Parity and Time-Reversal Violating Moments of Light Nuclei

> Jordy de Vries Theory Group, KVI, University of Groningen

Parity and Time-Reversal Violating Moments of Light Nuclei

> Jordy de Vries & Rob Timmermans Theory Group, KVI, University of Groningen

Emanuele Mereghetti & Bira van Kolck University of Arizona

Outline of this talk

- Part I: Electric Dipole Moments in the Standard Model
- Part II: Standard Model as an Effective Field Theory
- Part III: Observables
 - IIIa: Nucleon
 - IIIb: Deuteron

Experimental Upper Bound

EDM's in the Standard Model

- Electroweak CP-violation
- Nobel prize for predicting **third** generation

EDM's in the Standard Model

- Electroweak CP-violation
- Nobel prize for predicting **third** generation

Highly Suppressed

Electroweak CP-violation

5 to 6 orders **below** upper bound → **Out of reach!**

EDM's in the Standard Model

- Second source: QCD theta-term
- Due to complicated vacuum structure of QCD

• Causes a 'new' CP-violating interaction with coupling constant θ

$$\theta \, \varepsilon^{\mu\nu\alpha\beta} G_{\mu\nu} G_{\alpha\beta}$$
 (in QED ~ $\vec{E} \cdot \vec{B}$)

• Size of θ is **unknown**

(very constrained) MSSM: $\tan \beta = 3$, $M_{SUSY} = 500 \ GeV$

Pospelov, Ritz, Annals of Physics (2005)

Outline of this talk

- Part I: Electric Dipole Moments in the Standard Model
- Part II: Standard Model as an Effective Field Theory
- Part III: Observables
 - Illa: Nucleon
 - IIIb: Deuteron

- Add to the SM **all possible T+P-odd** contact interactions
- **Symmetry requirements**: Lorentz + SM gauge symmetries

- Add to the SM **all possible T+P-odd** contact interactions
- **Symmetry requirements**: Lorentz + SM gauge symmetries

- Add to the SM **all possible T+P-odd** contact interactions
- **Symmetry requirements**: Lorentz + SM gauge symmetries

- Add to the SM **all possible T+P-odd** contact interactions
- **Symmetry requirements**: Lorentz + SM gauge symmetries

$$L = \overline{g}_0 \overline{N}(\vec{\pi} \cdot \vec{\tau})N + \overline{g}_1 \overline{N} \pi_3 N + \overline{d}_0 \overline{N}(\vec{\sigma} \cdot \vec{E})N$$

$$L = \overline{g}_0 \overline{N}(\vec{\pi} \cdot \vec{\tau})N + \overline{g}_1 \overline{N} \pi_3 N + \overline{d}_0 \overline{N}(\vec{\sigma} \cdot \vec{E})N$$

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
$egin{array}{c c} \overline{g}_1 \ \overline{g}_0 \end{array}$	$\left(rac{m_{\pi}}{M_{QCD}} ight)^2$	1	1	1

$$L = \overline{g}_0 \overline{N}(\vec{\pi} \cdot \vec{\tau})N + \overline{g}_1 \overline{N} \pi_3 N + \overline{d}_0 \overline{N}(\vec{\sigma} \cdot \vec{E})N$$

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
$\left {{\overline g_1}\over {\overline g_0}} ight $	$\left(rac{m_{\pi}}{M_{QCD}} ight)^2$	1	1	1
$\frac{\left \overline{g}_{1}\right }{\left \overline{d}_{0}\right } / M_{QCD}^{2}$	$\left(\frac{m_{\pi}}{M_{QCD}}\right)^2$	1	$\left(rac{lpha_{em}}{4\pi} ight)$	$\left(\frac{m_{\pi}}{M_{QCD}}\right)^2$

Outline of this talk

- Part I: Electric Dipole Moments in the Standard Model
- Part II: Standard Model as an Effective Field Theory
- Part III: Observables
 - IIIa: Nucleon
 - IIIb: Deuteron

• Calculated for each source from the PT-odd chiral Lagrangian

• Calculated for each source from the PT-odd chiral Lagrangian

• Calculated for each source from the PT-odd chiral Lagrangian

- Calculated for each source from the PT-odd chiral Lagrangian
- quark EDM + gluon chromo-EDM (loops are suppressed)

$$d_n = \overline{d}_0 - \overline{d}_1$$

$$d_p = \overline{d}_0 + \overline{d}_1$$

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
$M_n d_n / e$	$ heta\left(rac{m_{\pi}}{M_{QCD}} ight)^2$	$\widetilde{\delta}\left(rac{m_{\pi}}{M_{r}} ight)^{2}$	$\delta \left(rac{m_\pi}{M_{a}} ight)^2$	$w\left(\frac{M_{QCD}}{M_{P}}\right)^{2}$
Proton EDM/ Neutron EDM	O(1)	O(1)	O(1)	O(1)

- Measurement of neutron or proton EDM can be fitted by **any source**
- For each source proton EDM is **of same order** as neutron EDM

