 0.09) \% \\
& \Delta a_{C P}=(-0.46 \pm 0.31 \pm 0.12) \%
\end{aligned}
$$

HFAG result which includes the prelimary result by CDF

HFAG world average :
$a_{C P}^{\text {ind }}=(-0.023 \pm 0.232) \%$
$\Delta a_{C P}^{d i r}=(-0.447 \pm 0.270) \%$

- Divide data into kinematic bins of (pT of $D^{*}+, \eta$ of $D^{*}+, p$ of soft pion, left/right hemisphere) -- 54 bins
-split by magnet polarity (field pointing up, pointing down)
- split into two run groups (before \& after technical stop)
-Fit final states D0 $\rightarrow K+K$ - and $\pi+\pi$ - separately $=>432$ independent fits.

Fit to the $\delta \mathrm{m}=\mathrm{m}\left(\mathrm{D}^{0} \pi_{s}\right)-\mathrm{m}\left(\mathrm{D}^{0}\right)-\mathrm{m}\left(\pi_{s}\right)$ with the model described in (LHCb-PUB-2009-031)
D^{*+} and are allowed to have different resolution
Consistency for $\Delta a_{C P}$ among individual fits $\chi^{2} / n D o f=211 / 215$
$D^{0} \rightarrow$ KK, First bin, first run block, Magnet Up

- Electron and muon vetoes on the soft pion and on the D0 daughters
- Different kinematic binnings
- Stability of result vs time
- Toy MC studies of fit procedure, statistical errors
- Tightening of PID cuts on DO daughters
- Tightening of kinematic cuts
- Variation with event track multiplicity
- Use of other signal, background lineshapes in the fit
- Use of alternative offline processing (skimming/stripping)
- Internal consistency between subsamples (splitting left/right, magnet up/ down, etc)
- All variation within appropriate statistical/systematic uncertainties.

The result seems pretty stable against systematics!

$$
\Delta \mathrm{A}_{\mathrm{CP}}=(-0.82 \pm 0.21 \text { (stat) } \pm 0.11 \text { (sys)) } \%
$$

```
LHCb-CONF-2011-061
```

Statistically compatible with world average (and CDF result)! World First Evidence of CPV in charm (3.5σ)!
Statistically dominated, eager to analyse more data!
Contribution from CPV suppressed by $\frac{\Delta\langle t\rangle}{\tau}=\frac{\left\langle t_{K K}\right\rangle-\left\langle t_{\pi \pi}\right\rangle}{\tau}=(9.8 \pm 0.9) \%$
therefore the main contribution is from direct CPV

One place to look for NP contribution is $D^{+} \rightarrow K^{+} K^{-} \pi^{+}$. Use of Miranda method for 'spotting' CP asymmetries in the Dalitz plot.
I. Bediaga et al., Phys. Rev. D80 (2009) 096006

LHCb: 2010 dataset of $38 \mathrm{pb}^{-1}$

The LHCb Coll. arXiv:I llo.3970vI (submitted to Phys. Rev. D)

Measurement very robust against bias:

1) Blind analysis
2) Run with two magnet polarities
3) Validation with 'toy' studies

An important way to search for anomalous CP violation in charm mixing:

$$
\begin{aligned}
& A_{\Gamma}=\frac{\tau\left(\overline{D^{0}} \rightarrow K^{+} K^{-}\right)-\tau\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\tau\left(\overline{D^{0}} \rightarrow K^{+} K^{-}\right)+\tau\left(D^{0} \rightarrow K^{+} K^{-}\right)} \sim\left(\frac{A_{m}}{2}\right) y \cos \phi_{D}-x \sin \phi_{D} \\
& y_{C P}=\frac{\Gamma\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}-1 \sim y \cos \phi_{D}-x \sin \phi_{D}\left(\frac{A_{m}}{2}\right) \quad \mathrm{X}=\frac{\Delta m}{\Gamma}, y=\frac{\Delta I}{2 \Gamma}
\end{aligned}
$$

Need to know the flavor of the D^{0}, we use $D^{*}+\rightarrow D^{0} \pi_{s}^{+}$.
Need to separate the contribution of charm coming form B

PRELIMINARY

$L H C b: A_{\Gamma}=(-0.59 \pm 0.59 \pm 0.21) \%$
HFAG: $(0.12 \pm 0.25) \%$
$L H C b: y_{C P}=(0.55 \pm 0.63 \pm 0.41) \%$
HFAG: (1.11 ± 0.22)\%

Results obtained with a fraction of 2010 data, but LHCb has a large sample!

