Single top quarks @ LHC with ATLAS

Duc Bao Ta – NIKHEF on behalf of the ATLAS collaboration

Amsterdam Particle Physics Symposium 30 Nov – 2 Dec 2011

The ATLAS detector

- →Muon spectrometer Δp/p<10% up to 1 TeV →Toroid magnet
- •Hadronic calorimeter $\sigma/E^{50\%}/\sqrt{E\oplus 3\%}$
- EM calorimeter $\sigma/E^{10\%}/\sqrt{E \oplus 0.7\%}$
- Inner tracker σ/p_T~0.04%p_T⊕1.5%
 Solenoid magnet

- Analyses presented here with L=700fb⁻¹ for 2011 data (35pb⁻¹ 2010 data)
- ΔL=**4.5%** (**3.4%**) luminosity uncertainty
- Peak luminosity 1.75 10³³ cm⁻²s⁻¹ (2.1 10³² cm⁻²s⁻¹)
- max. **10-12PV (4PV)** per event on average

General Object and Event Selection

- Analysis mainly in the lepton decay channel
 - Trigger on isolated high-p_T lepton at efficiency plateau
- <u>Signature and selection</u>
 - Exactly one isolated lepton
 - within tracker acceptance and $p_T > 20 \text{ GeV}$
 - relative calorimeter and track isolation
 - electron 'tight' ID selection
 - muon combined from inner tracker and muon spectrometer, track isolation
 - Jets, anti-kt (R=0.4), from calorimetric clusters
 - up to $|\eta| < 4.5, p_T > 25 \text{ GeV}$
 - *b*-jets
 - reconstruct secondary vertex (SV0)
 @ 50% eff.

- E_T^{miss} from vector sum of jets, electrons, contribution from muons and unassociated calorimeter cells
 - $E_T^{\text{miss}} > 35 \text{ GeV}$
- **Transverse mass** M_T from lepton and neutrino
 - $M_T + E_T^{miss} > 60 \text{ GeV}$
- <u>Main backgrounds</u>: QCD and Z/W+jets (HF), data driven determination

Single top @ ATLAS - APPS 2011 Duc Bao Ta

- Cut-based analysis
 - Exactly one tagged jet
 - 2/3 jet events considered
 - $|\eta_{\text{jet1}}|$ >2.0 non-tagged jet
 - $H_{T}^{\prime} > 210 \text{ GeV}$
 - 150 GeV<M_{lvb}<190 GeV
 - $\Delta\eta$ (b-jet,jet1)>1.0

Background estimation

- *QCD-multijet background* with jet-electron model:
 - Jets with electron-like properties
 - Normalisation after event selection taken from maximum likelihood fit to E_T^{miss} distribution to data
 - QCD fraction 9-10%, cross check with matrix method

Background estimation

- *W*+*jets* normalisation and heavy-flavour fraction
 - Overall normalisation taken from data events
 - QCD-multijet and other MC backgrounds subtracted
 - Flavour composition from a set of equations and using event yields in 1-jet tag 2-jet tag/pretagged data samples

	Cut-based 2-jet		Cut-bas	ed 3-jet
	Lepton+	Lepton-	Lepton+	Lepton-
single-top <i>t</i> -channel	51.8 ± 16.4	23.7 ± 6.5	33.0 ± 7.0	16.3 ± 4.8
single-top Wt	1.1 ± 0.5	0.6 ± 0.7	1.5 ± 0.6	1.5 ± 1.2
single-top s-channel	0.9 ± 0.2	0.6 ± 0.2	0.3 ± 0.1	0.3 ± 0.1
top pairs	7.1 ± 3.2	7.2 ± 2.9	26.8 ± 8.0	25.0 ± 7.6
W+light jets	3.7 ± 1.7	2.6 ± 1.2	2.1 ± 1.5	2.1 ± 1.4
Wc+jets	18.3 ± 3.8	11.7 ± 3.4	7.8 ± 3.0	6.5 ± 2.6
$Wb\bar{b}$ +jets	7.7 ± 5.9	2.5 ± 2.5	6.2 ± 5.2	2.9 ± 2.4
$Wc\bar{c}$ +jets	3.1 ± 2.4	1.3 ± 1.0	3.6 ± 2.8	1.7 ± 1.4
Diboson	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.2	0.1 ± 0.1
Z+jets	0.2 ± 0.4	0.1 ± 0.2	1.0 ± 1.0	1.5 ± 1.3
Multijets	< 0.1	< 0.1	< 0.1	< 0.1
TOTAL Expected	94.1 ± 18.4	50.2 ± 8.5	82.6 ± 12.7	57.9 ± 10.1
S/B	1.23	0.89	0.67	0.39
DATA	118	68	74	60

