CMB constraints for particle physics

Christophe Ringeval Centre for Cosmology, Particle Physics and Phenomenology Institute of Mathematics and Physics Louvain University, Belgium

Amsterdam, 2/12/2011

Beyond $\Lambda {\rm CDM}$

Conclusion

Observing CMB anisotropies

CMB anisotropies ΛCDM cosmology Current constraints Unavoidable implications

Beyond ΛCDM

Testing the SM
High energy physics with CMB
Cosmic inflation
Slow-roll with WMAP7
Assuming an inflationary potential
Large field reheating
Cosmic strings
String effects since last scattering
Source of Non-Gaussianities

UCL *C* CMB physics summarized

CMB anisotropies with a good satellite: WMAP (and soon PLANCK)

Snapshot of the universe when it became transparent

- The fluctuations trace the plasma acoustic oscillations
- Sound speed depends on the matter/radiation content
- Observed angular size depends on the universe geometry

UCL *C* CMB angular power spectrum

Strongly depends on the universe constituents

Needs a primordial white noise!

CMB anisotropies ACDM cosmology Current constraints Unavoidable implications

Beyond ΛCDM

Observing CMB anisotropies

UCL *C* ACDM cosmological model

Observing CMB anisotropies

CMB anisotropies

 ΛCDM cosmology

Current constraints Unavoidable implications

Beyond $\Lambda \mathsf{CDM}$

Conclusion

Homogeneous + isotropic background: Friedmann–Lemaître model

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t) \frac{\delta_{ij} \mathrm{d}x^i \mathrm{d}x^j}{\left(1 + \frac{1}{4}K\delta_{kl}x^kx^l\right)^2}, \quad H(t) = \frac{\mathrm{d}\ln a}{\mathrm{d}t}$$

Contains

$$\rho_{\rm mat} = (\Omega_{\rm dm} + \Omega_{\rm b}) \frac{\rho_{\rm c}}{a^3}, \quad \rho_{\rm rad} = \Omega_{\rm rad} \frac{\rho_{\rm c}}{a^4}, \quad \rho_{\rm c} = 3\kappa^{-2} H_0^2$$

• Gravitation

$$G_{\mu\nu} + \mathbf{\Lambda} g_{\mu\nu} = \kappa^2 T_{\mu\nu},$$

■ + linear perturbations (origin of CMB and galaxies)

No extra evolution parameters but a priori unknown IC

Statistical isotropy + adiabaticity

 $\langle X^*(\mathbf{k}, t_{\rm ini}) X(\mathbf{k}', t_{\rm ini}) \rangle = (2\pi)^3 P_X(k) \delta(\mathbf{k} - \mathbf{k}'), \quad 4\pi k^3 P(k) = \mathbf{A}_{\rm S} k^{n_{\rm S}-1}$

CMB anisotropies

 Λ CDM cosmology

Current constraints

Unavoidable implications

Beyond $\Lambda {\rm CDM}$

Conclusion

■ Fits of background + perturbations

 CMB anisotropies in the Standard Model (SM) of particle physics

• Gaussian perturbations

No evidence for non-adiabaticity

Accelerating flat universe today

$$\begin{split} \Omega_{\Lambda} &\equiv \frac{\Lambda}{3H_0^2} \simeq 0.73 \\ \Omega_{\rm K} &\equiv \frac{-K}{H_0^2} = 0 \pm 0.01 \end{split}$$

Almost scale invariant primordial power spectra

$$n_{\rm s} - 1 \simeq -0.036 \pm 0.013$$

CMB anisotropies

 Λ CDM cosmology

Current constraints

Unavoidable implications

Beyond ΛCDM

Conclusion

Dark sector

• $\Omega_{dm} \neq 0$: dark matter $\Leftrightarrow P = 0 + \text{non-interacting with baryons}$ It is not necessarily a WIMP, neither a particle!