Rare decays

Evidence of $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ at LHCb is possible between winter conference and the end of the running period at 7TeV.

For more details see the talk by Niels Tuning.

Future steps for $\mathrm{B}_{\mathrm{d}} \rightarrow K^{*} \mu \mu$:

- Measurement of the Zero-crossing of AFB in $B_{d} \rightarrow K^{*} \mu \mu$ Isospin asymmetry in $B \rightarrow K^{(*)} \mu \mu$ Measurement of A_{T}^{2} in $B_{d} \rightarrow K^{*} \mu \mu$ Measurement of $A_{T}{ }^{2}$ in $B_{d} \rightarrow K^{*}$ ee Direct CPV in $B_{d} \rightarrow K^{*} \mu \mu$

Future steps for $\mathrm{B}_{\mathrm{d}} \rightarrow K^{*} \mu \mu$:

- Measurement of the Zero-crossing of AFB in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mu \mu$ Isospin asymmetry in $B \rightarrow K^{(*)} \mu \mu$ Measurement of A_{T}^{2} in $B_{d} \rightarrow K^{*} \mu \mu$ Measurement of $A_{T}{ }^{2}$ in $B_{d} \rightarrow K^{*}$ ee Direct CPV in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \underline{\mu} \underline{\mu}$

Future steps for $\mathrm{B}_{\mathrm{d}} \rightarrow K^{*} \mu \mu$:

- Measurement of the Zero-crossing of AFB in $B_{d} \rightarrow K^{*} \mu \mu$ Isospin asvmmetry in $B \rightarrow K^{(*)} \mu \mu$ Measurement of A_{T}^{2} in $B_{d} \rightarrow K^{*} \mu \mu$ Measurement of $A_{T}{ }^{2}$ in $B_{d} \rightarrow K^{*}$ ee Direct CPV in $B_{d} \rightarrow K^{*} \mu \mu$

Time evolution for an untagged sample of $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \Phi \gamma$

$$
R(t) \propto e^{-\Gamma_{s} t}\left\{\cosh \left(\Delta \Gamma_{s} t / 2\right)+A_{D} \sinh \left(\Delta \Gamma_{s} t / 2\right)\right\}
$$

F. Muheim, Y. Xie, R. Zwicky, PLB 664:174, 2008

- In the SM photons are emitted almost completely left-handed polarized
- A_{D} is sensitive to fraction of right-handed photons (even for small Φ_{s}) ($A_{D} \sim 0$ in SM)
- Can be enhanced by NP with large Right-Handed currents.

LHCb-CONF-2011-055

$$
\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \phi \gamma\right)}=1.52 \pm 0.14(\text { stat }) \pm 0.10(\text { syst }) \pm 0.12\left(f_{s} / f_{d}\right)
$$

SM expectation 1.0 ± 0.2 A. Ali, B. D. Pecjak, and C. Greub, Eur. Phys. J. C55 (2008) 577-595

Future steps: Direct CPV in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \gamma$, Measurement of baryon radiative decays, Photon Polarization in $B_{s} \rightarrow \phi r$.