- S/B after cuts 0.8 (up to 1.2)
- W+jets (W+c) and top pairs largest backgrounds

		$\Delta \sigma /$	σ[%]
Source		cut-based	L
	2-jet	3-jet	combined
Data statistics	± 16	± 24	± 13
MC statistics	± 8	± 11	± 6
Jet energy scale	+7/-5	+10/-1	+9/-1
Jet energy resolution	+6/-4	+8/-7	+6/-1
Jet reconstruction	+2/-1	± 1	± 1
<i>b</i> -tagging scale factor	+17/-12	+21/-14	+18/-13
Mis-tagging scale factor	± 1	± 1	± 1
Lepton efficiencies	+6/-5	+11/-9	+8/-6
Lepton energy scale/resolution	± 1	± 1	+2/-1
Generator	+10/-8	+16/-12	+11/-9
Parton shower	+9/-7	+14/-12	+10/-9
ISR/FSR	+19/-16	± 7	± 14
PDF	+5/-4	+6/-5	± 5
W+jets shape modeling	± 1	± 1	± 1
Jet η reweighting	+12/-10	+18/-14	+13/-11
Background normalization			
QCD normalization	± 4	± 8	± 4
W+heavy flavour normalization	± 2	± 2	± 3
W+light flavour normalization	± 1	± 1	± 1
Theory cross sections	± 7	± 13	± 8
Luminosity	+6/-5	+11/-8	+7/-6
All systematics	+42/-27	+51/-37	+41/-27
Total	+45/-31	+57/-43	+44/-30

- Largest systematics
 - b-tagging efficiency
 - ISR/FSR modeling
- Profile likelihood includes all systematics as nuisance parameters
- 8 channel analysis (2/3 jet, electron/ muon, +/- charge) combined
- Observed cross section
 - $\sigma_t = 90 \pm 9 \,(\text{stat.}) \,{}^{+31}_{-20} \,(\text{syst.}) \,\text{pb}$
 - Observed significance 7.6σ
 - SM: $\sigma_t = 64.5 \, \text{pb}$ (result 1.1 σ above prediction)

• Neural network analysis

- First observation made with 156pb⁻¹
- Only 2-jet events, 13 input variables, 33 hidden nodes
 - Most important variables: M_{lvb} , $|\eta_{jet1}|$, $E_{T,jet1}$
- Signal and background (constrained) extracted from maximum likelihood fit to NN output distribution

$$\sigma_t = 105 \pm 7 \,(\text{stat.}) \,{}^{+36}_{-30} \,(\text{syst.}) \,\text{pb}$$

- Compatible with cut-based result
- Largest systematic uncertainty
 - JES and b-tagging efficiency

Single top @ ATLAS - APPS 2011 Duc Bao Ta

- Same event preselection as in t-channel
- Only use central jets $(|\eta| \le 2.5)$
- Exactly two jets and exactly 2 b-tagged jets

Selection	Signal	Background	S/ \sqrt{B}
Preselection Only	104	153802	0.26
Number of tagged jets=2	18	415	0.88
$30 < m_{top, jet2} < 247 \text{ GeV/c}^2$	17	349	0.91
$p_T(jet1, jet2) < 189 \text{ GeV/c}$	17	346	0.91
$m_T(W) < 111 \text{ GeV/c}$	17	318	0.95
$0.43 < \Delta R(b - jet1, lepton) < 3.6$	17	308	0.97
$123 < m_{top,jet1} < 788 \text{ GeV/c}^2$	17	302	0.98
$0.74 < \Delta R(b - jet1, b - jet2) < 4.68$	16	269	0.98

