

Physics at LHCb

N. Serra on behalf of the LHCb Collaboration

information & registration www.nikhef.nl/apps Top Physics Higgs Physics Precision Calculations Discrete Symmetries Beyond Standard Mode Cosmology

Menu'

• CP Violation in Beauty

• CP violation in Charm

• Some Rare decays

The LHCb experiment

01/12/2011

LHCb Integrated Luminosity at 3.5 TeV in 2011

2011:1.1 fb⁻¹

01/12/2011

CP Violation in beauty

Unitarity triangles and CPV

γ with trees

01/12/2011

Color allowed

 $V_{cb}V_{us}^*$

Color suppressed

γ with trees

8

01/12/2011

GLW/ADS method

M.Gronau, D.London, D.Wyler, PLB253, 483(1991); PLB 265, 172(1991)

9

D.Atwood, I.Dunietz, A.Soni, PRL78, 3357 (1997)

 $B^{\pm} \to D^0 K^{\pm}$

CP eigenstate $D^0 \rightarrow K^+ K^-$

Cabibbo favoured $D^0 \rightarrow K^- \pi^+$

Doubly cabibbo suppressed $D^0 \rightarrow K^+\pi^-$ Time dependent analysis

R. Aleskan, I. Dunietz and B. Kayser, Z. Phys. C 54, 653 (1992)

R. Fleischer, Nucl. Phys. B 671, 459 (2003)

 $B_s \rightarrow D_s^+ K^-$

 $B^0 \to D^{(*)} \pi^-$

Dalitz analysis

A. Giri, Yu. Grossman, A Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003) A. Bondar, Proceedings of BINP Special Analysis Meeting on Dalitz Analysis

$$B^{\pm} \to D^0 K^{\pm}$$

$$D \rightarrow K_s^0 \pi \pi$$

01/12/2011

$$\begin{split} A_{CP\pm} &= \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) - \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma} \\ R_{CP\pm} &= \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{\Gamma(B^- \to D^0 K^-) + \Gamma(B^+ \to \overline{D}^0 K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \end{split}$$

M.Gronau, D.London, D.Wyler, PLB253, 483 (1991); PLB 265, 172 (1991)

LHCb: PRELIMINARY $R_{CP+} = 1.48 \pm 0.31 \pm 0.12$ $A_{CP+} = 0.07 \pm 0.18 \pm 0.07$

HFAG averages including LHCb results

γ with ADS at LHCb

- Significant signal (4σ) for suppressed mode in 343/pb⁻¹.
- Data-driven methods for:
 - PID efficiency

13

- Production and detection asymmetry
- $B^{\pm} \rightarrow D(K\pi)\pi^{\pm}$ used as normalisation mode.

01/12/2011

$$\begin{split} R_{ADS} &= \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{-}\pi^{+}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\gamma\cos(\delta_{B} + \delta_{D}) \\ A_{ADS} &= \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) - \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})} = \frac{2r_{B}r_{D}\sin\gamma\sin(\delta_{B} + \delta_{D})}{R_{ADS}} \\ \end{split}$$

14

D.Atwood, I.Dunietz, A.Soni, PRL78, 3357(1997)

LHCb: PRELIMINARY

$$R_{ADS}^{DK} = (1.66 \pm 0.39 \pm 0.24) \cdot 10^{-2}$$

 $A_{ADS}^{DK} = -0.39 \pm 0.17 \pm 0.02$
World Average (HFAG):
 $R_{ADS}^{DK} = (1.6 \pm 0.3) \cdot 10^{-2}$
 $A_{ADS}^{DK} = -0.58 \pm 0.21$

Large CP asymmetry, about 50%!

HFAG average including LHCb results

01/12/2011

15

γ usinig B⁰ \rightarrow D⁰K^{*0}

- Another promising channel for the measurement of γ are the decays B⁰ \rightarrow DK^{*0}.
- These modes are both color suppressed therefore it can exhibits an enhanced interference.
- The yet unobserved CF decay $B_s \rightarrow D^0 K^*$ is a potentially dangerous background .

 γ measurements with $B_s \rightarrow D_s K$

01/12/2011

Both $b \rightarrow c$ and $b \rightarrow u$ diagrams are colour allowed Time dependent analysis required The first step is to observe the signal and measure the branching ratio

17

LHCb-CONF-2011-057

PRELIMINARY

Data sample split for the two magnet polarities.