What I did not cover in this talk

- Measurement of the $\mathrm{BR}\left(\mathrm{Bs} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*}\right)$
- Limits to LFV $\mathrm{B}^{+} \rightarrow \mathrm{h}^{-} \mu^{+} \mu^{+}$
- Measurement of mass of B resonances
- Measurement of excited B states
- Measurement on XYZ states
- Measurement on B_{c} decays
- B production measurement
- Electroweak Physics
- ... and many more

Conclusions

- LHCb is over taking other experiments in several B-physics measurements
- World largest sample of exclusive B-decays
- Many propaedeutical measurements towards γ (with Tree and Penguin) have been done
- LHCbeauty is also a nice "LHCcharm":
- We search in several decays for direct CPV
- We also look for mixing induced CPV in D0
- We have the world first evidence of CPV in charm in $\Delta A_{C P}=A_{C P}$ (KK) - $A_{C P}(\pi \pi)$
- We have many measurements in rare decays that already severely constraint NP :
- $\mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)$
- AFB in $\mathrm{Bd} \rightarrow \mathrm{K}^{*} \mu \mu$
- We are also studying radiative decays (e.g. $\mathbf{B}_{s} \rightarrow \boldsymbol{\phi}$)
- MUCH MORE WILL BE COMING SOON, STAY TUNED!

Backup slides

Unitarity Triangle

Sides:
$V_{u d} \beta$-decay
$V_{u s}$ K-decay
$V_{c d} \quad$ v-production of c's
$V_{c s}$
$V_{u b}$ B-decay
$V_{c b} \quad \Delta \mathrm{~m}$ in $\mathrm{B}^{0}-\overline{\mathrm{B}}^{0}$

Measurement of the angles:

$$
\begin{aligned}
& B \rightarrow \pi \pi \\
& \alpha \Rightarrow \quad \rightarrow \rho \rho \\
& B \rightarrow \rho \pi \\
& B \rightarrow J / \psi K_{s} \\
& \beta \Rightarrow \quad B \rightarrow \phi K_{s} \\
& B \rightarrow D^{(*)} D^{(*)} \\
& \\
& \gamma \Rightarrow \quad \rightarrow D^{(*)} \pi \\
& B \rightarrow D K
\end{aligned}
$$

Wolfstein parameterization

$V^{c \kappa \cdots}=$ CKM Matrix $=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{a} & V_{c} & V_{u}\end{array}\right) \Rightarrow$ Standard rapresentation: $s_{i}=\sin \vartheta_{i} \quad c_{i}=\cos \vartheta_{i}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)= \\
& \left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{23} & s_{13} e^{i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & s_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
V_{u d}^{*} V_{c d}+V_{u s}^{*} V_{c s}+V_{u b}^{*} V_{c b}=0 & \lambda, \lambda, \lambda^{5} \\
V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0 & \lambda^{3}, \lambda^{3}, \lambda^{3} \\
V_{c d}^{*} V_{t d}+V_{c s}^{*} V_{t s}+V_{c b}^{*} V_{t b}=0 & \lambda^{4}, \lambda^{2}, \lambda^{2} \\
V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0 & \lambda, \lambda, \lambda^{5} \\
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 & \lambda^{3}, \lambda^{3}, \lambda^{3} \\
V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0 & \lambda^{4}, \lambda^{2}, \lambda^{2}
\end{array}
$$

Expanding as a function of the sin of Cabibbo angle:
$s_{12}=\lambda, \quad s_{13} \sin \delta_{13}=A \lambda^{3} \eta, \quad s_{23}=A \lambda^{2}, \quad s_{13} \cos \delta_{13}=A \lambda^{3} \rho$

$$
\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2}-\frac{\lambda^{4}}{8} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda-A^{2} \lambda^{5}\left(\rho+i \eta-\frac{1}{2}\right) & 1-\frac{\lambda^{2}}{2}-\left(\frac{1}{8}+\frac{A}{2}\right) \lambda^{4} & A \lambda^{2} \\
A \lambda^{3}\left[1-(\rho+i \eta)\left(1-\frac{\lambda^{2}}{2}\right)\right] & -A \lambda^{2}-A \lambda^{4}\left(\rho+i \eta-\frac{1}{2}\right) & 1-\frac{1}{2} A^{2} \lambda^{4}
\end{array}\right)+\mathcal{O}\left(\lambda^{6}\right)
$$

