
Excellent performance LHC 2011: > 5 fb⁻¹!

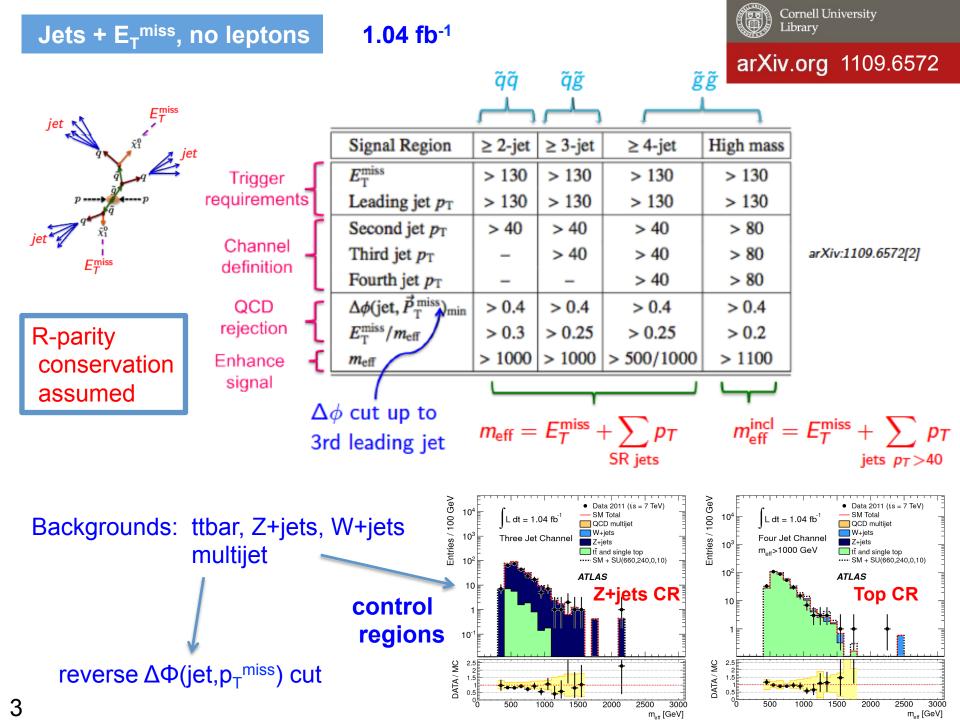
Large phase space beyond Tevatron for high mass particles

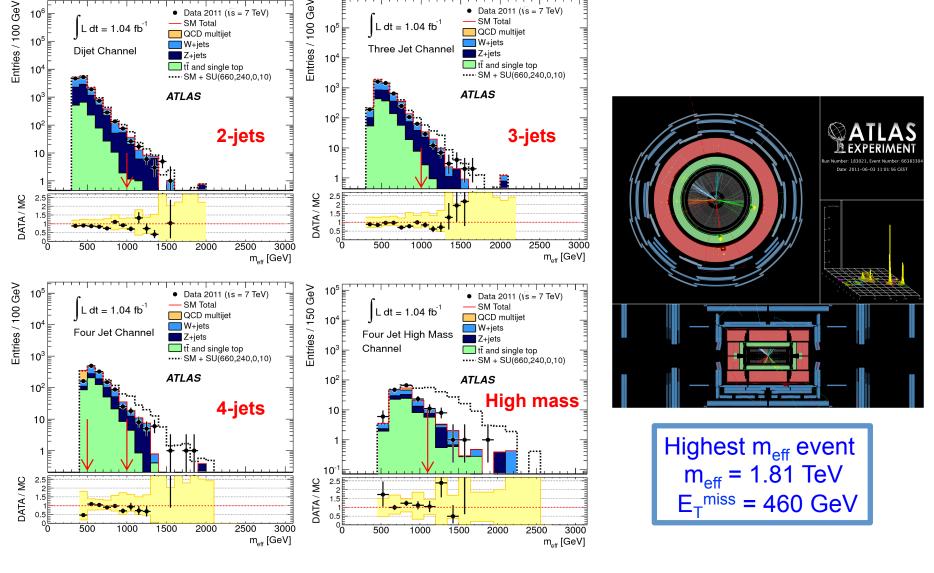
Instantaneous lumi > 3.5 x 10³³ cm⁻²s⁻¹

→ Triggering challenging! Especially on jets. Workhorse triggers: jet+E_T^{miss}, leptons

SUSY@LHC: sensitivity first to strong production of coloured sparticles

But with > 5 fb⁻¹, electroweak production becomes important too

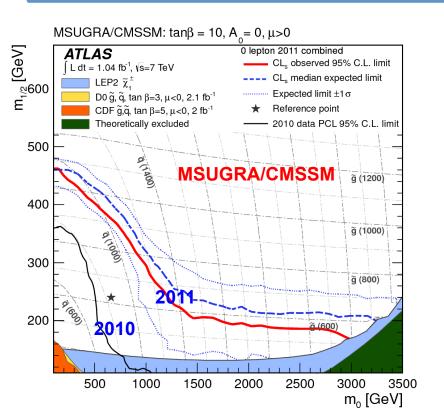

Results shown in this talk: typically ~1 fb⁻¹ Data taken in the first half of 2011

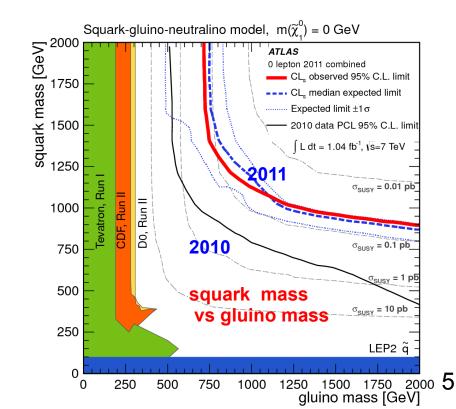

We do not know how exactly SUSY might show up first.

A good start could be:

"Canonical" searches with jets and missing momentum

Keep analyses simple, general and robust Do not overtune on specific models




Effective mass (m_{eff}) distributions in signal regions.

No excess observed: limits set (CL_s method, profile likelihood technique))

Process	Signal Region						
110003	≥ 2-jet		\geq 4-jet, $m_{\rm eff} > 500~{ m GeV}$	\geq 4-jet, $m_{ m eff} > 1000~{ m GeV}$	High mass		
Z/γ+jets	32.3 ± 2.6 ± 6.9	25.5 ± 2.6 ± 4.9	209 ± 9 ± 38	16.2 ± 2.2 ± 3.7	3.3 ± 1.0 ± 1.3		
W+jets	26.4 ± 4.0 ± 6.7	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	13.0 ± 2.2 ± 4.7	2.1 ± 0.8 ± 1.1		
tī+ single top	3.4 ± 1.6 ± 1.6	$5.9 \pm 2.0 \pm 2.2$	425 ± 39 ± 84	4.0 ± 1.3 ± 2.0	5.7 ± 1.8 ± 1.9		
OCD multi-iet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	34 ± 2 ± 29	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$		
Total	62.4 ± 4.4 ± 9.3	54.9 ± 3.9 ± 7.1	$1015 \pm 41 \pm 144$	33.9 ± 2.9 ± 6.2	13.1 ± 1.9 ± 2.5		
Data	58	59	1118	40	18		

εσA limit (fb): 22 25 429 27 17

Long decay chains

1.34 fb⁻¹

7j55

≥7

8j55

> 55 GeV

6j80

< 2.8

> 0.6 for any pair of jets

> 3.5 GeV1/2

> 80 GeV

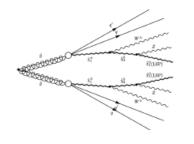
Signal region


Number of jets

 $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}}$

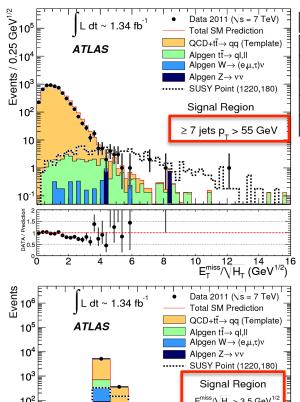
Jet p_T

Jet |η|


 ΔR_{jj}

6

Cornell University


For example multi-step gluino decays (Or any other scenario with many jets!)

