Direct Detection of Dark Matter Particles

Patrick Decowski

decowski@nikhef.nl

Rotation Curves

- Zwicky in 1933: luminous matter insufficient to describe gravitational binding in clusters of galaxies
- Vera Rubin in early '70: Rotational curves of spiral galaxies do not follow Newtonian expectation based on mass in luminous disk

Need non-luminous "Dark Matter"

What is the subatomic origin of Dark Matter?

Rotational Curves Weak Lensing Galaxy Clusters Large Scale Structure Anisotropy in CMB

Overwhelming **cosmological** evidence for: Non-luminous "Dark Matter"

But what is the **subatomic** origin?

3

Properties of Dark Matter

- Known properties of DM:
 - Gravitationally interacting
 - No EM interactions
 - "Cold" i.e. non-relativistic
 - Non-baryonic
 - Long lived

Has to be some new, unknown, particle

Some DM Candidates

Many candidates, usually some extension of the Standard Model

"10-point test" of DM candidates Consist. with direct DM searches?

"10-point test" of DM candidates												
Appropriate relic density? . Appropriate relic density . Appropria												
	I.	II.	III.	IV.	v .	VI.	VII.	VIII.	IX.	X.	Result	
DM candidate	Ωh^2	Cold	Neutral	BBN	Stars	Self	Direct	γ -rays	Astro	Probed		aos
SM Neutrinos	×	×	✓	✓	1	\checkmark	\checkmark	-	-	 ✓ 	×	Ŏ
Sterile Neutrinos	~	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	✓	~	
Neutralino	 ✓ 	✓	\checkmark	✓	\checkmark	\checkmark	√!	√!	√!	✓	\checkmark	Berr
Gravitino	✓	✓	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	ton
Gravitino (broken R-parity)	 ✓ 	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	, e
Sneutrino $\tilde{\nu}_L$	~	✓	\checkmark	✓	\checkmark	\checkmark	×	√!	√!	\checkmark	×	
Sneutrino $\tilde{\nu}_R$	 ✓ 	✓	~	\checkmark	\checkmark	\checkmark	√!	√!	√!	✓	✓	las
Axino	 ✓ 	\checkmark	✓	 ✓ 	✓	ier						
SUSY Q-balls	 ✓ 	\checkmark	\checkmark	\checkmark	~	-	√!	\checkmark	✓	 ✓ 	~	, , ,
B^1 UED	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	√!	√!	✓	<	Γ Α
First level graviton UED	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	✓	\times^{a}	р́Р (
Axion	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	√!	\checkmark	✓	\checkmark	\checkmark	08(
Heavy photon (Little Higgs)	 ✓ 	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	√!	√!	\checkmark	✓)3:(
Inert Higgs model	1	✓	✓	✓	\checkmark	\checkmark	\checkmark	√!	-	✓	✓	022
Champs	 ✓ 	✓	×	✓	×	_	-	-	-	✓	×	2,2
Wimpzillas	 ✓ 	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	~	00

 $\sqrt{-OK}$ ~ -Still viable × - NO

What is a WIMP?

• Weakly Interacting Massive Particle miracle

$$\Omega_{DM}h^2 \simeq \frac{3 \times 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_a v \rangle}$$

→ particles with annihilation cross sections mediated by weak interactions and mass 100GeV naturally produce right density

- The lightest superpartner (LSP) is stable in R-conserving supersymmetry (SUSY)
 - Neutralino (χ)
 - \rightarrow Good WIMP candidate
- Mass of 10-1000 GeV
- Cross sections comparable to neutrino cross sections
 - Electroweak scale

Searching for Dark Matter

Direct Searches

Indirect Searches

Collider Searches

Scattering Patrick Decowski - Nikhef Annihilation

Production

Complementarity between approaches

WIMP mass

See, e.g. G.Bertone et al., arXiv:1107.1715

Direct Detection DM Experiments

• Uses the local "WIMP wind" in DM halo of Milky Way :

$$\left. \begin{array}{l} \rho_{DM} \approx 0.3 \, \mathrm{GeV/cm}^3 \\ v_{solar} \approx 220 \mathrm{km/s} \\ M_{WIMP} = 100 \mathrm{GeV} \end{array} \right\} \rightarrow \sim 10^9 \, \mathrm{WIMPs} \, \mathrm{m}^{-2} \mathrm{s}^{-1}$$