 $\mathcal{B}(B_s^0 \to D_s^{\mp} K^{\pm}) = (1.97 \pm 0.18 \text{ (stat.)} ^{+0.19}_{-0.20} \text{ (syst.)} ^{+0.19}_{-0.20} (f_s/f_d)) \times 10^{-4}$

The direct and mixing CP asymmetries in $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ are related to the angle γ (need to use U-spin symmetry).

R.Fleischer PLB 459 (1999) 306 R. Fleischer and R. Knegjens EPJ c71 (2011)1532

Using U-spin symmetry and neglecting penguin annihilation and exchange topologies we expect $A_{CP}(B_s^0 \rightarrow \pi K) \sim A_{\pi\pi}^{dir}$

18

γ measurements with B \rightarrow hh

• $B^0 \rightarrow K\pi$ - the most precise single measurement and first 5 σ observation at hadron machine!

19

First evidence of CP-violation in $B^0_s \rightarrow K\pi$ decay!

CP violation in B_s mixing

01/12/2011

21

See talk by W. Hulsbergen and talk by N. Tuning

TPA in B_s → φφ

01/12/2011

 K^+

 K^+

5500 Mass(oo) (MeV/c2)

Scalar triple products of momentum or spin vectors are T-odd, a real asymmetry implies CP asymmetry in (under CPT).

Φ θ_1 B^0_{\circ} A. Datta, M. Duraisamy, D. London Phys.Lett.B701:357-362,2011 K^{-} K^{-} M. Gronau and J.L. Rosner arxiv:1107.1232 CDF measurement (arXiv:1107.4999) Events / 10 MeV/c LHCb Preliminary 50 $\sqrt{s} = 7 \text{TeV}$ Width = 14.0 ± 0.8 MeV/c² 40 $sig(U_{c0}) = 173.9 + 13.5$

22

20

01/12/2011

CP Violation in charm

23

In the SM :

 Indirect CP violation in charm is expected to be small (<10⁻³) and process independent.

- CP violation in the decay (different amplitude for a process and its conjugate) is process dependent:
 - Negligibly small for Cabibbo favoured processes
 - At the level of 10⁻³ possible for Cabibbo suppressed decays

New Physics can enhance both direct and indirect!

ΔA_{CP} in charm at LHCb

01/12/2011

The CP violation of the decays D \rightarrow KK and D \rightarrow pipi is expected to besmall O(10⁻³) in the SM.

25

New physics can contribute enhancing this asymmetry (depending on the model)

Using U-spin symmetry $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$ are expected of similar size and opposite sign.

We need to know the flavour of the D^0 . We use D^0 coming from $D^{*\pm}$.

$$A_{raw} = \frac{N(D^{*+} \to D^{0}(hh)\pi^{+}) - N(D^{*-} \to \overline{D}^{0}(hh)\pi^{-})}{N(D^{*+} \to D^{0}(hh)\pi^{+}) + N(D^{*-} \to \overline{D}^{0}(hh)\pi^{-})} = A_{CP}(hh) + A_{D}(hh) + A_{D}(\pi_{s}) + A_{P}(D^{*})$$

 ΔA_{CP} between KK and $\pi \pi$ is very robust:

- For decays in h^+h^- (self-conjugate) of D⁰ the term $A_D(hh)=0$
- The production asymmetry cancels out A_P(D^{*})=0
- At first order also $A_D(\pi_s)$ cancels out

$\Delta A_{CP} \approx A_{RAW}$ (KK) - A_{RAW} ($\pi \pi$)

We need to know the flavour of the D^0 . We use D^0 coming from $D^{*\pm}$.

$$A_{raw} = \frac{N(D^{*+} \to D^{0}(hh)\pi^{+} - N(D^{*-} \to D^{0}(hh)\pi^{-})}{N(D^{*+} \to D^{0}(hh)\pi^{+}) + N(D^{*-} \to D^{0}(hh)\pi^{-})} = A_{CP}(hh) + A_{D}(hh) + A_{D}(\pi_{s}) + A_{P}(D^{*})$$

27

 ΔA_{CP} between KK and $\pi \pi$ is very robust:

- For decays in h^+h^- (self-conjugate) of D⁰ the term $A_D(hh)=0$
- The production asymmetry cancels out A_P(D^{*})=0
- At first order also $A_D(\pi_s)$ cancels out

$\Delta A_{CP} \approx A_{RAW}$ (KK) - A_{RAW} ($\pi \pi$)

 ΔA_{CP} in charm at LHCb

We need to know the flavour of the D^0 . We use D^0 coming from $D^{*\pm}$.