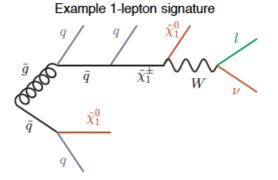
7j80

≥7

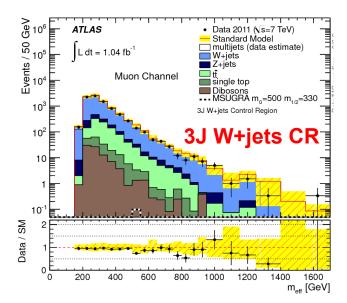
Signal region	7j55	8j55	6j80	7j80
Total Standard Model	39 ± 9	2.3+4.4	26 ± 6	1.3+0.9
Data	45	4	26	3

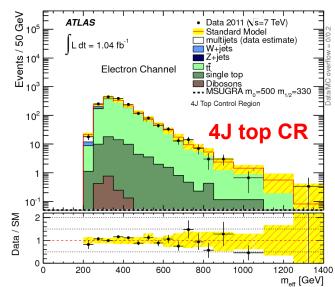
DATA / Predictio	2 4	6	8	10 12 E _T ^{miss} /\/H _T ((14 16 GeV ^{1/2})
10 ⁶ Events	∫L dt ~ 1. ATLAS	.34 fb ⁻¹		Data 2011 (\s = Total SM Predict QCD+tt→ qq (Te Alpgen tt→ ql,ll Alpgen W→ (e,μ Alpgen Z→ vv SUSY Point (122	ion πplate) - π,τ)ν - π
10 ³				Signal Regi $E_T^{miss} / \sqrt{H_T} > 3.5$ $p_T > 80 \text{ GeV}$	GeV ^{1/2}
10 ⁻¹ Long telephone VATACO	2 4	6	8	10 12 Number	14 r of Jets

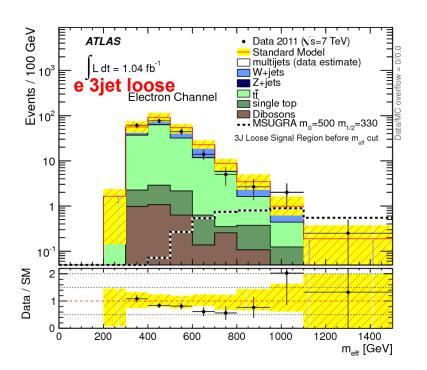
MSUGRA/CMSSM: $tan\beta = 10$, A = 0, μ >0 $L^{int} = 1.34 \text{ fb}^{-1}$
1 , 0 , 1
D 550 ATLAS Obs. CL₂ 95% C.L. limit exp. CL₂ 95% C.L. limit exp. CL₂ 95% C.L. limit exp. CL₂ 95% C.L. limit 2011≥2,3,4 jets plus E ^{miss} 2011≥2,3,4 jets plus E ^{miss}
Multijete plus E ^{miss} Combined exp. CL _s 95% C.L. limit
Multijets plus E ^{miss} Combined exp. limit ±1σ
E ⁻⁵⁰⁰
450 default 0-lepton
LEP $2\tilde{\chi}_1^{\pm}$
D0 \tilde{g} , \tilde{q} , tanβ=3, μ <0, 2.1 fb ⁻¹
~ (1000)
CDF \widetilde{g} , \widetilde{q} , $\tan\beta=5$, $\mu<0$, 2 fb ⁻¹
350 Theoretically excluded
300
3000 g (800)
250
200
long decay chains
150
500 1000 1500 2000 2500 3000 3500
m _o [GeV]


Jets, E_T^{miss} and 1 isolated lepton (e or μ):

1.04 fb⁻¹

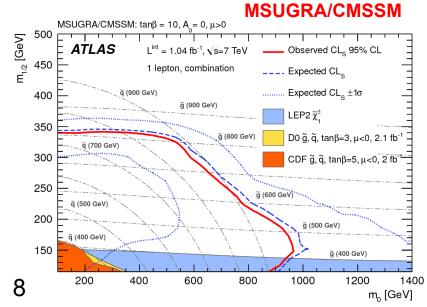

arXiv.org 1109.6606


	Signal Regions				Control Regions		
Selection	3JL	3JT	4JL	4JT	3J	4J	
Number of Leptons			=	: 1			
Lepton p _T (GeV)		> 25(20) for el	ectrons (n	nuons)		
Veto lepton p _T (GeV)	> 20(10) for electrons (muons)						
Number of jets	≥ 3 ≥ 4		≥ 3	≥ 4			
Leading jet p _T (GeV)	60	80	60	60	60	60	
Subsequent jets p_T (GeV)	25	25	25	40	25	25	
$\Delta \phi(\vec{jet}_i, \vec{E}_{T}^{miss})$	$[> 0.2 \; (\text{mod}.\pi)] \text{ for all } 3 \; (4) \text{ jets}$						
m _T (GeV)		> 100			$40 < m_{\rm T} < 80$		
$E_{\rm T}^{\rm miss}$ (GeV)	> 125 > 240		> 140	> 200	30 < E	$_{\rm T}^{\rm miss}$ < 80	
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.15	> 0.30	> 0.15	_	_	
m _{eff} (GeV)	> 500	> 600	> 300	> 500	> 500	> 300	

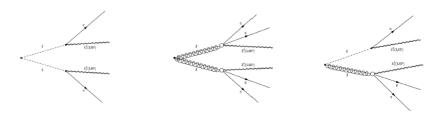


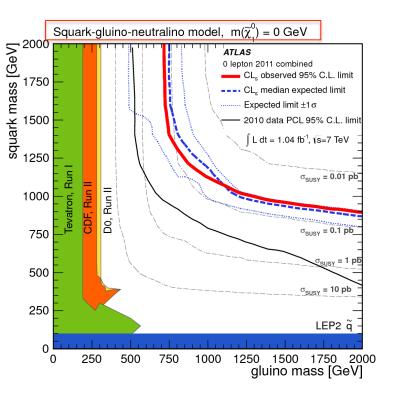

Backgrounds: W+jets, ttbar (multijet negligible)

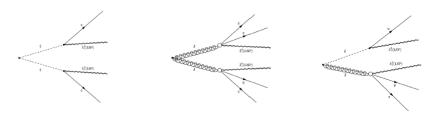
BG estimation using control regions

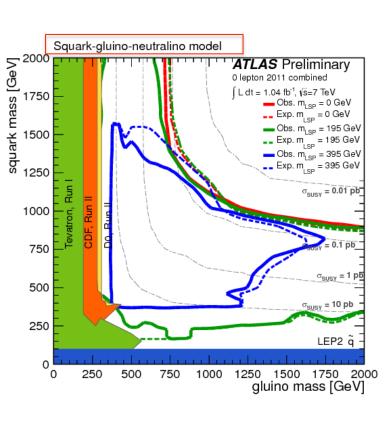


m_{eff} in signal regions: no excess

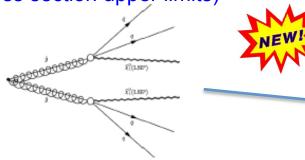

Electron channel	3JL SR	3JT SR	4JL SR	4JT SR
Observed events	71	14	41	9
Fitted background events	98 ± 28	18.5 ± 7.4	48 ± 18	8.0 ± 3.7
Muon channel	3JL SR	3JT SR	4JL SR	4JT SR
Observed events	58	11	50	7
Fitted background events	64 ± 19	13.9 ± 4.3	53 ± 16	6.0 ± 2.7
εσA limits (fb) e: 50		14	33	10
ļ	u: 36	10	31	9



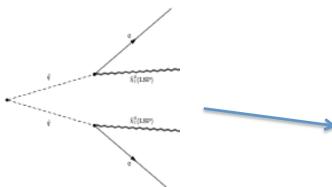

But how about moving beyond constrained models such as MSUGRA/CMSSM or minimal gauge mediation?