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
$M_n d_n / e$	$ heta\left(rac{m_{\pi}}{M_{QCD}} ight)^2$	$\widetilde{\delta}\left(rac{m_{\pi}}{M_{\pi}} ight)^2$	$\delta \left(rac{m_{\pi}}{M_{\pi}} ight)^2$	$w\left(\frac{M_{QCD}}{M_{P}}\right)^{2}$
Proton EDM/ Neutron EDM	O(1)	O(1)	O(1)	O(1)

• Current limit: $d_n < 2 \cdot 10^{-13} efm$ Baker et al, PRL (2006)

 $\theta < 10^{-10}, \qquad \tilde{\delta} / M_{\chi}^2 < (10^5 \ GeV)^{-2}$

JdV, Mereghetti, Timmermans, van Kolck, PLB. (2011)

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
$M_n d_n / e$	$ heta\left(rac{m_{\pi}}{M_{QCD}} ight)^2$	$\widetilde{\delta}\left(rac{m_{\pi}}{M_{\pi}} ight)^2$	$\delta\left(rac{m_{\pi}}{M_{\pi}} ight)^2$	$w\left(\frac{M_{QCD}}{M_{P}}\right)^{2}$
Proton EDM/ Neutron EDM	O(1)	O(1)	O(1)	O(1)

• Current limit: $d_n < 2 \cdot 10^{-13} efm$ Baker et al, PRL (2006)

$$\theta < 10^{-10}, \qquad \tilde{\delta} / M_{\chi}^2 < (10^5 \, GeV)^{-2}$$

Pospelov, Ritz (2005)

• Certain SUSY-models $\delta \approx \sin \phi$, if natural $\sin \phi \sim 1$

 $M_{\gamma} > 100 \ TeV$

JdV, Mereghetti, Timmermans, van Kolck, PLB. (2011)

Outline of this talk

- Part I: Electric Dipole Moments in the Standard Model
- Part II: Standard Model as an Effective Field Theory
- Part III: Observables
 - IIIa: Nucleon
 - IIIb: Deuteron

Describing the deuteron

- Measurement of neutron and proton EDM not enough for disentangling the source ----> Need more observables
- Deuteron can be described **within same framework** as the nucleon
- Experiment planned!

Describing the deuteron

- Measurement of neutron and proton EDM not enough for disentangling the source ----> Need more observables
- Deuteron can be described **within same framework** as the nucleon
- Experiment planned!
- Problem: the **small** binding momentum

$$\gamma = \sqrt{m_{_N}E_b} \approx 45 \ MeV < m_{_\pi}$$

Describing the deuteron

- Measurement of neutron and proton EDM not enough for disentangling the source ----> Need more observables
- Deuteron can be described **within same framework** as the nucleon
- Experiment planned!
- Problem: the **small** binding momentum

$$\gamma = \sqrt{m_N E_b} \approx 45 \ MeV < m_\pi$$

- We use a perturbative pion approach (Kaplan, Savage, Wise (1996))
- S-wave nucleon-nucleon interactions are enhanced and need to be summed

• All other interactions are treated **perturbatively**

• All other interactions are treated **perturbatively**

$$n_{\pi} \left(\frac{g_A^2 m_N}{4\pi F_{\pi}^2} \right) = \frac{m_{\pi}}{M_{NN}} \approx 0.3$$

• All other interactions are treated **perturbatively**

• The calculated P+T-conserving electromagnetic form factors agree well with experiments *Kaplan, Savage, Wise* (1999)

• The deuteron EDM at leading order comes from 2 diagrams

One-body:

$$d_D = 2d_0 = d_n + d_p$$

• The deuteron EDM at leading order comes from 2 diagrams

One-body:
$$d_D = 2d_0 = d_n + d_p$$

P+T-violating pion-exchange $L = \overline{g}_0 \overline{N} (\vec{\pi} \cdot \vec{\tau}) N + \overline{g}_1 \overline{N} \pi_3 N$

• The deuteron EDM at leading order comes from 2 diagrams

• Easy to calculate the diagrams

$$d_d = d_n + d_p$$

• Easy to calculate the diagrams

$$d_d = d_n + d_p$$

$$d_{d} = \overline{g}_{1} \frac{2e g_{A}}{3m_{\pi} M_{NN}} \frac{1 + \gamma/m_{\pi}}{(1 + 2\gamma/m_{\pi})^{2}}$$

• Which effect **dominates** depends on the ratio of the diagrams

$$R \approx \left| \frac{\overline{g}_1}{\overline{d}_0} \right| \frac{1}{m_{\pi} M_{NN}}$$

• Which effect **dominates** depends on the ratio of the diagrams

$$R \approx \left| \frac{\overline{g}_1}{\overline{d}_0} \right| \frac{1}{m_{\pi} M_{NN}}$$

• This depends on the fundamental source!