- Elastic scattering off a heavy nucleus
- Most direct method of identifying dark matter

Spin dependence

- $\sigma_{\chi N} = \sigma_{SI} + \sigma_{SD}$
- σ_{sl} **Spin-independent** cross section:
 - Coherent enhancement, cross section grows as A²:
- σ_{SD} **Spin-dependent** cross sections:
 - Axial-vector interactions result in WIMP couplings to the spin of the nucleus J
 - $\sigma_{SD}=0$ for even-even nuclei
- $\sigma_{SI} > \sigma_{SD}$ for A > ~30 and σ_{SD} is typically ignored
 - Important exceptions:
 - ¹⁹F, ²³Na, ⁷³Ge, ¹²⁷I, ¹²⁹Xe, ¹³¹Xe, ¹³³Cs

Expected Energy Spectrum

- Elastic collisions with nuclei
 - WIMP velocity $\sim 10^{-3}$ c
- Energy of recoiling nucleus is tiny : <50 keV (!)
- Rates are uncertain, since they depend on model
- Spectrum is featureless (no bumps)

Minimizing Backgrounds

- Critical aspect of any rare event search
- Purity of materials
 - Copper, germanium, neon, xenon among the cleanest with no natural occurring long-lived isotopes
 - Ancient lead, if free of Pb-210
- Shielding
 - External U/Th/K backgrounds
- Krypton and Radon mitigation
- Material handling and assaying
 - Surface preparation, cosmic activation
- Underground siting and active veto
 - Avoid muon-induced neutrons
- Detector-based discrimination

Underground Labs with DM/0v2β Experiments

SNOLab OUSEL • Boulby Frejus (LSM) Gran Sasso (LNGS)

Kamioka

Need at least 1000m rock (~3000 mwe) overburden Reduces muon rate by ~10⁵

Direct DM detection techniques

Measuring WIMP recoil energy: detector = target

- Single channel techniques
 - Ionization: Ge-detectors [CoGeNT]
 - Scintillation: Nal [DAMA/Libra], LXe [XMASS]
 - Phonons: [CRESST-I]
- Two-channel techniques: combination of above for better radioactive background rejection
 - Ionization & Phonons: cryogenic Ge&Si [CDMS, Edelweiss]
 - Ionization & Scintillation: LXe [XENON,ZEPLIN] & LAr [WARP]
 - Scintillation & Phonons: cryogenic CaWO₄ [CRESST-II]
- Tracking gas detector [DRIFT]
- Bubble chambers superheated droplets [Picasso, COUPP]

Present Status for direct detection DM

- A number of "claims" out there light WIMP mass:
 - DAMA: annual modulation "at 8.9σ"
 - CoGeNT: indication of an annual modulation, can't explain it with BG
 - CRESST-II: sees 67 events, not consistent with background
- WIMP parameters from these experiments inconsistent...
- ~10GeV region is experimentally challenging
 - systematic uncertainties on quenching, energy scale, thresholds, backgrounds...
- Astrophysics alone cannot reconcile the differences observed in experiments

Nobel Liquid Detectors

- Target is detection medium
- Target material has to be purified of radioactive contaminants to a high degree
 - \rightarrow Nobel liquids

	Unit	Neon	Argon	Xenon
Z		10	18	54
Α		20	40	~ 32
Liquid Density	g/cm ³	1.21	I.4	3.06
Energy Loss (dE/dX)	MeV/cm	I.4	2.1	3.8
Radiation Length	cm	24	4	2.8
Boiling Temperature	٥K	27.I	87.3	165
Scintillation Wavelength	nm	85	125	175
Scintillation	photon/keV	30	40	46
Ionization	e⁻/keV	46	42	64
Background Isotope		No	³⁹ Ar (I Bq/kg)	¹³⁶ Xe
Price	\$ /ton	\$9 0k	\$20k	~\$I.2M