Simplified model interpretation

MSSM-inspired models of well-defined production and decay modes Explore dependence of free parameters Introduce complexity progressively


red: massless LSP

green: LSP 195 GeV


blue: LSP 395 GeV

ATLAS-CONF-2011-155 11

(Colours represent cross section upper limits)

Free parameters: gluon and LSP mass

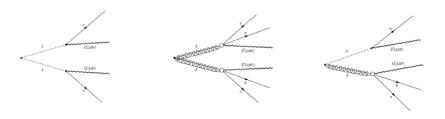
Free parameters: squark and LSP mass

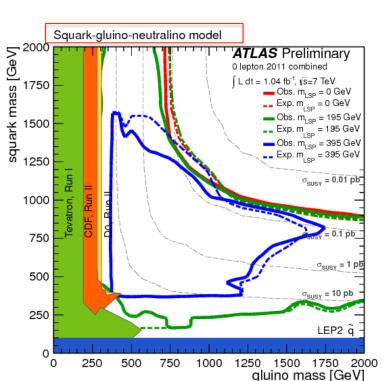
(+ 1-step decays with intermediate chargino not shown here for 0-lepton, but shown for 1-lepton later)

800

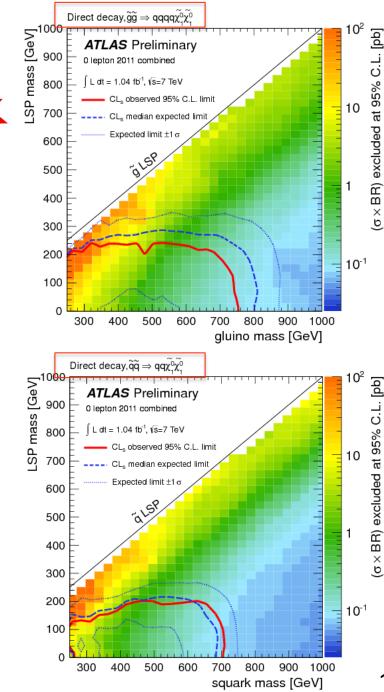
squark mass [GeV]

900 1000

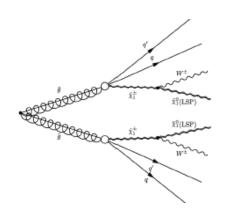

700


100

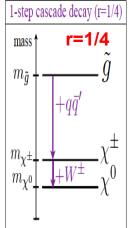
300

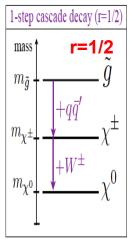

500

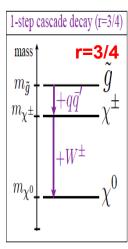
600

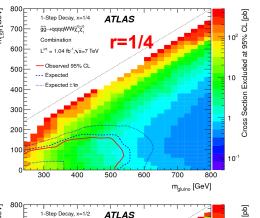


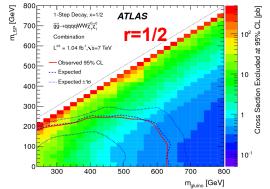
Note: squark/gluino mass limits are less strong for LSP mass > 200 GeV!

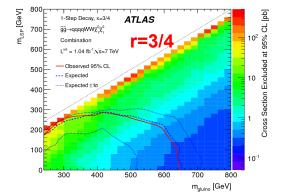

1-lepton simplified models

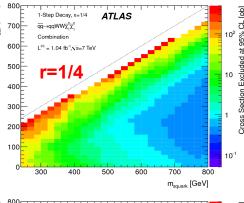


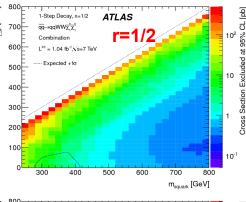

1-step via intermediate chargino

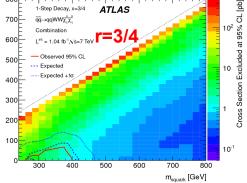

arXiv.org 1109.6606



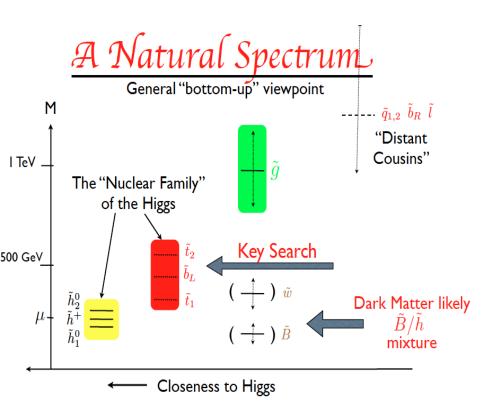



gluino decay





squark decay


(Colours represent cross section upper limits)

After first 2 years of LHC:

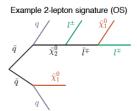
No SUSY so far... Nor any other BSM hints...

Time to take a step back and recap: SUSY quo vadis?
Have we been too naieve?

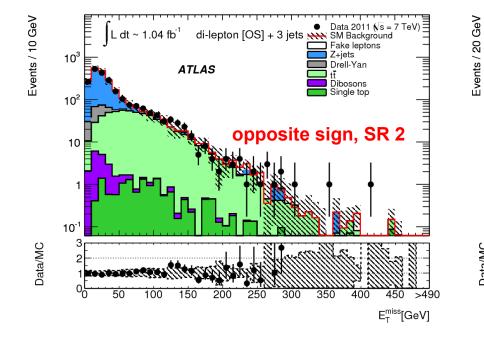
(L. Hall, Berkeley)

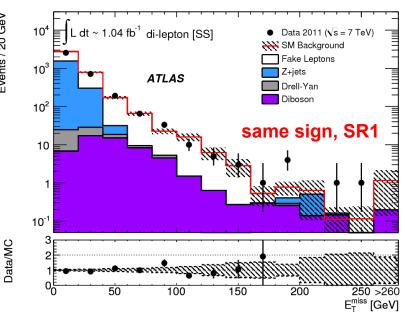
- Generalize away from (over)constrained scenarios
- Gaugino sector and sleptons: multi-leptons, photons
- Stop (and sbottom and stau) sectors (major motivation for SUSY at low energies)
- Non-``canonical" scenarios: semi-stable SUSY particles, R-parity violation

Searches aimed towards electroweak gauginos



1.04 fb⁻¹

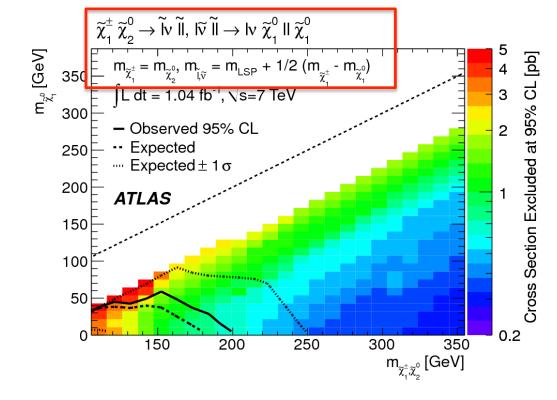

arXiv.org 1110.6189



Common cuts

- Preselection (Data Quality, Trigger, Primary Vertex)
- ▶ 2 leptons: electron $p_T > 25/20$ GeV, muon $p_T > 20/10$ GeV, $m_{\parallel} > 12$ GeV

Opposite Sign	Same Sign		Background	Obs.	95% CL
SR3 4 jets p _T > 100, 70, 70, 70 GeV,	 SR1 ₱_T > 100 GeV (weak gaugino production) SR2 2 jets p_T > 50,50 GeV, ₱_T > 80 GeV (mSUGRA/CMSSM) 	OS-SR1 OS-SR2 OS-SR3 SS-SR1	15.5 ± 4.0 13.0 ± 4.0 5.7 ± 3.6 32.6 ± 7.9	13 17 2 25	9.9 fb 14.4 fb 6.4 fb 14.8 fb
$\not\!E_T > 100 \text{ GeV (gluino 3-body decays)}$, ,	SS-SR2	24.9 ± 5.9	28	17.7 fb



Dileptons: interpretation

Same sign dilepton interpretation in simplified model of weak gaugino production: $\tilde{\chi}_1 \pm \tilde{\chi}_2^0$

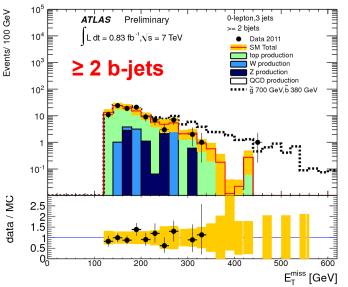
Multi-lepton analyses (≥3 leptons) are also very effective for gaugino searches

Same-sign dilepton analyses can also be interpreted in terms of searches for stop + top production in gluino decays.