$$A_{raw} = \frac{N(D^{*+} \to D^{0}(hh)\pi^{+}) - N(D^{*-} \to \overline{D}^{0}(hh)\pi^{-})}{N(D^{*+} \to D^{0}(hh)\pi^{+}) + N(D^{*-} \to \overline{D}^{0}(hh)\pi^{-})} = A_{CP}(hh) + A_{D}(hh) + A_{D}(\pi_{s}) + A_{P}(D^{*})$$

 ΔA_{CP} between KK and $\pi \pi$ is very robust:

- For decays in h^+h^- (self-conjugate) of D⁰ the term $A_D(hh)=0$
- The production asymmetry cancels out A_P(D^{*})=0
- At first order also $A_D(\pi_s)$ cancels out

$\Delta A_{CP} \approx A_{RAW}$ (KK) - A_{RAW} ($\pi \pi$)

 $\begin{aligned} a_{CP}(D^0 \to \pi\pi) &= (0.22 \pm 0.24 \pm 0.11)\% \\ a_{CP}(D^0 \to KK) &= (-0.24 \pm 0.22 \pm 0.09)\% \\ \Delta a_{CP} &= (-0.46 \pm 0.31 \pm 0.12)\% \end{aligned}$

HFAG result which includes the prelimary result by CDF

No evidence of CPV, but world average negative and 1.7 σ form zero

29

30

01/12/2011

- Divide data into kinematic bins of (pT of D*+, η of D*+, p of soft pion, left/right hemisphere) -- 54 bins
- split by magnet polarity (field pointing up, pointing down)
- split into two run groups (before & after technical stop)

•Fit final states D0 \rightarrow K+ K– and π + π – separately => 432 independent fits.

- Electron and muon vetoes on the soft pion and on the D0 daughters
 Different kinematic binnings
- •Stability of result vs time
- Toy MC studies of fit procedure, statistical errors
- •Tightening of PID cuts on D0 daughters
- •Tightening of kinematic cuts
- Variation with event track multiplicity
- Use of other signal, background lineshapes in the fit
- •Use of alternative offline processing (skimming/stripping)
- Internal consistency between subsamples (splitting left/right, magnet up/ down, etc)
- •All variation within appropriate statistical/systematic uncertainties.

The result seems pretty stable against systematics!

LHCb result

32

CPV in D⁺ \rightarrow K⁺K⁻ π ⁻

01/12/2011

One place to look for NP contribution is $D^+ \rightarrow K^+ K^- \pi^+$. Use of Miranda method for 'spotting' CP asymmetries in the Dalitz plot.

m²_{KK*} (GeV²/c⁴

1.5

0.5

LHCb: 2010 dataset of 38 pb⁻¹

I. Bediaga et al., Phys. Rev. D80 (2009) 096006

(b)

10³

10²

10

LHCb

1.5

m²_{K'a+} (GeV²/c⁴)

<u>The LHCb Coll.</u> arXiv:1110.3970v1 (submitted to Phys. Rev. D) Measurement very robust against bias: 1) Blind analysis

2) Run with two magnet polarities

1

3) Validation with 'toy' studies

No evidence of CPV in any binnings!

CPV in charm mixing

34

An important way to search for anomalous CP violation in charm mixing:

$$A_{\Gamma} = \frac{\tau(\overline{D^{0}} \to K^{+}K^{-}) - \tau(D^{0} \to K^{+}K^{-})}{\tau(\overline{D^{0}} \to K^{+}K^{-}) + \tau(D^{0} \to K^{+}K^{-})} \sim (\frac{A_{m}}{2})y\cos\phi_{D} - x\sin\phi_{D}$$

$$Y_{CP} = \frac{\Gamma(D^{0} \to K^{+}K^{-})}{\Gamma(D^{0} \to K^{+}\pi^{-})} - 1 \sim y\cos\phi_{D} - x\sin\phi_{D}(\frac{A_{m}}{2}) \qquad x = \frac{\Delta m}{\Gamma}, y = \frac{\Delta\Gamma}{2\Gamma}$$

Need to know the flavor of the D⁰, we use D^{*+} → D⁰π_s⁺.
 Need to separate the contribution of charm coming form B

PRELIMINARY

 $LHCb: A_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21)\%$ $HFAG: (0.12 \pm 0.25)\%$ $LHCb: y_{CP} = (0.55 \pm 0.63 \pm 0.41)\%$ $HFAG: (1.11 \pm 0.22)\%$

Results obtained with a fraction of 2010 data, but LHCb has a large sample!