WIMP-nucleon spin-independent cross section grows as A^2 \rightarrow Using xenon attractive

Dual-Phase XeTPC

Detection Properties

Discrimination through S2/SI

Detector-based background rejection of 99.75% [XENON100]

Patrick Decowski - Nikhef

Laboratori Nazionali del Gran Sasso, Italy

LNGS 1400 m Rock (3100 w.m.e)

XENONIO/XENON100

ICARUS

WARP OPERA

LVD

2007: XENONIO

XENON10 and ZEPIN-II proved that reliable dual-phase Xe TPCs possible

2009: XENON100

XENON100 started physics run in early 2010

XENON100

Top array: 98 PMTs

Goal compared to XENONI0

- 10x more target mass
- 100x reduction in gamma background
 - Material section & screening
 - Detector design

PTFE TPC, Field shaping rings

Bottom array: 80 PMTs

+4500V

-16000V

Schematic of Detector

Shield for external backgrounds

Use of low-background materials

PTR 200 W (170 K) He buffer tank Motor Unit Cold Finger High Low Recirculation Recirculation Funnel Heater pressure pressure Gas in Gas out He Compressor 6.5 kW Emergency Cooler LN₂ in/out Pumping ports LXe level LXe tube Active Double-walled Volume vacuum insulation Active Veto Detector shield Detector vessel

> GXe purification system: Continuous recirculation to eliminate impurities

Patrick Decowski - Nikhef

Energy determination

 $E_{nr} = fcn(SI) \rightarrow measured in dedicated setups$

Patrick Decowski - Nikhef

Recent Results from XENON100

100.9 live days, 48 kg fiducial mass

Patrick Decowski - Nikhef

Traditional Analysis: Optimal Interval

Cuts were determined in a blind fashion

Box cuts: 3 events seen, when 1.8±0.6 expected

One of the Candidates

Same low-energy candidate event

Limits from 4843 kg-day exposure

SI Sensitivity Curves

Spin-independent WIMP-nucleon cross section

XENON100→ XENON1T: Improve current sensitivity by ~2 orders of magnitude

Patrick Decowski - Nikhef

XENON Collaboration

Columbia University Rice University UCLA University of Zürich Coimbra University LNGS & INFN Shanghai Jiao Tong University MPIK-Heidelberg Bologna University Münster University Subatech Nikhef Weizmann Institute Mainz University

This is what 1.3tons of Xe looks like!

Nikhef

20

3

Preliminary Design of Cryostat

Experiment is approved for Hall B of Gran Sasso Commissioning in 2014

Neutron shielding

Muon-induced neutrons in rock at LNGS: performance of the water shield Neutron Flux (cm² s MeV)⁻¹ Neutron flux at LNGS: 7.30e-10 (cm² s)⁻¹ 10⁻¹¹ LNGS, after 3m water shield: 2.29e-11 (cm² s)⁻¹ LNGS, after 4m water shield: 8.32e-12 (cm² s)⁻¹ 10⁻¹² LNGS, after 5m water shield: 2.23e-12 (cm² s)⁻¹ 10⁻¹³ Ιп 10⁻¹⁴ 10⁻¹⁵ 100 200 300 400 500 600 700 800 900 (MeV) Recoil of muon induced neutrons single scatter, whole volume (2.43 t) Rate [10⁻⁴ev/(kg keV day)^{-1]} single scatter, FDV (1.27 t) 10m 100GeV σ =10⁻⁴⁷cm² WIMPs 10⁻⁹ 20 0 10 30 60 70 40 50 80 100 90

Neutrons will leave same recoil signal as WIMPs → shielding essential

Water tank provides:

- Active μ veto
- Moderates n

Patrick Decowski - Nikhef

energy (keVr)

Summary

- Much progress in Direct Detection searches for Dark Matter
 - 3 orders of magnitude improvement achieved in last 10 years
- Complementarity of Direct, Indirect and Production DM Searches
 - In particular LHC + Xe100 together have already changed the SUSY-WIMP landscape
- Construction of XENONIT beginning
 - XENON100 will continue taking data for at least the next year

