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‣A quantum field theory that has a fixed point with a finite number of UV-attractive 
directions is said to be asymptotically safe
‣ The demanding that a theory is asymptotically free imposes constraints along the 
directions UV-repulsive and leave free parameters in the UV-attractive direction: highly 
predictive
‣asymptotic safety may provide a rationale for picking accetable quantum field  theory 
more than  demanding to a theory to be renormalizable
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drawback... in the  RGE evolution the theory  may become strongly 
interacting thus non perturbatively. Perturbation theory maybe 
only a rough guide for a phenomenological approach
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EW Non Linear Sigma Model

‣Minimal realization of the SM:  only particles already discovered (NO HIGGS BOSON)
‣ Fermions and gauge bosons couple to the Nambu-Goldstone bosons associated to the  EW 
symmetry breaking
‣It corresponds to take the limit of infinite mass of the higgs boson:  NLSM (so far no gauge)

U = eifπ
ata
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•Gauge interactions 
•EWPT ?
•pf >1  we should include higher order derivative terms O(p^4)...
•Unitarity?
• Fermions

NLSM (perturbatively 
non renormalizable) have 
UV-attractive fixed points

Real World...
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(2009) 280



Assumptions:

‣ we use  perturbation theory only as a rough guide

‣ one loop computations and analysis of the presence/consequenece of UV-
attractive FPs

‣one loop results are assumed to hold at least qualitative  in the non-perturbative 
solution 

‣when studying O(p^4) operators and fermions we may ‘‘freeze’’ the gauge 
coupling and neglect them (they flow very slowly)
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Gauging the NLSM

3

Because of the positive beta function for g�, strictly

speaking this system does not have a FP. However, the

running of the gauge couplings is very slow and for our

purposes it is a good approximation to treat them as

constants. Setting g = 0.65, g� = 0.35 we find an approx-

imate UV-attractive FP at f̃ = 25.08. As expected it is

very close to the FP of the ungauged model.

We are now ready to consider the effect of the couplings
a0 and a1. As in the ungauged case, the beta functions

of f and a0 can be extracted from the geometric beta

functional of the metric. For k much larger than all the

masses (g, g� � f̃), the threshold fractions become equal

to one and the beta functions simplify to

df̃2

dt
= 2f̃2 − 1

2

f̃2

(4π)2

�
f̃2

(1 + 2a0) + 6g2 + 3g�2
�
(14)

da0
dt

=
1

2

1

(4π)2

�
f̃2a0(1− 2a0) +

3

2
g�2

�
. (15)

We have neglected terms of order g2a0 or g�2a0, which
are subleading relative to those of order f̃2a0. They are

not necessarily subleading relative to the terms of or-

der g2 and g�2 that have been written, but they would

be unimportant in what follows. Note that these beta

functions reduce correctly to (9) and (10) in the un-

gauged case. The first term in (15) corresponds to a self-

renormalization of the operator (4). Diagrammatically it

corresponds to a quadratically divergent Goldstone bo-

son tadpole and cannot be seen in dimensional regular-

ization. The second term agrees with the results of [11];

it is proportional to g�2, consistent with the fact that the

hypercharge coupling breaks the custodial symmetry. Its

effect is to generate a nonzero a0 even if initially a0 = 0.

The fixed points of the ungauged case are slightly

shifted by the gauge couplings. They occur at: (FPI)

f̃ = 25.1, a0 = −0.000292 and (FPII) f̃ = 17.7,
a0 = 0.501. There is no longer a fixed point with f̃ = 0.

This flow is illustrated in Fig.1.

The beta function of a1 is

da1
dt

=
1

(4π)2

�
f̃2a1 +

1

6

�
. (16)

Also in this case the second term agrees with the one

computed in [11], while the first comes from the self-

renormalization of the operator (5). Introducing the FP

values for f̃2
discussed above, we find the FP values

a1 = −0.000265 for FPI and a1 = −0.000530 for FPII.

The eigenvalues and eigenvectors of the matrix describ-

ing the linearized flow around these FP’s are given by the

following table:
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f
!

FIG. 1: Flow in the a0-f̃ plane. The two dots mark the
positions of FPI and FPII. Arrows point to increasing energy.

FP eigenvalue eigenvector components

f̃ a0 a1
I −1.99 1.00 11.6× 10

−6
14.1× 10

−6

I 1.99 −0.997 0.0795 −42.2× 10
−6

I 3.98 0 0 1

II −1.99 1.00 66.0× 10
−6

29.9× 10
−6

II −0.996 −0.998 0.0563 −40× 10
−6

II 1.99 0 0 1

Recall that negative eigenvalues correspond to UV at-

tractive (relevant) directions. The point FPI has one

such direction, that to a good approximation can be iden-

tified with the parameter f̃ . The point FPII has two rele-

vant directions that lie almost exactly in the a0-f̃ plane.