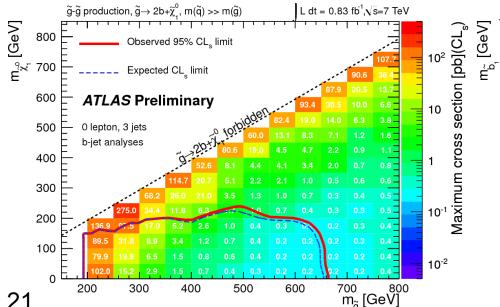
Searches for 3rd generation squarks

stops and sbottoms in gluino decays

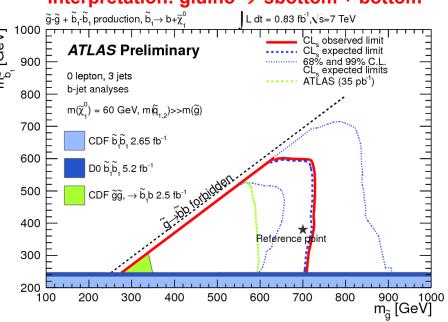
direct stop or sbottom pair production


 \widetilde{g} - \widetilde{g} production, $\widetilde{g} \rightarrow 2b + \widetilde{\chi}_{*}^{0}$

Sbottom production in gluino decays

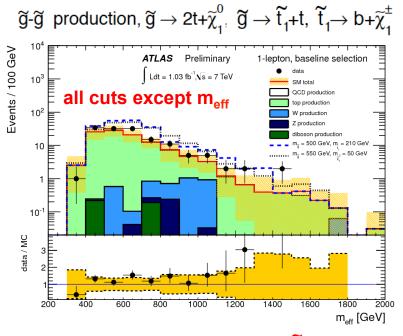

0.83 fb⁻¹

≥3 jets, $p_T > 130$, 50, 50 GeV, ≥1 jet b-tagged 3 jets $\Delta\Phi(\text{jet}, E_T^{\text{miss}}) > 0.4$ Veto events with isolated e or μ $E_T^{\text{miss}} > 130$ GeV, $E_T^{\text{miss}}/m_{\text{eff}} > 0.25$

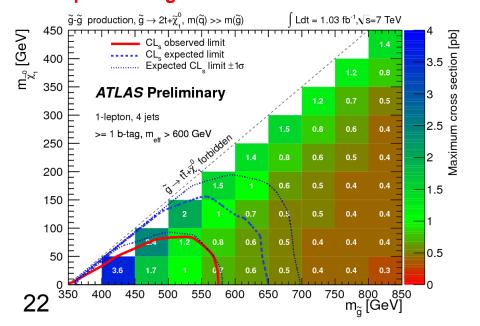

Sig. Reg.	Data (0.83 fb ⁻¹)	Top	W/Z	QCD	Total
$3JA (1 btag m_{eff} > 500 GeV)$	361	221^{+82}_{-68}	121 ± 61	15 ± 7	356^{+103}_{-92}
3JB (1 btag $m_{eff} > 700 \text{ GeV}$)	63	37^{+15}_{-12}	31 ± 19	1.9 ± 0.9	70^{+24}_{-22}
3JC (2 btag $m_{eff} > 500 \text{ GeV}$)	76	55^{+25}_{-22}	20 ± 12	3.6 ± 1.8	$70_{-22} \\ 79_{-25}^{+28}$
$3JD$ (2 btag $m_{eff} > 700 GeV$)	12	$7.8^{+3.5}_{-2.9}$	5±4	0.5 ± 0.3	$13.0^{+5.6}_{-5.2}$

Interpretation: gluino → 2b + LSP

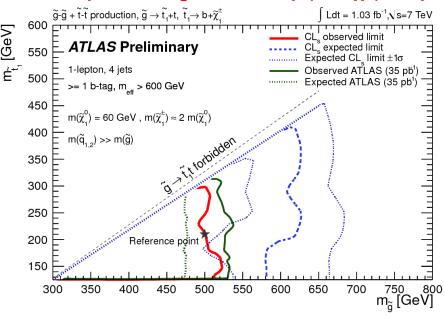
Interpretation: gluino → sbottom + bottom



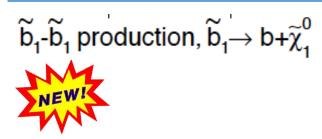
Stop production in gluino decays


1.03 fb⁻¹

Analysis: b-jets plus isolated lepton signature One e or μ with $p_T > 20$ GeV At least four jets with $p_T > 50$ GeV

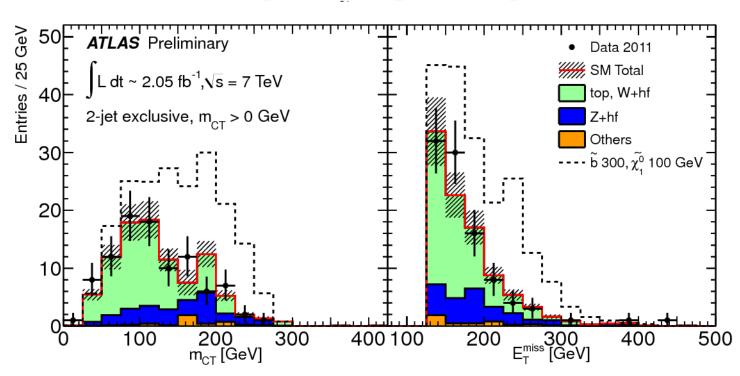

Cuts	≥ 4 jets	$\geq 1 b$ jet	$E_{\rm T}^{\rm miss} > 80~{\rm GeV}$	$m_T > 100 \text{ GeV}$	$m_{\rm eff} > 600~{ m GeV}$
SM (MC)	6574 ± 1870	3096 ± 1042	881 ± 356	109 ± 55	52 ± 28
SM (d-d)					54.9 ± 13.6
data	6659	3361	989	141	74

Interpretation: gluino → 2t + LSP



Interpretation: gluino \rightarrow stop (\rightarrow b $\tilde{\chi}^{\pm}$) + top

Direct sbottom pair production


Selection: 2 b-jets, $p_T > 130,50$ GeV $E_T^{miss} > 130$ GeV, $E_T^{miss}/m_{eff} > 0.25$ $\Delta\Phi(\text{jet}, E_T^{miss}) > 0.4$ Veto leptons and 3^{rd} jet > 50 GeV

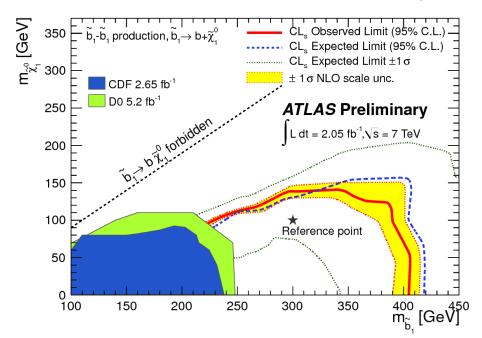
Discrimination based on con-transverse mass m_{CT}

$$M_{CT}^2(v_1, v_2) \equiv [E_T(v_1) + E_T(v_2)]^2 - [\mathbf{p_T}(v_1) - \mathbf{p_T}(v_2)]^2$$

has an endpoint at: $(m(\tilde{b}_1)^2 - m(\tilde{\chi}_1^0)^2)/m(\tilde{b}_1)$

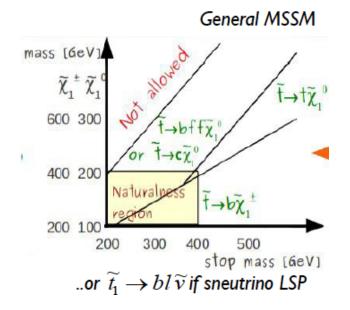
(JHEP 0804 (2008) 024, JHEP 1003 (2010) 030)

paper in preparation


Direct sbottom pair production

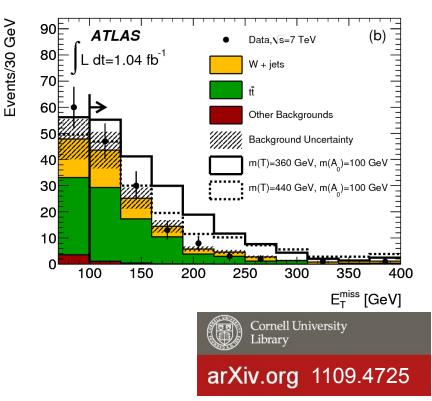
$$\widetilde{b}_1\text{-}\widetilde{b}_1$$
 production, $\widetilde{b}_1\text{-}\!\to b\text{+}\widetilde{\chi}_1^0$