01/12/2011

Rare decays

35

www.jolyon.co.uk

$B_s \rightarrow mumu$ at LHCb

Evidence of $B_s \rightarrow \mu \mu$ at LHCb is possible between winter conference and the end of the running period at 7TeV.

For more details see the talk by Niels Tuning.

B_d→K*µµ at LHCb

37

01/12/2011

Future steps for $B_d \rightarrow K^* \mu \mu$:

- Measurement of the Zero-crossing of AFB in $B_d \rightarrow K^* \mu \mu$
- Isospin asymmetry in $B \rightarrow K^{(*)} \mu \mu$
- Measurement of A_T^2 in $B_d \rightarrow K^* \mu \mu$
- Measurement of A_T^2 in $B_d \rightarrow K^*ee$
- Direct CPV in $B_d \rightarrow K^* \mu \mu$

B_d→K*µµ at LHCb

38

01/12/2011

Future steps for $B_d \rightarrow K^* \mu \mu$:

- Measurement of the Zero-crossing of AFB in $B_d \rightarrow K^* \mu \mu$
- Isospin asymmetry in $B \rightarrow K^{(*)} \mu \mu$
- Measurement of A_T^2 in $B_d \rightarrow K^* \mu \mu$
- Measurement of A_T^2 in $B_d \rightarrow K^*ee$
- Direct CPV in $B_d \rightarrow K^* \mu \mu$

B_d→K*µµ at LHCb

39

01/12/2011

Future steps for $B_d \rightarrow K^* \mu \mu$:

- Measurement of the Zero-crossing of AFB in $B_d \rightarrow K^* \mu \mu$
- Isospin asymmetry in $B \rightarrow K^{(*)} \mu \mu$
- Measurement of A_T^2 in $B_d \rightarrow K^* \mu \mu$
- Measurement of A_T^2 in $B_d \rightarrow K^*$ ee
- Direct CPV in $B_d \rightarrow K^* \mu \mu$

40

Time evolution for an untagged sample of $B_s^0 \rightarrow \Phi \gamma$

$$R(t) \propto e^{-\Gamma_s t} \{ \cosh(\frac{\Delta \Gamma_s t}{2}) + A_D \sinh(\frac{\Delta \Gamma_s t}{2}) \}$$

F. Muheim, Y. Xie, R. Zwicky, PLB 664:174, 2008

 In the SM photons are emitted almost completely left-handed polarized

• A_D is sensitive to fraction of right-handed photons (even for small Φ_s) $(A_D \sim 0 \text{ in SM})$

• Can be enhanced by NP with large Right-Handed currents.

Radiative decays at LHCb

Future steps: Direct CPV in $B_d \rightarrow K^* \gamma$, Measurement of baryon radiative decays, Photon Polarization in $B_s \rightarrow \phi \gamma$.

What I did not cover in this talk

- Measurement of the BR(Bs \rightarrow K*K*)
- Limits to LFV $B^+ \rightarrow h^- \mu^+ \mu^+$
- Measurement of mass of B resonances
- Measurement of excited B states
- Measurement on XYZ states
- Measurement on B_c decays
- B production measurement
- Electroweak Physics
- ... and many more

Conclusions

- LHCb is over taking other experiments in several B-physics measurements
- World largest sample of exclusive B-decays
- Many propaedeutical measurements towards γ (with Tree and Penguin) have been done

43

- LHCbeauty is also a nice "LHCcharm":
 - We search in several decays for direct CPV
 - We also look for mixing induced CPV in D⁰
 - We have the world first evidence of CPV in charm in $\triangle A_{CP} = A_{CP}$ (KK) - $A_{CP} (\pi \pi)$
- We have many measurements in rare decays that already severely constraint NP :
 - BR(B_s $\rightarrow \mu \mu$)
 - AFB in Bd \rightarrow K* $\mu \mu$
- We are also studying radiative decays (e.g. $B_s \rightarrow \phi \gamma$)
- MUCH MORE WILL BE COMING SOON, STAY TUNED!