Gamma with Trees

$A\left(B^{-} \rightarrow D^{0} K^{-}\right)=A_{e^{i \delta_{c}}}, \quad A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)=A_{u} e^{i\left(\delta_{i}-7\right)}$
$A\left(D^{0} \rightarrow f\right)=A_{f} e^{i \delta_{f}}$ and $A\left(\bar{D}^{0} \rightarrow f\right)=A_{f} e^{i \delta_{f}} \quad f$ being a generic final state of D-meson.
The δ s are strong phases and γ is the week phase, while A are real and positive
$A\left(B^{-} \rightarrow(f)_{D} K^{-}\right)=A_{C} A_{f} e^{i\left(\delta_{c}+\delta_{f}\right)}+A_{u} A_{\bar{f}} e^{i\left(\delta_{u}+\delta_{\bar{f}}-\gamma\right)}$
$\Gamma\left(B^{-} \rightarrow(f)_{D} K^{-}\right)=A_{C}^{2} A_{\bar{f}}^{2}\left(A_{f}^{2} / A_{\bar{f}}^{2}+r_{B}^{2}+2 r_{B} A_{f} / A_{\bar{f}} \operatorname{Re}\left(e^{i\left(\delta_{B}+\delta_{D}-\gamma\right)}\right)\right)$
where $\quad r_{B}=A_{u} / A_{C}, \quad \delta_{B}=\delta_{u}-\delta_{C}, \quad \delta_{D}=\delta_{\bar{f}}-\delta_{f}$

GLW method

In the GLW method the D meson is reconstructed when it decays into a CP eigenstate (e.g. K K), therefore the $A_{f} / A_{\bar{f}}=1, \delta_{D}=0, \pi$ and $\mathrm{CP}=+1,-1 \Rightarrow$
$\Rightarrow \Gamma\left(B^{-} \rightarrow\left[f_{C P_{ \pm}}\right]_{D} K^{-}\right)=A_{C}^{2} A_{f_{C P_{ \pm}}}^{2}\left(1+r_{B}^{2} \pm 2 r_{B} \cos \left(\delta_{B}-\gamma\right)\right)$
We have:

$$
\begin{aligned}
& A_{C P \pm}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P_{ \pm}}^{0} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P_{ \pm}}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}=\frac{ \pm 2 r_{B} \sin \delta_{B} \sin \gamma}{1+r_{B}^{2} \pm 2 r_{B} \cos \delta_{B} \cos \gamma} \\
& R_{C P \pm}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P_{ \pm}}^{0} K^{+}\right)}{2 \Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)}=1+r_{B}^{2} \pm 2 r_{B} \cos \delta_{B} \cos \gamma
\end{aligned}
$$

ADS method

In the ADS method it used the interference of
$\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}$followed by doubly Cabibbo-suppressed $\mathrm{D}^{0} \rightarrow K^{+} \pi^{-}$ and the suppressed $\mathrm{B}^{-} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{-}$followed by the Cabibbo-allowed $\overline{\mathrm{D}}^{0} \rightarrow K^{+} \pi^{-}$.
$r_{D}=A / A=\frac{\left\|A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)\right\|}{\left\|A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right\|}$
Since $\mathrm{r}_{D} \sim 5 \%$ and $\mathrm{r} \sim 10 \%$ the interference can be quite large!
$R_{A D S}=\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{+}\right)}=r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \gamma \cos \left(\delta_{B}+\delta_{D}\right)$
$A_{A D S}=\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}=2 r_{B} r_{D} \sin \gamma \sin \left(\delta_{B}+\delta_{D}\right) / R_{A D S}$

Other ways of extracting Υ

GGSZ:

In this method the D^{0} is reconstructed when it decays in 3bodies (e.g. $K_{s}{ }^{0} \pi \pi$).
$A_{f} e^{i \theta_{f}}=f\left(m_{-}^{2}, m_{+}^{2}\right)$
$A_{\bar{f}} e^{i \delta_{\bar{J}}}=f\left(m_{+}^{2}, m_{-}^{2}\right)$
$\Gamma\left(B^{\mp} \rightarrow\left[K_{s}^{0} \pi \pi\right]_{D} K^{\mp}\right) \propto\left\|f\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)\right\|^{2}+r_{B}^{2}\left\|f\left(m_{ \pm}^{2}, m_{\mp}^{2}\right)\right\|^{2}+2 r_{B}\left\|f\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)\right\|\left\|f\left(m_{ \pm}^{2}, m_{\mp}^{2}\right)\right\| \cos \left(\delta_{B}+\delta_{D}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right) \mp \gamma\right)$