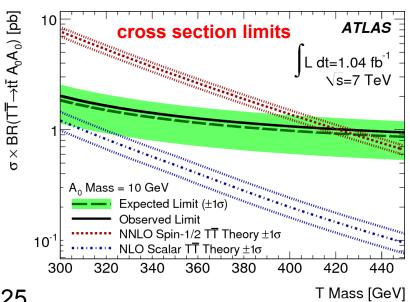
M _{CT} cut (GeV)	SM	Data	σ_{eff} limits (fb)
0	94±16	96	
100	62±13	56	13.4
150	27±8	28	9.6
200	8±4	10	5.6


Cross section [pb] $\tilde{b}_1 - \tilde{b}_1$ production, $\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0$ CL Observed Limit (95% C.L.) $m_{\rm p0} = 50 \; \text{GeV}$ CL_s Expected Limit (95% C.L.) NLO Prospino \pm 1 σ scale unc. 10 **ATLAS** Preliminary Ldt = 2.05 fb⁻¹, \sqrt{s} = 7 TeV 10⁻¹ 200 250 300 350 400 450 $m_{\tilde{b}}$ [GeV]

Assuming 100% BR, sbottoms are excluded up to 385 GeV (for LSP < 60 GeV)

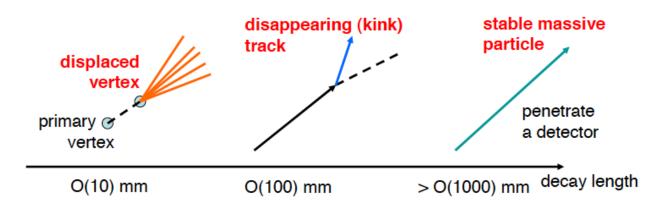
Direct stop pair production


1.04 fb⁻¹



- low stop mass: similar to top
- high stop mass: low cross-section

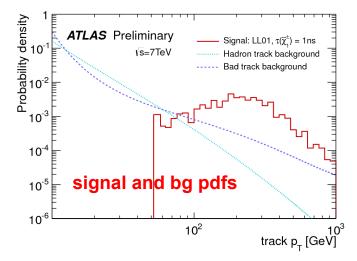
Shown here: ttbar + E_T^{miss} analysis. Search for top quark partner $T \rightarrow t + A$ Limits set for fermionic T (not yet for scalar)



25

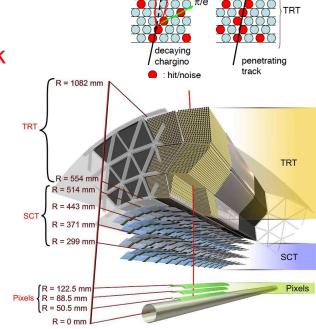
Special final states

Long-living supersymmetric particles: very well possible in SUSY!

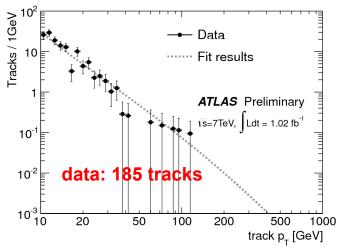


R-hadrons, R-parity violation, compressed spectra (AMSB)

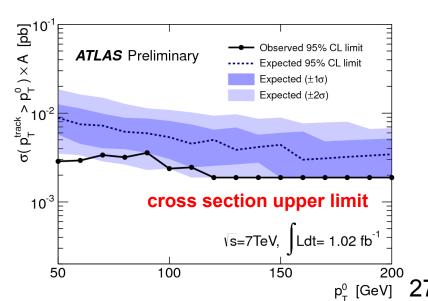
Search for disappearing (kinked) tracks

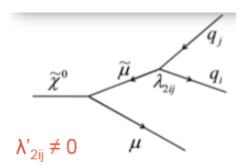

1.02 fb⁻¹

AMSB: almost degenerate $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$: long lifetimes Decay inside tracking volume: disappearing high p_{T} track Bg: interactions with TRT, mismeasured low p_{T} tracks

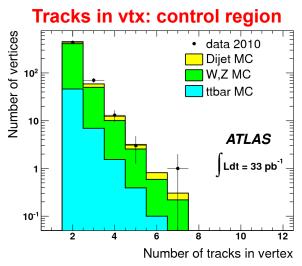


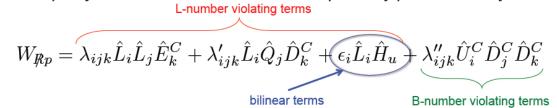
candidate tracks:

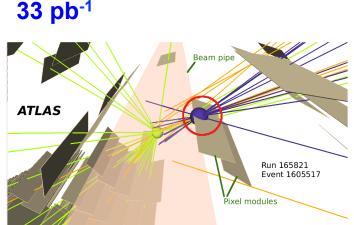

$$p_T > 10 \text{ GeV}, N_{TRT3} < 5$$



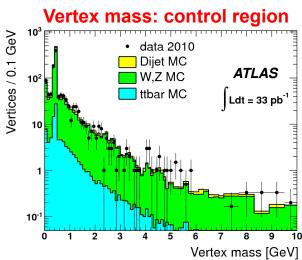
paper in preparation

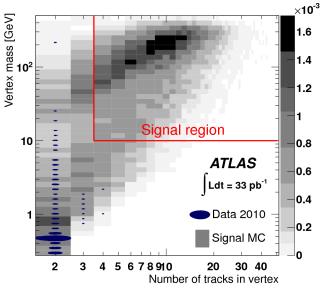


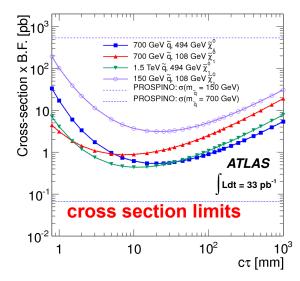


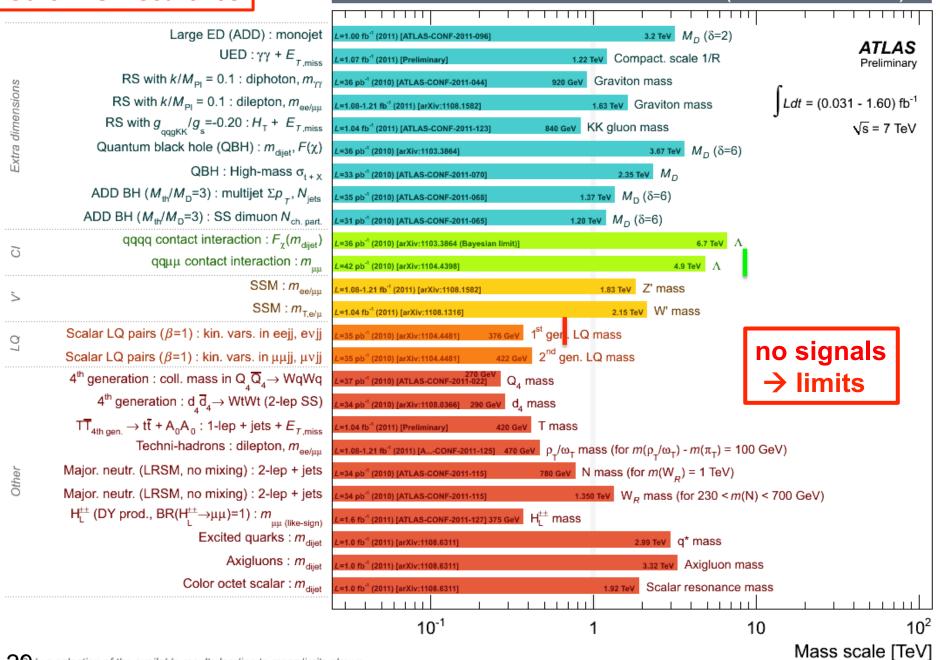

Search for high mass secondary vertex

Cornell University Library

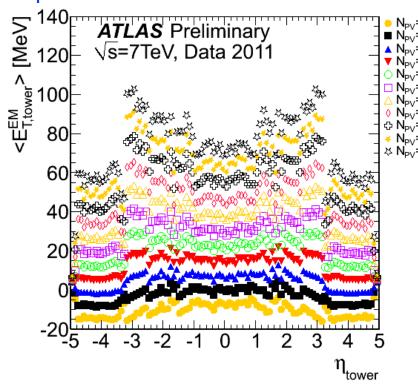

arXiv.org 1109.2242

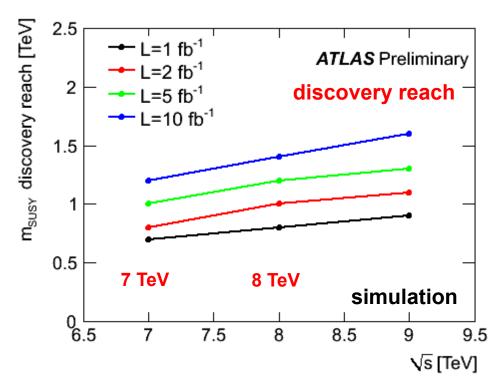





Background: interactions in inner detector material

Other BSM searches


ATLAS Exotics Searches* - 95% CL Lower Limits (Status: BSM-LHC 20°


Prospects and challenges for 2012

2012: 10 (?) fb⁻¹ L > 5 x 10^{33} cm⁻²s⁻¹

- 7 or 8 TeV
- 25 ns or 50 ns bunch spacing

E_⊤ in CAL towers vs Number of vtx

Pile-up: extra ``haze" in calorimeter

→ E_T^{miss} resolution affected

Triggering more and more difficult

→ Higher thresholds? Physics (compressed spectra) demands lower thresholds!

Analyses: more coverage of: stop production, electroweak gaugino sector, R-parity violation, and overall better coverage of loopholes

Summary and conclusions

MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$ MSUGRA/CMSSM: 1-lep + j's + $E_{T \text{ miss}}$ MSUGRA/CMSSM : multijets + $E_{T.miss}$ Simpl. mod. (light $\tilde{\chi}_{*}^{0}$): 0-lep + j's + $E_{T,miss}$ Simpl. mod. (light $\tilde{\chi}_{*}^{0}$): 0-lep + j's + $E_{T,\text{miss}}$ Simpl. mod. (light $\tilde{\chi}_{*}^{0}$): 0-lep + j's + $E_{T,\text{miss}}$ Simpl. mod. (light $\tilde{\chi}^0_*$): 0-lep + b-jets + j's + $E_{T, \text{miss}}$ Simpl. mod. $(\tilde{g} \rightarrow t\bar{t}\chi^0)$: 1-lep + b-jets + j's + $E_{T,miss}$ Pheno-MSSM (light $\tilde{\chi}_{*}^{0}$): 2-lep SS + $E_{T \text{ miss}}$ Pheno-MSSM (light $\tilde{\chi}_{s}^{0}$): 2-lep OS_{se} + $E_{T,miss}$ Simpl. mod. $(\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm})$: 1-lep + j's + $E_{T \text{ miss}}$ GMSB (GGM) + Simpl. model : $\gamma\gamma + E_{T,miss}$ GMSB : stable $\tilde{\tau}$ Stable massive particles: R-hadrons Stable massive particles: R-hadrons Stable massive particles: R-hadrons Hypercolour scalar gluons : 4 jets, m_{ii} ≈ m_{kl} RPV (λ_{311}^{*} =0.10, λ_{312} =0.05) : high-mass eµ Bilinear RPV ($c\tau_{l,SP}$ < 15 mm): 1-lep + j's + $E_{T,miss}$

980 GeV q = g mass L=1.04 fb⁻¹ (2011) [Preliminary] ATLAS Preliminary $\tilde{q} = \tilde{q} \text{ mass}$ \widetilde{g} mass (for $m(\widetilde{q}) = 2m(\widetilde{g})$) $Ldt = (0.034 - 1.34) \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}$ 1.075 TeV q = q mass L=1.04 fb⁻¹ (2011) [Preliminary] q mass g mass 720 GeV \tilde{g} mass (for $m(\tilde{b}) < 600$ GeV) 540 GeV \tilde{g} mass (for $m(\tilde{\chi}^0)$ < 80 GeV) L=1.03 fb⁻¹ (2011) [ATLAS-CONF-2011-130] L=35 pb⁻¹ (2010) [arXiv:1103.6214] 690 GeV q mass 558 GeV g mass L=35 pb⁻¹ (2010) [arXiv:1103.6208] $\bar{\chi}^0$ mass (for $m(\tilde{g}) < 600$ GeV, $(m(\bar{\chi}^{\pm}) - m(\bar{\chi}^0)) / (m(\tilde{g}) - m(\bar{\chi}^0)) > 1/2)$ 776 GeV a mass (for m(bino) > 50 GeV) .=37 pb⁻¹ (2010) [arXiv:1106.4495] ₹ mass g mass L=34 pb⁻¹ (2010) [arXiv:1103.1984] b mass L=34 pb⁻¹ (2010) [arXiv:1103.1984] 294 GeV t mass L=34 pb⁻¹ (2010) [arXiv:1103.1984] 309 GeV .=34 pb⁻¹ (2010) [Preliminary] sgluon mass (excl: m_{so} < 100 GeV, $m_{so} \approx 140 \pm 3$ GeV) 1.32 TeV V mass $\tilde{q} = \tilde{g} \text{ mass}$ 10⁻¹ 10

Mass scale [TeV]

SUSY Searches* - 95% CL Lower Limits (Status: BSM-LHC 2011

Detector operating very well

No excesses seen so far, limits set

SUSY analyses presented:

direct sbottom pair production simplified models 0-lepton analysis dilepton analysis 2011 data disappearing high p_T tracks

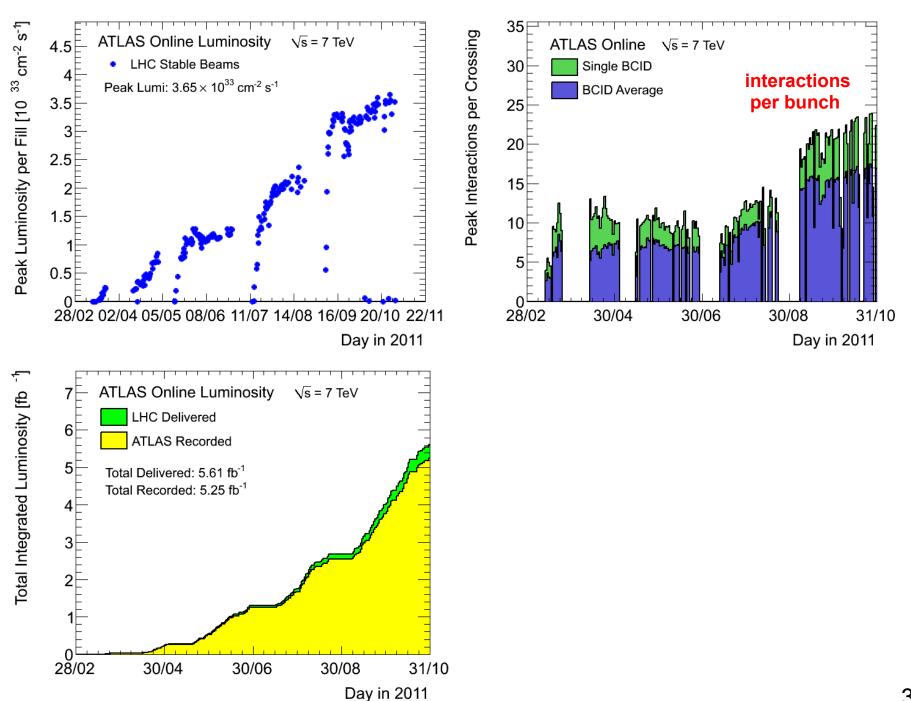
Future emphasis: 3rd generation, multileptons, electroweak gauginos, difficult final states, reach to higher masses,...