14

	Final Selection
s-channel	16 ± 6
<i>t</i> -channel	33 ± 13
Wt	5 ± 3
tī	111 ± 47
W+jets	4 ± 5
Wc+jets	10 ± 8
$Wc\bar{c}$ +jets	14 ± 12
$Wb\bar{b}$ +jets	70 ± 51
Z+jets	1 ± 1
Diboson	4 ± 1
Multijets	17 ± 10
TOTAL Exp	285 ± 17
S/ \sqrt{B}	0.98
DATA	296

 Background estimation similar to t-channel

• S/B ~6%

 Top pairs and W+jets dominating backgrounds

Source	$\Delta\sigma/\sigma$ [%]	
	cut-based	
Data statistics	±100	
MC statistics	±70	
<i>b</i> -tagging	-30/+20	
Jet and lepton modeling	-20/+10	
MC generator modeling	-60/+20	
Multijets normalization	±40	
Others	-10/+30	
Luminosity	± 50	
All systematics	-110/+90	
Total uncertainty	-160/+150	

- Measurement statistics and systematics limited
- Extraction of cross section limit with profile likelihood ratio
- Limit observed (expected): $\sigma_t < 26.5 (20.5) \text{ pb} \sim 5 \times \sigma_{SM}$

@95%CL

Single top @ ATLAS - APPS 2011 Duc Bao Ta

- Cut-based selection in the *dilepton* channel: ee, μμ, eμ
- Better background suppression against W+jets and QCD multijet
- Event selection
 - Single lepton trigger
 - Exactly two oppositely charged leptons
 - Exactly one jet p_T(jet)>30 GeV
 - $E_T^{miss} > 50 \text{ GeV}$
 - $|M(ll)-M_Z| \ge 10 \text{ GeV}$
 - $\Sigma\Delta\phi(\text{lepton}, E_T^{\text{miss}}) > 2.5$

Background determination

- QCD-multijet / W+jets
 - Extended matrix method

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

• Drell-Yan

• Estimate signal region A/C by ratio of A(C)/D(F)=B/E

$$N_{A/C}^{predicted} = N_f \times \frac{N_B^{data} - k \times N_B^{MCBG}}{N_E^{data} - k \times N_E^{MCBG}} \times (N_{D/F}^{data} - k \times N_{D/F}^{MCBG})$$

• Correct for non-Drell-Yan contamination

Background determination

- Z → ττ
 Scale background enriched region in Δφ(l_{1/2}, E_T^{miss}) plane by data after non-Z background subtraction
- Top quark pairs
 - Scale factor from CR
 - At least 2 jets p_T>30 GeV

Process	ee	$\mu\mu$	еμ
Wt	8.6 ± 1.6	11.9 ± 1.7	26.6 ± 2.5
tī	32 ± 6	48 ± 9	105 ± 20
WW	6.0 ± 1.0	8.1 ± 1.2	15.2 ± 1.5
WZ	1.6 ± 0.3	3.0 ± 0.3	2.0 ± 0.3
ZZ	0.2 ± 0.0	1.0 ± 0.1	0.1 ± 0.0
$Z \rightarrow ee$	6.2 ± 1.1	0.0 ± 0.0	0.0 ± 0.0
$Z \rightarrow \mu \mu$	0.0 ± 0.0	8.4 ± 1.4	0.0 ± 0.0
$Z \rightarrow \tau \tau$	0.5 ± 0.3	0.5 ± 0.3	3.9 ± 2.3
Fake lepton	2.3 ± 1.2	0.0 ± 0.6	1.5 ± 0.8
Total Expected	57 ±7	82 ±10	154 ± 21
Total observed	62	73	152