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
$\frac{\left \overline{g}_{1}\right }{\left \overline{d}_{0}\right } / M_{QCD}^{2}$	$\left(\frac{m_{\pi}}{M_{QCD}}\right)^2$	1	$\left(rac{lpha_{em}}{4\pi} ight)$	$\left(\frac{m_{\pi}}{M_{QCD}}\right)^2$

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
Deuteron EDM/ (neutron+proton EDM)	1	$\left(rac{M_{QCD}^2}{m_\pi M_{_{NN}}} ight)$	1	1

- For 3 out of 4 sources d_D is dominated by $d_n + d_p$
- For quark chromo-EDM **pion-exchange** dominates d_D

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
Deuteron EDM/ (neutron+proton EDM)	1	$\left(rac{M_{QCD}^2}{m_\pi M_{NN}} ight)$	1	1

- For 3 out of 4 sources d_D is dominated by $d_n + d_p$
- For quark chromo-EDM **pion-exchange** dominates d_D
- A measurement of d_D significantly larger than $d_n + d_p$ indicates **new physics** in the shape of a **quark chromo-EDM**

~ 6

JdV, Mereghetti, Timmermans, van Kolck, PRL (2011)

• A spin 1 particle has a Magnetic Quadrupole Moment

$$H = \frac{\overline{\mathbf{M}}_d}{4} \varepsilon^{*i} \varepsilon^j \nabla^i B^j$$

• A spin 1 particle has a Magnetic Quadrupole Moment

$$H = \frac{\overline{\mathbf{M}}_d}{4} \varepsilon^{*i} \varepsilon^j \nabla^i B^j$$

• There is is **no** one-body contribution

• A spin 1 particle has a Magnetic Quadrupole Moment

$$H = \frac{\overline{\mathbf{M}}_d}{4} \varepsilon^{*i} \varepsilon^j \nabla^i B^j$$

• There is is **no** one-body contribution

nucleon magnetic moment

Sensitive to **both** \overline{g}_0 and \overline{g}_1 exchange

• A spin 1 particle has a Magnetic Quadrupole Moment

$$H = \frac{\overline{\mathbf{M}}_d}{4} \varepsilon^{*i} \varepsilon^j \nabla^i B^j$$

• There is is **no** one-body contribution

Dominant effect for both theta and quark chromo-EDM

• A spin 1 particle has a Magnetic Quadrupole Moment

$$H = \frac{\overline{\mathbf{M}}_d}{4} \varepsilon^{*i} \varepsilon^j \nabla^i B^j$$

• There is is **no** one-body contribution

The deuteron MQM deuteron EDM deuteron MQM \overline{d}_0 \overline{g}_0 For theta: $\frac{\overline{\mathbf{M}}_{d}}{d_{d}}m_{N} \propto \left|\frac{\overline{g}_{0}}{\overline{d}_{0}}\right| \frac{(\mu_{p} + \mu_{n})}{m_{\pi}M_{NN}} \approx \frac{M_{QCD}^{2}}{m_{\pi}M_{NN}} \approx 10$

- Unfortunately for **quark EDM** and **gluon chromo-EDM** new interactions appear
- More coupling constants so less predictive power

The deuteron EDM and MQM

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
Deuteron EDM/ (neutron+proton EDM)	1	$\left(rac{M_{QCD}^2}{m_{\pi}M_{NN}} ight)$	1	1
mN*Deuteron MQM/ (Deuteron EDM)	$\left(rac{M_{QCD}^2}{m_\pi M_{NN}} ight)$	1	$\left(rac{m_{\pi}}{M_{_{NN}}} ight)$	1

• Only for the Standard Model is the MQM larger than the EDM

The deuteron EDM and MQM

	Theta term	Quark CEDM	Quark EDM	Gluon CEDM
Deuteron EDM/ (neutron+proton EDM)	1	$\left(rac{M_{QCD}^2}{m_{\pi}M_{NN}} ight)$	1	1
mN*Deuteron MQM/ (Deuteron EDM)	$\left(\frac{M_{QCD}^2}{m_{\pi}M_{NN}}\right)$	1	$\left(rac{m_\pi}{M_{_{NN}}} ight)$	1

- Only for the Standard Model is the MQM larger than the EDM
- MQM experiment?

Conclusions/Summary

- A single hadronic EDM measurement can be fitted by theta (Standard Model) or by new physics
- At low energies the effects of new physics can be captured by three effective interactions of dimension-six
- A deuteron EDM **significantly larger** than nucleon EDM points to new physics (quark chromo-EDM)
- A deuteron MQM is sensitive to the **theta-term**

Conclusions/Summary

- A single hadronic EDM measurement can be fitted by theta (Standard Model) or by new physics
- At low energies the effects of new physics can be captured by three effective interactions of dimension-six
- A deuteron EDM **significantly larger** than nucleon EDM points to new physics (quark chromo-EDM)
- A deuteron MQM is sensitive to the **theta-term**
- Measuring the EDMs of 3He or 3H (after nucleon+deuteron) is enough to separate the sources

JdV, Higa, Liu, Mereghetti, Stetcu, Timmermans, van Kolck, PRC (2011)