Outlook for 2012: 10 fb⁻¹, perhaps 8 TeV

Challenges: triggering, pile-up

ear RPV (or last < 15 mm) covering the enormous variety of SUSY/BSM signatures

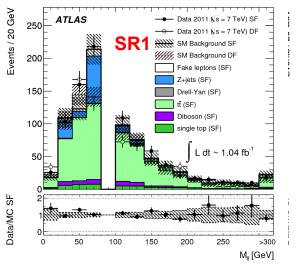
10⁻¹

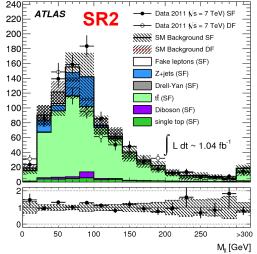

1

10

Mass scale [TeV]

٠V


Dileptons


Background rejection by flavour subtraction (e.g. ttbar reduction)

$$\mathcal{S} = \underbrace{\frac{\textit{N}(e^{\pm}e^{\mp})}{\textit{\beta}(1-(1-\tau_e)^2)} + \frac{\textit{\beta}\textit{N}(\mu^{\pm}\mu^{\mp})}{(1-(1-\tau_{\mu})^2)}}_{\text{same flavour}} - \underbrace{\frac{\textit{N}(e^{\pm}\mu^{\mp})}{1-(1-\tau_e)(1-\tau_{\mu})}}_{\text{different flavour}}$$

$S = N(e^{\pm}e^{\mp})$	$\beta N(\mu^{\pm}\mu^{\mp})$	$N(e^{\pm}\mu^{\mp})$
$S = \frac{\beta(1-(1-\tau_{\theta})^2)}{\beta(1-(1-\tau_{\theta})^2)}$	$\frac{1}{(1-(1-\tau_{\mu})^2)}$	$1 - (1 - \tau_{\theta})(1 - \tau_{\mu})$
same f	lavour	different flavour

OS-FS [FS-SR1]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$	OS-FS [FS-SR2]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$
$tar{t}$	198 ± 21	581±50	418±31	$tar{t}$	220 ± 25	624±64	437±37
Z/γ^* +jets	86±7	41 ± 7	41±11	Z/γ^* +jets	46 ± 12	29 ± 7	38 ± 6
Fakes	5 ± 3	30 ± 9	22±8	Fakes	2 ± 2	32 ± 10	19±8
Dibosons	14 ± 3	34 ± 5	32 ± 4	Dibosons	8±3	11±5	15 ± 5
single top	13±1	41±4	37 ± 3	single top	10 ± 2	32 ± 4	27 ± 3
Standard Model	316 ± 21	727±52	549±34	Standard Model	286 ± 28	728 ± 65	537±38
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	344	750	551	Observed	336	741	567

	\mathcal{S}_{obs}	$ar{\mathcal{S}}_b$	RMS	
FS-SR1	$131.6 \pm 2.5 (sys)$	118.7 ± 27.0	48.6	
FS-SR2	$142.2 \pm 1.0 (\text{sys})$	67.1 ± 28.6	49.0	
FS-SR3	$-3.06\pm0.04(\text{sys})$	0.7 ± 1.6	4.5	

Z veto: $80 > m_{II} \mid \mid m_{II} > 100 \text{ GeV}$

SR2 2 jets $p_T > 20, 20 \text{ GeV}, \not\!\!E_T > 80 \text{ GeV}$

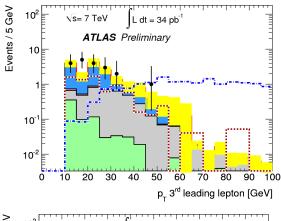
Flavour Subtraction

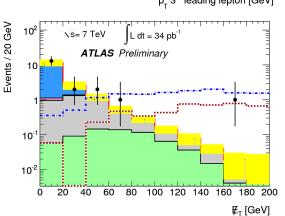
SR1 $\not\!\!E_T > 80 \text{ GeV}$

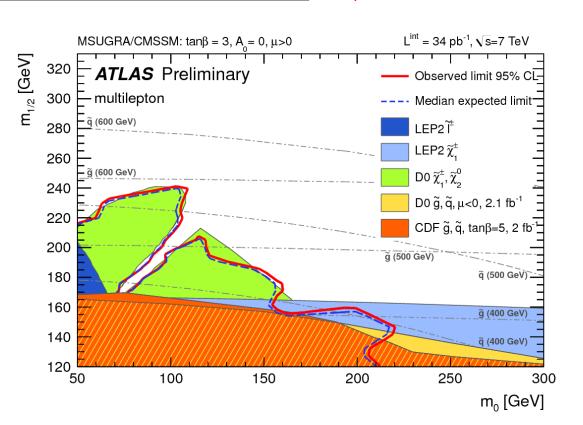
SR3 $\not\!\!E_T > 250 \text{ GeV}$

	$S > S_{obs}$ (%)	Limit $\bar{\mathcal{S}}_s$ (95% CL)
FS-SR1	39	94
FS-SR2	6	158
FS-SR3	79	4.5

Trileptons

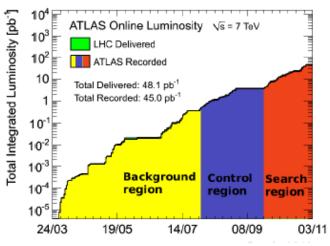

ATLAS-CONF-2011-039

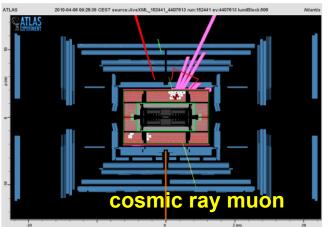

(2010 data)


Multilep. events	All	eee	ееµ	еµµ	μμμ
tī	0.68±0.16	0.032±0.016	0.24±0.07	0.31±0.08	0.096±0.030
Z backgrounds	15.6±1.3	3.8±0.8	1.60±0.34	7.9±1.0	2.4±0.4
Other backgrounds	0.28±0.13	0.02±0.14	0.03±0.06	0.21±0.09	0.01±0.11
Total SM	16.6±1.3	3.8±0.8	1.9±0.4	8.4±1.0	2.5±0.4
Data	19	2	1	10	6

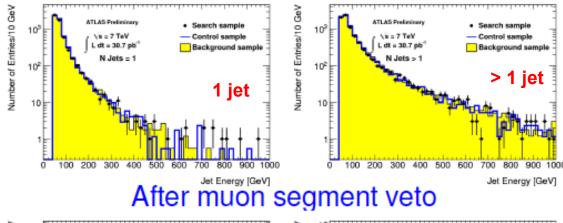
 p_T lepton 1 & 2 > 20 GeV p_T lepton 3 > 20 GeV (e) 10 GeV (μ)

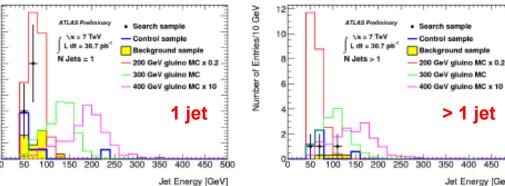
Final cuts: 2 jets > 50 GeV E_T^{miss} > 50 GeV


> 1 jet

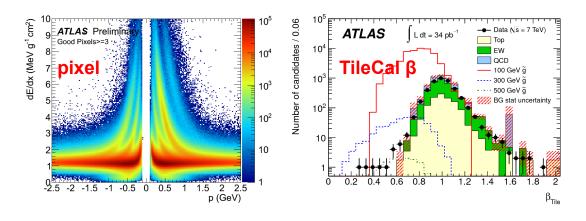

Jet Energy [GeV]

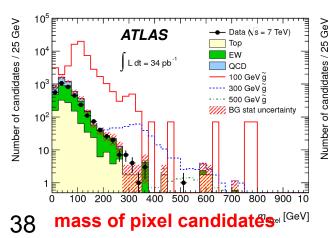
Search for stopped R-hadrons

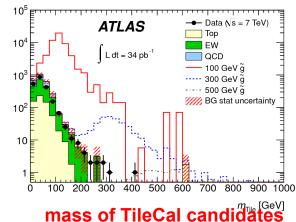

Dense material (calorimeter) could stop R-hadron Decay at much later time, e.g. uncorrelated with LHC beam

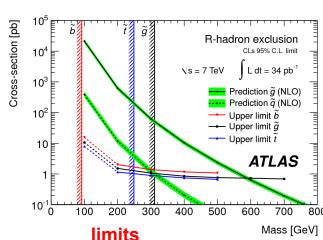

Take data outside LHC bunch crossings Backgrounds: cosmics, noise, protons in ``empty" bunch crossings, beam halo