Within numerical errors we found a critical trajectory

that starts from FPII in the UV approximately in the

direction of (minus) its second eigenvector and reaches

FPI in the IR from the direction of its second eigenvec-

tor. The origin is not a FP, but the beta functions become

very small there. This almost-FP is IR attractive for f̃ .
We now discuss the physics of these FPs. At k = mZ

we have f̃ = 2mZ/υ = 0.7415 and the experimentally

allowed values for a0(mZ) and a1(mZ) are of order 10
−3

.

When one evolves the flow towards higher energies, f̃ ,
a0 or a1 will generally diverge. This is a sign that “new

physics” has to be taken into account. However, there

may be trajectories that hit a FP in the UV: for them

the effective field theory description actually never breaks

down. Such trajectories are said to be “renormalizable”

or “asymptotically safe” [2] and they form the so-called

“UV critical surface”, which in the vicinity of a FP is

spanned by the relevant couplings.

Requiring that the world be described by a renor-

malizable trajectory leads to predictions for low energy

g2, g�
2
<< f̃2

dg2

dt = − 29
2

g4

(4π)2

dg�2

dt = 1
6

g�4

(4π)2

df̃2

dt = 2f̃2 − 1
2

f̃2

(4π)2 (f̃
2a0(1 + 2a0) + 6g2 + 3g�2)

da0
dt = 1

2
1

(4π)2 (f̃
2a0(1− 2a0) +

3
2g

�2)

da1
dt = 1

(4π)2 (f̃
2a1 +

1
6 )



Gauging the NLSM

3

Because of the positive beta function for g�, strictly

speaking this system does not have a FP. However, the

running of the gauge couplings is very slow and for our

purposes it is a good approximation to treat them as

constants. Setting g = 0.65, g� = 0.35 we find an approx-

imate UV-attractive FP at f̃ = 25.08. As expected it is

very close to the FP of the ungauged model.

We are now ready to consider the effect of the couplings
a0 and a1. As in the ungauged case, the beta functions

of f and a0 can be extracted from the geometric beta

functional of the metric. For k much larger than all the

masses (g, g� � f̃), the threshold fractions become equal

to one and the beta functions simplify to

df̃2

dt
= 2f̃2 − 1

2

f̃2

(4π)2

�
f̃2

(1 + 2a0) + 6g2 + 3g�2
�
(14)

da0
dt

=
1

2

1

(4π)2

�
f̃2a0(1− 2a0) +

3

2
g�2

�
. (15)

We have neglected terms of order g2a0 or g�2a0, which
are subleading relative to those of order f̃2a0. They are

not necessarily subleading relative to the terms of or-

der g2 and g�2 that have been written, but they would

be unimportant in what follows. Note that these beta

functions reduce correctly to (9) and (10) in the un-

gauged case. The first term in (15) corresponds to a self-

renormalization of the operator (4). Diagrammatically it

corresponds to a quadratically divergent Goldstone bo-

son tadpole and cannot be seen in dimensional regular-

ization. The second term agrees with the results of [11];

it is proportional to g�2, consistent with the fact that the

hypercharge coupling breaks the custodial symmetry. Its

effect is to generate a nonzero a0 even if initially a0 = 0.

The fixed points of the ungauged case are slightly

shifted by the gauge couplings. They occur at: (FPI)

f̃ = 25.1, a0 = −0.000292 and (FPII) f̃ = 17.7,
a0 = 0.501. There is no longer a fixed point with f̃ = 0.

This flow is illustrated in Fig.1.

The beta function of a1 is

da1
dt

=
1

(4π)2

�
f̃2a1 +

1

6

�
. (16)

Also in this case the second term agrees with the one

computed in [11], while the first comes from the self-

renormalization of the operator (5). Introducing the FP

values for f̃2
discussed above, we find the FP values

a1 = −0.000265 for FPI and a1 = −0.000530 for FPII.

The eigenvalues and eigenvectors of the matrix describ-

ing the linearized flow around these FP’s are given by the

following table:

0.5
a0

10

20

30

f
!

FIG. 1: Flow in the a0-f̃ plane. The two dots mark the
positions of FPI and FPII. Arrows point to increasing energy.