 $\quad \bullet \ \ \Omega_{\Lambda} \neq 0$

- No new physics in ACDM cosmology: this is the second GR fundamental constant
- if dark energy one has to include linear fluctuations and fit again CMB (previous slide does not apply anymore)
- Deccelerating issues (flatness is unstable and horizon problems) + Gaussianity + almost scale invariant primordial noise + adiabaticity
 - Primordial inflation explains all this
 - Not possible with the SM Higgs (see however [Bezrukov 08])

Beyond $\Lambda {\rm CDM}$

Testing the SM

High energy physics with CMB

Cosmic inflation

Slow-roll with WMAP7 Assuming an inflationary potential

Large field reheating

Cosmic strings

String effects since last

scattering

Source of

Non-Gaussianities

Conclusion

Cosmology is assumed to be $\Lambda CDM + SM$ tested/modified

CMB constrains how much radiation/matter gravitates (eV physics)

◆ Assuming 3 species, neutrinos mass from WMAP7

$$\sum m_i < 1.3 \,\mathrm{eV} \quad (95\%)$$

• $\rho_{\rm rad}$ is bounded so is $N_{\rm eff}$ (assuming m=0)

CMB can also bounds rotation of polarization (parity violation)...

Beyond $\Lambda {\rm CDM}$

Testing the SM

High energy physics with CMB

Cosmic inflation

Slow-roll with WMAP7 Assuming an inflationary potential

Large field reheating

Cosmic strings

String effects since last

scattering

Source of

Non-Gaussianities

- **Assuming** $SM + \Lambda CDM$ only at T < GeV
- We still measure eV physics and late time universe geometry with CMB \Rightarrow new physics is not directly visible
- High energy effects visible through
 - IC for the linear perturbations: P(k)
 - Unexpected low energy remnants; as WIMP dark matter
- Two examples
 - Primordial inflation: accelerated expansion at early times
 - Existence of HE scalar field(s)
 - Topological defects: phases transitions from SSBM
 - Cosmic strings

Beyond ΛCDM

Testing the SM High energy physics with $\ensuremath{\mathsf{CMB}}$

Cosmic inflation

Slow-roll with WMAP7 Assuming an inflationary potential Large field reheating

- Cosmic strings
- String effects since last
- scattering

Source of

Non-Gaussianities

- Accelerated expansion naturally triggered by scalar fields ϕ when $V(\phi) \gg \nabla \phi$
 - Solves the flatness/horizon issues (and monopoles)
- Linear perturbations of quantum mechanical origin $\{\delta\phi,\delta\zeta\}$
 - ◆ IC completely determined + primordial gravitational waves

$$A_{\rm S} = \frac{\kappa^2 H_{\rm inf}^2}{8\pi^2 \epsilon_{1*}}, \quad n_{\rm S} = 1 - 2\epsilon_{1*} - \left.\frac{\mathrm{d}\ln\epsilon_1}{\mathrm{d}N}\right|_* \lesssim 1, \quad r = 16\epsilon_{1*}$$

- ◆ Quantum origin explains observed Gaussianity
- A scalar field decaying into cosmological fluids yields adiabaticity
- Constant branching ratios: $\delta n_{\rm dm}/n_{\rm dm} = \delta n_{\gamma}/n_{\gamma} = \delta n_{\rm b}/n_{\rm b}$
- Inflationary paradigm
 - V and ϕ unknown, but constrained: $\epsilon_1 \propto (-V'/V)^2$

Beyond $\Lambda \mathsf{CDM}$

Testing the SM High energy physics with CMB

 $Cosmic\ inflation$

Slow-roll with WMAP7 Assuming an inflationary potential

Large field reheating

Cosmic strings

String effects since last

scattering

Source of

Non-Gaussianities

Conclusion

Bayesian analysis from slow-roll P(k)

Assuming an inflationary potential

Observing CMB anisotropies

Beyond $\Lambda {\rm CDM}$

Testing the SM High energy physics with CMB Cosmic inflation Slow-roll with WMAP7 Assuming an inflationary

potential Large field reheating

Cosmic strings String effects since last scattering Source of Non-Gaussianities

Conclusion

- CMB can now be used to infer the reheating energy scale
- Large field models
 - $V(\phi) \propto \phi^2$