Bs \rightarrow DsK (Time dependent CP asymmetry):

The interference between the direct decay and the decay after mixing allows to access Υ. The non-zero $\Delta \Gamma_{s}$ allows to include non tagged events in the analysis.

$$
\begin{aligned}
& \Gamma_{B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow f}(t)=2 \cdot\left|A_{f}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) \frac{e^{-\Gamma_{s} t}}{2} \cdot\left(\cosh \frac{\Delta \Gamma_{s} t}{2}+D_{f} \sinh \frac{\Delta \Gamma_{s} t}{2}\right) \\
& \Gamma_{B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow \bar{f}}(t)=2 \cdot\left|\bar{A}_{\bar{f}}\right|^{2}\left(1+\left|\bar{\lambda}_{\bar{f}}\right|^{2}\right) \frac{e^{-\Gamma_{s} t}}{2} \cdot\left(\cosh \frac{\Delta \Gamma_{s} t}{2}+D_{\bar{f}} \sinh \frac{\Delta \Gamma_{s} t}{2}\right)
\end{aligned}
$$

$$
\gamma+\phi_{s}=\frac{1}{2}\left[\arg \left(\bar{\lambda}_{\bar{f}}\right)-\arg \left(\lambda_{f}\right)\right]
$$

Υ with penguin

$$
\mathcal{A}_{K^{+} K^{-}}^{d i r}=-\frac{2 \tilde{d^{\prime}} \sin \left(\vartheta^{\prime}\right) \sin (\gamma)}{1+2 \tilde{d^{\prime}} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}}
$$

$$
\mathcal{A}_{\pi^{+} \pi^{-}}^{d i r}=\frac{2 d \sin (\vartheta) \sin (\gamma)}{1-2 d \cos (\vartheta) \cos (\gamma)+d^{2}}
$$

$$
\mathcal{A}_{\pi^{+} \pi^{-}}^{\operatorname{mix}}=-\frac{\sin \left(\phi_{d}+2 \gamma\right)-2 d \cos (\vartheta) \sin \left(\phi_{d}+\gamma\right)+d^{2} \sin \left(\phi_{d}\right)}{1-2 d \cos (\vartheta) \cos (\gamma)+d^{2}}
$$

$$
\mathcal{A}_{K+K^{-}}^{m i x}=-\frac{\sin \left(\phi_{s}+2 \gamma\right)+2 \tilde{d^{\prime}} \cos \left(\vartheta^{\prime}\right) \sin \left(\phi_{s}+\gamma\right)+\tilde{d}^{\prime 2} \sin \left(\phi_{s}\right)}{1+2 \tilde{d^{\prime}} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}}
$$

U-spin assumption

Usng U-spin symmetry and neglecting penguin annihilation and exchange topologies we expect:
$C_{C P}=-A_{\pi \pi}^{d i r}$
$A_{C P}\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right) \approx \mathcal{A}_{\pi^{+} \pi^{-}}^{d i}$
$A_{C P}\left(B^{0} \rightarrow K \pi\right)=A_{\text {Raw }}-A_{\Delta}=-0.088 \pm 0.011($ stat $) \pm 0.008$ (syst)
World Average: $-0.098_{-0.011}^{+0.012}$

2010 data $\left(\mathrm{L}=35.5 \mathrm{pb}^{-1}\right)$

PRELIMINARY

Ratio of branching fraction $\frac{B R\left(B^{ \pm} \rightarrow D K^{ \pm}\right)}{B R\left(B^{ \pm} \rightarrow D \pi^{ \pm}\right)}$
$R_{K_{s}^{0} \pi \pi}^{K / \pi}=\left(12.0_{-5.0}^{+6.0} \pm 1.0\right) \%$
\square