FP eigenvalue eigenvector components

f̃ a0 a1
I −1.99 1.00 11.6× 10

−6
14.1× 10

−6

I 1.99 −0.997 0.0795 −42.2× 10
−6

I 3.98 0 0 1

II −1.99 1.00 66.0× 10
−6

29.9× 10
−6

II −0.996 −0.998 0.0563 −40× 10
−6

II 1.99 0 0 1
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such direction, that to a good approximation can be iden-

tified with the parameter f̃ . The point FPII has two rele-
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tractive (relevant) directions. The point FPI has one

such direction, that to a good approximation can be iden-
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down. Such trajectories are said to be “renormalizable”

or “asymptotically safe” [2] and they form the so-called

“UV critical surface”, which in the vicinity of a FP is

spanned by the relevant couplings.

Requiring that the world be described by a renor-

malizable trajectory leads to predictions for low energy

g2, g�
2
<< f̃2

we ‘freeze’ the gauge couplings

dg2

dt = − 29
2

g4

(4π)2

dg�2

dt = 1
6

g�4

(4π)2

df̃2

dt = 2f̃2 − 1
2

f̃2

(4π)2 (f̃
2a0(1 + 2a0) + 6g2 + 3g�2)

da0
dt = 1

2
1

(4π)2 (f̃
2a0(1− 2a0) +

3
2g

�2)

da1
dt = 1

(4π)2 (f̃
2a1 +

1
6 )

problem with g’, but it runs 
slowly

UV repulsive, we have to fix it at 
the FP
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FIG. 2: The half-line and the dot show the values permit-
ted by asymptotic safety. The ellipses show the 1 and 2 σ
experimental bounds with mH=117GeV [13].

physics. Since FPI has only one relevant direction, there
is a single renormalizable trajectory that descends from
it towards the origin. Since the beta functions go to zero
for k < mZ , we stop the flow at the scale mZ (i.e. when
f̃ = 0.7415) and find, at that scale,

a0(mZ) = −0.0020, a1(mZ) = −0.0032 , (17)

which are 5σ away from the experimental values. The
transition takes about four or five e-foldings (a change in
scale by a factor e4-e5) which means that FPI would be
reached at an energy scale of the order of 10 TeV.

The point FPII has two relevant directions and there-
fore there is a one parameter family of renormalizable

trajectories that descend from it. From Fig.1 we see that
for such a trajectory to come close to the origin, it has to
be fine tuned to first follow very closely the critical tra-
jectory towards FPI, and hence descend. Going upwards
from k = mZ , such a trajectory would take again four
or five e-foldings to reach the vicinity of FPI and then
another four e-foldings to cross over to FPII, placing the
energy scale at which one arrives near FPII at 300-700
TeV. It is clear from Fig. 1 that these trajectories will
have a0(mZ) > −0.002. Numerical analysis shows that
the locus of endpoints of such trajectories satisfies

a1(mZ) = −0.00321− 0.00052 a0(mZ) . (18)

For a0 ≈ 0.5 this relation is still true within a few percent.

Using equations (6) and (7), this translates directly
into a linear relation between S and T , which is shown in
Fig. 2, and constitutes our main result. The dot corre-
sponds to the UV critical surface of FPI (17), the half-line
to the UV critical surface of FPII. Note that the condi-
tion of asymptotic safety essentially fixes a1, and hence
S, leaving T arbitrary.
Renormalizable trajectories represent UV complete

theories. We see that within this model there are such
trajectories that are in agreement with the experimen-
tal data: S = 0.01 ± 0.10 and T = 0.03 ± 0.11. They
pass near FPI at scales ≈ 10 TeV and then veer towards
FPII. There, the custodial symmetry is strongly broken,
as witnessed by the large value a0 ≈ 0.5. This could be
an important (and unexpected) clue about the UV be-
havior of the theory. In this model the conformal (FP)
behavior sets in at energies that are probably too high to
make a direct observation possible at LHC, but there may
be other signatures. We will return to this and related
questions elsewhere [9].

We would like to thank O. Zanusso for discussions.
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Scattering amplitude and unitarity