A more consistent data analysis needs the exact P(k) in $V(\phi) = M^4 \phi^p$ + marginalisation

Bayesian marginalisation over cosmological parameters

Two-sigma confidence intervals

 $p < 2.2, \quad \rho_{\rm reh}^{1/4} > 17.3 \,{\rm TeV}, \quad 4.4 \times 10^{15} \,{\rm GeV} < \rho_{\rm end}^{1/4} < 1.2 \times 10^{16} \,{\rm GeV}$

■ Not fantastic, but will improve with PLANCK!

Beyond $\Lambda \mathsf{CDM}$

Testing the SM High energy physics with $\ensuremath{\mathsf{CMB}}$

Cosmic inflation

Slow-roll with WMAP7 Assuming an inflationary potential

Large field reheating

Cosmic strings String effects since last scattering Source of Non-Gaussianities

Beyond $\Lambda {\rm CDM}$

Testing the SM High energy physics with CMB

Cosmic inflation

Slow-roll with WMAP7 Assuming an inflationary potential

Large field reheating

Cosmic strings

String effects since last scattering Source of Non-Gaussianities

Conclusion

■ Line-like vacuum energy

- Topological defects formed during phase transitions $\mathcal{G} \to \mathcal{H}$ with $\pi_1(\mathcal{G}/\mathcal{H}) \neq 1$
- ◆ In brane inflation, can be superstrings
- One parameter only U: the energy density per unit length (SSB scale)
- \blacksquare Should still be present today: at most 10% in WMAP $_{\rm [Bevis 10]}$

Beyond $\Lambda \mathsf{CDM}$

Conclusion

Angular power spectrum dominates the large multipoles

Amplitude: $\ell(\ell+1) C_{\ell}/(2\pi) \simeq 14 (GU)^2$

Power law behaviour at small scales

$$\ell(\ell+1) C_{\ell} \propto_{\ell \gg 1} \ell^{-p}$$
 with $p = 0.889^{+0.001}_{-0.090}$

Beyond $\Lambda {\rm CDM}$

Testing the SM High energy physics with CMB

Cosmic inflation

Slow-roll with WMAP7 Assuming an inflationary potential

Large field reheating

Cosmic strings

String effects since last scattering

Source of Non-Gaussianities

Conclusion

- Analytical prediction for bi-and tri-spectrum [Hindmarsh 09a, Hindmarsh 09b, Regan 09]
- Simulated full sky map from NG string simulations (for PLANCK)

map1n_allz_fwh5_2048_2.fits: TEMPERATURE

■ CMB physics is at eV energy (recombination) + gravity. But:

- Weights the whole universe, radiation included
- Propagated during billion years: could have intercepted unexpected objects
- ◆ IC ⇔ primordial spectra are by nature at very high energy

Remember that everything is degenerated!

◆ Anything added calls for new data analysis with all unknown parameters free

Model [all are +SZ+LENS]	WMAP7	WMAP7+													
		WMAP7.2	BAO+ H0	BAO+ SNSALT	SNCONST	BAO+ SNCONST	BAO+ H0+ TDEL	LRG+ H0	LRG+ H0+ SNCONST	LRG+ H0+ CMB	СМВ	BAO	LRG	HO	WMAP7.2+ H0
ACDM	٠		•	٠									•		
ACDM+DELZ															
ACDM+RUN	•					-					0				7
ACDM+TENS	•		•			-				İ		Î			
ACDM+RUN+TENS	•		•												
ACDM+ISO1			•			٠									
ACDM+ISO2					1	-									
ACDM+MNU	٠		•	1	1	٠		0	•		1	-			A
ACDM+YHE	•									•					
WCDM+MNU	•		•												
ACDM+NREL	•		•	1		0			•	1		199			
ACDM+NREL>3			-								1	Î			
олсом	•		•	•	1	-				1	1				
WCDM	•		-			•									
OWCDM			-				•								