After selection: 1 event observed, 0.6 bg expected

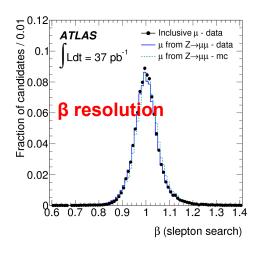

Search for long-lived particles

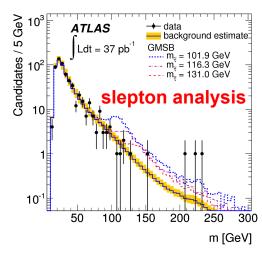

arXiv.org 1103.1984

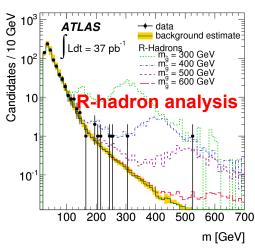

First approach: inner detector + calorimeter, no muon requirement Motivation: R-hadrons (stops, gluinos), might be neutral after calorimeter

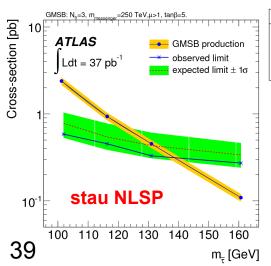

Analysis uses pixel dE/dx combined with TileCal time (=β) measurement, 2010 data

Results: stable sbottoms > 294 GeV stable stops > 309 GeV stable gluino > 562-586 GeV

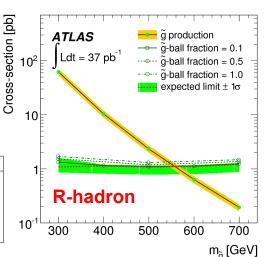


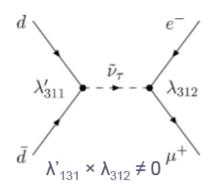



Long-lived particles: search in the muon spectrometer


arXiv.org 1106.4495

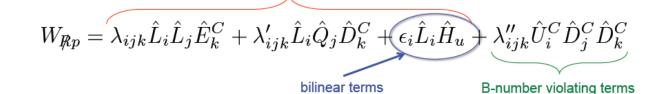
Large ATLAS muon system with good timing resolution Refit muon tracks, leaving velocity β as free parameter Two analyses: sleptons (e.g. semi-stable stau NLSP in GMSB), R-hadrons





$m(\tilde{\tau})$ (GeV)	Mass cut (GeV)	Exp. signal	Exp. bkg	Data		
101.9	90	35.9	19.2	16		
116.3	110	13.6	9.8	8		
131.0	120	7.3	7.2	5		
160.7	130	2.0	5.4	4		
Systematic uncertainties on signal and background expectations are 6% and 15% respectively.						

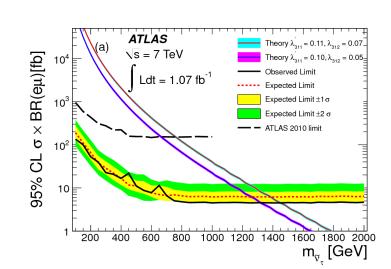
$m(\tilde{g})$ (G	eV)	Mass cut (GeV)	Exp. signal	Exp. bkg	Data	
300		250	254.4	2.3	3	
400		350	36.2	0.7	1	
500		350	8.7	0.7	1	
600		350	2.2	0.7	1	
700		350	0.6	0.7	1	
Systematic uncertainties on signal and background expectations are 6% and 20% respectively.						

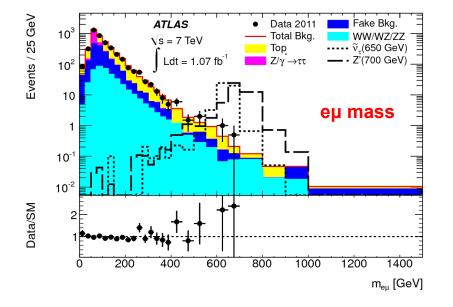


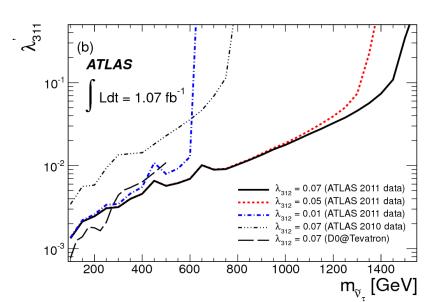
R-parity violation

Cornell University Library

arXiv.org 1109.3089

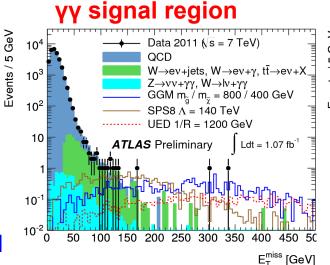

L-number violating terms

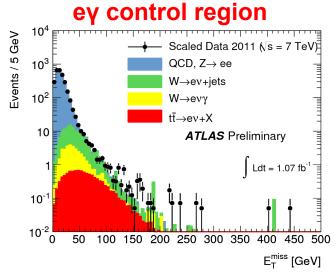

Resonant sneutrino


40

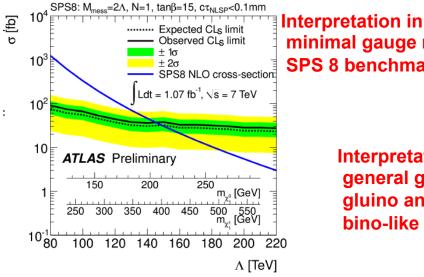
decaying to eµ

1.07 fb⁻¹

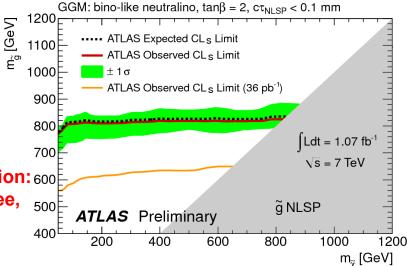

paper in preparation


vv + MET

1.07 fb⁻¹

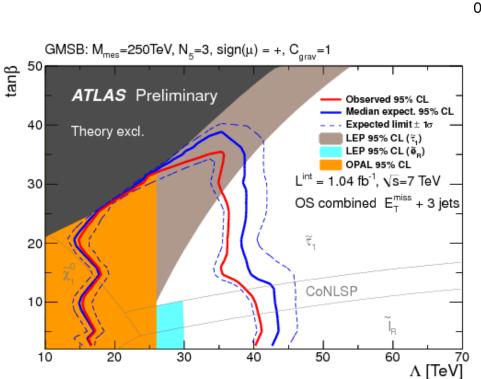

Gauge mediation with bino-like NLSP: $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$

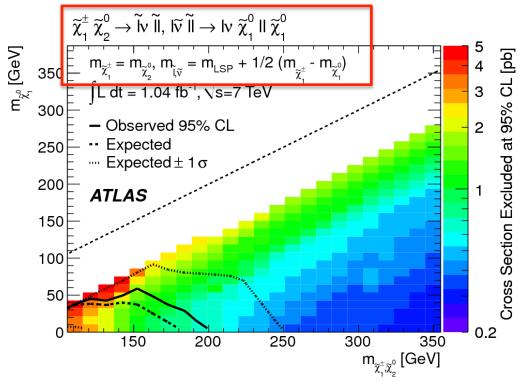
Selection: 2 tight y $E_T > 25$ GeV, isolated, $|\eta| < 1.37$ or $1.52 < |\eta| < 1.81$



$E_{\rm T}^{\rm miss}$ range	Data	Predicted background events			Exp	ected signal e	vents	
[GeV]	events	Total	$_{ m QCD}$	$W/t\bar{t}(\rightarrow e\nu) + X$	Irreducible	GGM	SPS8	UED
75 - 100	11	14.7 ± 1.2	6.7 ± 0.9	7.4 ± 0.8	0.52 ± 0.10	0.8 ± 0.1	2.1 ± 0.1	0.15 ± 0.01
100 - 125	6	4.9 ± 0.7	1.6 ± 0.4	3.0 ± 0.5	0.23 ± 0.05	1.2 ± 0.1	2.5 ± 0.1	0.29 ± 0.02
> 125	5	4.1 ± 0.6	0.8 ± 0.3	3.1 ± 0.5	0.15 ± 0.01	17.2 ± 0.5	13.0 ± 0.3	9.67 ± 0.11

minimal gauge mediation: **SPS 8 benchmark slope** Interpretation in general gauge mediation: 600 gluino and $\tilde{\chi}^0$ mass free,


bino-like $\tilde{\chi}^0$



Dileptons: interpretation

Same sign dilepton interpretation in simplified model of weak gaugino production: $\tilde{\chi}_1 \pm \tilde{\chi}_2^0$

Interpretation in GMSB

(opposite sign SR2)

ATLAS-CONF-2011-156