A(πiπj → πkπl) = A(s, t, u)δijδkl +A(t, s, u)δikδjl +A(u, s, t)δilδjk

isospin amplitudes
I=0,1,2

A(s, t, u) = s
f2

4

t00 =
sf2
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f̃2

64π
<

1

2
N > 2π
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N

partial waves decomposition
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A2(s, t, u) = A(t, s, u) +A(u, s, t)
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for   large N the NLSM does not violate 
unitarity, unfortunately EW 
symmetry has N=2, so...
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The position of the fixed point is regularization scheme dependent,
inclusion of higher derivative operators may also move the fixed
point [R. Percacci and O. Zanusso, Phys. Rev. D 81 (2010) 065012].
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O(p^4)& Resonances

a4[Tr(VµVν)]
2 + a5[Tr(VµV

µ)]2

df̃
dt = f̃ − 1

4
f̃3

(4π)2 − 1
6

f̃5

(4π)2 (4a4 + 7a5)

da4
dt = 1

12
1

(4π)2 f̃
2(19a4 + 10a5)− 1

6
1

(4π)2 +O(a24,5f̃
4)

da5
dt = − 1

24
1

(4π)2 f̃
2(22a4 + 28a5)− 1

12
1

(4π)2 +O(a24,5f̃
4)

 control the resonances

 FP f̃∗ = 38.6, a∗4 = 0.00016, a∗5 = −0.00018



O(p^4)& Resonances
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O(p^4)& Resonances

 IAM prescription

t(2)00 =
sf2

64π
=

f̃2

64π
<

1

2

t(4)00 =
s2f4

1024π

�16(11a5 + 7a4)

3
+

101/9− 50 log(s/µ2)/9 + 4iπ

16π2

�

 unitarized amplitude

t00(s) =
t(2)00

1− t(4)00 /t
(2)
00

+O(s3)

mS ∼ 600  GeV

Preliminary!

 the poles of the amplitude are 
interpreted as resonances

5

which is just the optical theorem written using partial waves.

In general, for coeffients a4 and a5 of a natural size, the unitarity vaiolation cannot be ignored at energies beyond

1.5 TeV. A possible solution to this problem is to unitarize the partial wave amplitudes. Here we are going to use the

Inverse Amplitude Method (IAM) [Truong,Dobado,Pelaez].

A. The Inverse Amplitude Method

This method has given remarkabkle results in describing the meson dynamics reproducing the first resonances in

each isospin channel up to 1.3 GeV [Dobado,Oller,Guerrero].

The final expression for the unitarized amplitude is:

tIJ(s) =
t
(2)
IJ

1− t
(4)
IJ /t

(2)
IJ

+O(s3) . (13)

Note that this amplitude respects strict elastic unitarity, while keeping the correct low energy expansion. Furthermore,

the extension of (13) to the complex plane can be justified using dispersion theory. In particular, it has the proper

analytical structure and, eventually, poles in the second Riemann sheet for certain a4 and a5 values, that can be

interpreted as resonances. Thus, IAM formalism can describe resonances without increasing the number of parameters

and respecting chiral symmetry and unitarity. By inspection of eq. (13), the IAM yields the following masses and

widths of the first resonances, for the scalar resonance we obtain

m
2
S =

12 v2

16 [11a5(µ) + 7a4(µ)] +
1

16π2
101
3

, ΓS =
m3

S

16πv2
, (14)

which is transcendental equation, while, for the vector resonance, we gat

m
2
V =

v2

4 [a4(µ)− 2a5(µ)] +
1

16π2
1
9

, ΓV =
m3

V

96πv2
. (15)

The prediction on the values of a4 and a5 we have obtained in the previous section because of the requirement that

the model flows towards a FP in the UV turns into a prediction about the masses of the resonance that are responsible

for unitarizing the pion scattering amplitude.

By taking the experimental limits on

a4 < 0.085 and a5 < 0.21 (16)

we find mS > 136 GeV (ΓS = 0.9 GeV).

For the value we found, mS = 600 GeV (ΓS = 180 GeV).

B. Stability of the FP

LS =
1

2
∂µS∂

µ
S −m

2
SS

2 + cfSψ̄ψ + cdSTr ∂µU∂µ
U +

λ

4!
S
4 (17)

βλ = 3λ2 + (6c̃2d + 8c2f )λ+ 6c̃4d − 8c4f (18)

λ∗ =
6c4f − 6c̃4d
6c̃2d + 8c2f

(19)
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m =
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f
= hv

Real World...

•Splitting up and down, 3 families 
•gauge interactions (no SU(2)R)

 for the moment...

df̃
dt = f̃ − N

64π2 f̃3 + Nc
4π2h2f̃
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16π2
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N
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Including fermions

3

The system of equations (3)-(4) admits a number of possible UV fixed points. The Gaussian FP is the solution

f̃ = 0, h = 0. This FP has one irrelevant (IR attractive) direction f̃ and one marginal direction h. Any RG trajectory

starting from it in the UV would be trivial at any scale. We therefore reject this choice because it is uninteresting. We

emphasize that conventional chiral perturbation theory is the study of small deformations of the FP f̃ = 0, interpreted

as an IR FP.