Backup slides

Unitarity Triangle

Sides:

V_{ud}	β-decay	$(A,Z) \rightarrow (A,Z+1) + e^{-} + \overline{\nu}_{e}$	$\cos \vartheta_{\rm C}$
Vus	K-decay	$K^+ \rightarrow \pi^0 + \ell^+ + \nu_\ell$	$\sin \vartheta_C$
		$K^0 \rightarrow \pi^- + \ell^+ + \nu_\ell$	
V _{cd}	v-production of c's	$v_{\ell} + d \rightarrow \ell^{-} + c$	$\cos \vartheta_{C}$
V_{cs}		$D^{\pm} \to K^{o} + \ell^{\pm} + v_{\ell}$	sin ϑ _C
V	P doony		
V _{ub}	D-uecay	$b \rightarrow u + \ell + v_{\ell}$ $b \rightarrow c + \ell + \overline{v_{\ell}}$	
V cb	Am in $B^0 - \overline{B}^0$	$\mathbf{D} \rightarrow \mathbf{C} + \mathbf{i} + \mathbf{v}_{\ell}$	
▼ td			

Measurement of the angles:

$$B \rightarrow \pi\pi$$

$$\alpha \Rightarrow B \rightarrow \rho\rho$$

$$B \rightarrow \rho\pi$$

$$B \rightarrow J / \psi K_{s}$$

$$\beta \Rightarrow B \rightarrow \phi K_{s}$$

$$B \rightarrow D^{(*)}D^{(*)}$$

$$\gamma \Rightarrow B \rightarrow D^{(*)}\pi$$

$$B \rightarrow DK$$

Wolfstein parameterization

$$V^{CKM} = CKM \text{ Matrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} & s_{13}e^{i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \end{pmatrix}$$

 \Rightarrow Standard rapresentation: $s_i = \sin \vartheta_i$ $c_i = \cos \vartheta_i$

$$V_{ud}^{*}V_{cd} + V_{us}^{*}V_{cs} + V_{ub}^{*}V_{cb} = 0 \qquad \lambda, \lambda, \lambda^{5}$$

$$V_{ud}^{*}V_{td} + V_{us}^{*}V_{ts} + V_{ub}^{*}V_{tb} = 0 \qquad \lambda^{3}, \lambda^{3}, \lambda^{3}$$

$$V_{cd}^{*}V_{td} + V_{cs}^{*}V_{ts} + V_{cb}^{*}V_{tb} = 0 \qquad \lambda^{4}, \lambda^{2}, \lambda^{2}$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \qquad \lambda, \lambda, \lambda^{5}$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \qquad \lambda^{3}, \lambda^{3}, \lambda^{3}$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \qquad \lambda^{4}, \lambda^{2}, \lambda^{2}$$

Expanding as a function of the sin of Cabibbo angle:

$$\begin{split} s_{12} &= \lambda, \quad s_{13} \sin \delta_{13} = A\lambda^{3}\eta, \quad s_{23} = A\lambda^{2}, \quad s_{13} \cos \delta_{13} = A\lambda^{3}\rho \\ & \begin{pmatrix} 1 - \frac{\lambda^{2}}{2} - \frac{\lambda^{4}}{8} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda - A^{2}\lambda^{5}(\rho + i\eta - \frac{1}{2}) & 1 - \frac{\lambda^{2}}{2} - (\frac{1}{8} + \frac{A}{2})\lambda^{4} & A\lambda^{2} \\ A\lambda^{3}[1 - (\rho + i\eta)(1 - \frac{\lambda^{2}}{2})] & -A\lambda^{2} - A\lambda^{4}(\rho + i\eta - \frac{1}{2}) & 1 - \frac{1}{2}A^{2}\lambda^{4} \end{pmatrix} + \mathcal{O}(\lambda^{6}) \end{split}$$

Gamma with Trees

$$\begin{split} A(B^- \to D^0 K^-) &= A_c e^{i\delta_c}, \quad A(B^- \to \overline{D}^0 K^-) = A_u e^{i(\delta_u - \gamma)} \\ A(D^0 \to f) &= A_f e^{i\delta_f} \quad \text{and } A(\overline{D}^0 \to f) = A_{\overline{f}} e^{i\delta_{\overline{f}}} \quad f \text{ being a generic final state of D-meson.} \\ \text{The } \delta \text{s are strong phases and } \gamma \text{ is the week phase, while A are real and positive} \\ A(B^- \to (f)_D K^-) &= A_C A_f e^{i(\delta_c + \delta_f)} + A_u A_{\overline{f}} e^{i(\delta_u + \delta_{\overline{f}} - \gamma)} \\ \Gamma(B^- \to (f)_D K^-) &= A_C^2 A_{\overline{f}}^2 \Big(\frac{A_f^2}{A_{\overline{f}}^2} + r_B^2 + 2r_B \frac{A_f}{A_{\overline{f}}} \operatorname{Re}(e^{i(\delta_B + \delta_D - \gamma)})) \\ \text{where } r_B &= \frac{A_u}{A_C}, \quad \delta_B = \delta_u - \delta_C, \quad \delta_D = \delta_{\overline{f}} - \delta_f \end{split}$$