• S/B ~20%

Top pairs largest background

Source	$\Delta\sigma/\sigma$ [%]
Data statistics	+37/-35
MC statistics	+11/-5.4
Lepton energy scale	+7.0/-5.4
Lepton energy resolution	+9.0/-8.9
Lepton efficiencies	+5.3/-2.9
Jet energy scale	+34/-35
Jet energy resolution	+29/-32
Jet reconstruction efficiency	+30/-33
Top pair scaling factor	+23/-24
Drell-Yan background estimation	+2.7/-4.0
Fake lepton background estimation	+4.2/-4.3
Generator	+16/-11
ISR/FSR	+6.0/-1.9
PDF	+5.4/-2.8
Pileup	+10/-6.6
Background cross-sections	+6.9/-6.8
Luminosity	+9.2/-5.9
All systematics	+68/-66
Total	+77/-75

- Measurement statistics and systematics limited
- Extraction of cross section limit with profile likelihood ratio
- Limit observed (expected): $\sigma_t < 39.1 (40.6) \text{ pb}$

Superseeds limit from lepton+jets $\sigma_t < 198$ pb

FCNC in single top

Single top @ ATLAS - APPS 2011 Duc Bao Ta

FCNC in single top

- <u>FCNC vertex $gq \rightarrow t$ </u>
 - Anomalous single top production
 - Cross section below *Wt*-channel
 - Single top/ single lepton event preselection
 - Softer lepton cut (20 GeV)
 - with exactly one *b*-tagged jet
 - Neural network analysis with 13 input variables
 - Limit on $\sigma(u(c)g \rightarrow t)*BR$
 - Upper limit from Bayesian posterior:

 $\sigma(u(c)g \rightarrow t)*BR < 17.3pb \text{ (obs.)}$ $\sigma(u(c)g \rightarrow t)*BR < 17.4^{+8.2}_{-5.4} \text{ pb (exp.)}$

 Systematics from ISR, JES and W+jets HF fraction

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

Conclusions

Single top @ ATLAS - APPS 2011 Duc Bao Ta

Conclusions

- ATLAS measurement/searches for single top 700pb⁻¹:
 - t-channel: $\sigma_t = 90 \pm 9 \,(\text{stat.}) \,^{+31}_{-20} \,(\text{syst.}) \,\text{pb}$
 - s-channel: $\sigma_t < 26.5\,\mathrm{pb}$
 - Wt-channel: $\sigma_t < 39.1 \,\mathrm{pb}$
- FCNC in single top production (35pb-1): $\sigma(u(c)g \rightarrow t) < 17.3 \,\mathrm{pb}$
- t-channel observed with cut-based approach
- Multivariate approached, increase sensitivity
- will eventually observe other single-top channels
- More 2011 data will be analysed
 - Higher statistics (x7)
 - Smaller systematics
- First steps towards new physics taken
 - W', H⁺, etc...

References

- t-channel: ATLAS-CONF-2011-101
- s-channel: ATLAS-CONF-2011-118
- Wt-channel: ATLAS-CONF-2011-104, ATLAS-CONF-2011-027
- FCNC: ATLAS-CONF-2011-061

Backup

• FCNC

• Protos : $\boldsymbol{\zeta}^{L}$ and $\boldsymbol{\zeta}^{R}$ set to 0.005 and 0, respectively

	t	Ī	Total
$ug \rightarrow t$	7.30 pb	1.29 pb	8.59 pb
$cg \rightarrow t$	0.68 pb	0.68 pb	1.36 pb

• FC	CNC	NN	inputs
------	-----	----	--------

Variable	Significance (σ)
PT,W	66
$\Delta \mathbf{R}(\ell, b)$	29
Lepton charge	22
m _t	20
$\Delta \phi(W, b)$	18
η_b	16
W-boson helicity	10
PT.b	9.3
PT.t	6.9
η_{ℓ}	6.6
ET	3.8
m_T^W	4.3
$\Delta \phi(\ell, b)$	4.2

Top Quark Mass and Properties at ATLAS - PANIC11 24-29th July - Duc Bao Ta