GLW method

In the GLW method the D meson is reconstructed when it decays into a CP eigenstate

(e.g. K K), therefore the $A_f / A_{\overline{f}} = 1, \delta_D = 0, \pi$ and CP=+1,-1 \Rightarrow

$$\Rightarrow \Gamma(B^- \rightarrow [f_{CP\pm}]_D K^-) = A_C^2 A_{f_{CP\pm}}^2 (1 + r_B^2 \pm 2r_B \cos(\delta_B - \gamma))$$

We have:

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) - \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$$
$$R_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{2\Gamma(B^- \to D^0 K^-)} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$$

ADS method

In the ADS method it used the interference of

 $B^- \rightarrow D^0 K^-$ followed by doubly Cabibbo-suppressed $D^0 \rightarrow K^+ \pi^-$

and the suppressed $B^- \to \overline{D}^0 K^-$ followed by the Cabibbo-allowed $\overline{D}^0 \to K^+ \pi^-$.

$$r_D = A / A = \frac{\left\| A(D^0 \to K^+ \pi^-) \right\|}{\left\| A(D^0 \to K^- \pi^+) \right\|}$$

Since $r_D \sim 5\%$ and $r \sim 10\%$ the interference can be quite large!

$$R_{ADS} = \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{-}\pi^{+}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\gamma\cos(\delta_{B} + \delta_{D})}$$
$$A_{ADS} = \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) - \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})} = \frac{2r_{B}r_{D}\sin\gamma\sin(\delta_{B} + \delta_{D})}{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})} = \frac{2r_{B}r_{D}\sin\gamma\sin(\delta_{B} + \delta_{D})}{R_{ADS}}$$

Other ways of extracting Υ GGSZ:

In this method the D⁰ is reconstructed when it decays in 3bodies (e.g. $K_s^0 \pi \pi$). $A_f e^{i\delta_f} = f(m_-^2, m_+^2)$

 $A_{\overline{f}}e^{i\delta_{\overline{f}}} = f(m_+^2, m_-^2)$

 $\Gamma(B^{\mp} \to [K_s^0 \pi \pi]_D K^{\mp}) \propto \left\| f(m_{\mp}^2, m_{\pm}^2) \right\|^2 + r_B^2 \left\| f(m_{\pm}^2, m_{\mp}^2) \right\|^2 + 2r_B \left\| f(m_{\mp}^2, m_{\pm}^2) \right\| \left\| f(m_{\pm}^2, m_{\mp}^2) \right\| \cos(\delta_B + \delta_D(m_{\mp}^2, m_{\pm}^2) \mp \gamma)$

Bs →DsK (Time dependent CP asymmetry):

The interference between the direct decay and the decay after mixing allows to access Y. The non-zero $\Delta \Gamma_s$ allows to include non tagged events in the analysis.

Y with penguin

Decay mode	Contributing diagrams
$B^0 o \pi^+ \pi^-$	T, P, PA, P_{EW}^C, E
$B^0 ightarrow K^+ \pi^-$	T, P, P_{EW}^C
$B^0_s ightarrow \pi^+ K^-$	T, P, P_{EW}^C
$B^0_s ightarrow K^+ K^-$	T, P, PA, P_{EW}^C, E
$B^0 ightarrow K^+ K^-$	PA, E
$B_s^0 ightarrow \pi^+\pi^-$	PA, E

$$\mathcal{A}_{K^+K^-}^{mix} = -rac{\sin(\phi_s+2\gamma)+2 ilde{d'}\cos(artheta')\sin(\phi_s+\gamma)+ ilde{d'^2}\sin(\phi_s)}{1+2 ilde{d'}\cos(artheta')\cos(\gamma)+ ilde{d'^2}}$$

U-spin assumption

Usng U-spin symmetry and neglecting penguin annihilation and exchange topologies we expect:

 $A_{CP}(B^0 \rightarrow K\pi) = A_{Raw} - A_{\Delta} = -0.088 \pm 0.011(stat) \pm 0.008(syst)$ World Average: $-0.098^{+0.012}_{-0.011}$

γ with Dalitz at LHCb

2010 data (L = 35.5pb^{-1})