There is also a nontrivial FP at h∗ = 0, f̃∗ = 8π/
√
N for which f̃ is a relevant (UV attractive) direction and h is

marginally irrelevant. Again, interpreting such a FP as an UV attractive FP would imply the triviality of the Yukawa

coupling at all scales. We thus see that this FP is the same as in the purely bosonic theory [4].

A physically viable UV limit for (3)-(4) requires the existence of aFP with both h and f̃ being nonvanishing. If

h is treated as a t-independent constant, the β-function for f̃ has a zero at f̃∗ = 4
�
(4π2 +Nch2)/N , which is a

deformation of the one appearing in the pure bosonic model. The existence of a nontrivial FP for the coupled system

thus hinges on the existence of a nontrivial zero in the β-function of h. This requires that the first term in the right

hand side of eq. (4) be negative, which is true for N > 2Nc.

Unfortunately this condition is not satisfied for the phenomenologically most important case N = 2, Nc = 3. This

is illustrated by the dashed curves in Fig. 1, for the initial condition f̃0 = 2 and h0 = 0.7 at t = 0 (thus mimicking

the top-quark value). The first term on the right hand side of eq. (3) is initially dominant, leading to linear growth

of f̃ . The second term then grows in absolute value and at some point nearly balances the first one, leading to an

approximate FP behavior in some range of energies. Eventually h, whose β-function is everywhere positive, becomes

large and the third term dominates leading to a Landau pole and the loss of AS. The scale at which destabilization

occurs is very sensitive to the initial conditions and for the Yukawa couplings corresponding to light fermions no

destabilization takes place up to very large energies.

We conclude that our model is not AS in the case N = 2, Nc = 3, in the one loop approximation. For it to be AS,

either the one loop approximation must break down, or else new physical effects must enter in the fermion sector at

some energy scale.

It is interesting to compare this behavior to similar models.

If the color symmetry was gauged there would be an additional contribution to eq. (4):

− 3

16π2

N2
c − 1

Nc
g2sh (5)

The system (3)-(4) would then resemble the SM where the second term in eq. (4) is abstent. This model is found to

predict a perturbative Yukawa coupling up to very high scales, in agreement with [7]. On the other hand, in the case

of the NLσM the second term in eq. (4) is present and the qualitative behavior shown in Fig. 1 would not be changed

by the term (5).

A strictly related model is the linear sigma model coupled to one right-handed and NL left-handed fermions,

studied in [8]. Our Goldstone modes are contained in their scalar sector, with the VEV υ = 2/f corresponding to the

minimum of the scalar potential. There it was found that the the scalar potential and the Yukawa coupling admit a

FP for 1 ≤ NL ≤ 57. Our results are quite different due both to the different fermion content and to the non-linear

boson-fermion coupling.

III. FOUR-FERMION INTERACTIONS

New physics associated to the SM fermions might restore asymptotic safety. In this section we will discuss a class

of nontrivial UV FPs with asymptotically free Yukawa couplings that emerge once short-range interactions among

the fermions are included.

We now restrict ourselves to the case N = 2 and add to the lagrangian a complete set of SU(2)L×SU(2)R invariant

four fermion operators. Requiring P invariance, all possible chiral invariant operators, up to Fierz reorderings are

given by the following lagrangian:

Lψ4 = λ1

�
ψ̄ia
L ψja

R ψ̄jb
R ψib

L

�
+ λ2

�
ψ̄ia
L ψjb

R ψ̄jb
R ψia

L

�

+ λ3

�
ψ̄ia
L γµψ

ia
L ψ̄jb

L γµψjb
L + ψ̄ia

R γµψ
ia
R ψ̄jb

R γµψjb
R

�

+ λ4

�
ψ̄ia
L γµψ

ib
L ψ̄jb

L γµψja
L + ψ̄ia

R γµψ
ib
R ψ̄jb

R γµψja
R

�
. (6)

The coefficients λi have inverse square mass dimension. We do not include in the lagrangian in eq. (6) operators

defined by taking the square of the Yukawa term in eq. (2) because they are higher order from the point of view of

chiral perturbation theory.

4

Strictly speaking, only the third SM fermion generation requires new physics to emerge at relatively low scales, since

four-fermion operators involving the first two generations can be suppressed by much larger scales without spoiling

our AS scenario. Yet, in discussing the experimental bounds on our model, see Section IV, we will be as conservative

as possible and consider the rather pessimistic scenario in which (6) also involve the first generation. We thus tacitly

assume that the operators in (6) are consistent with FCNC bounds.

The symmetries imposed on eq. (6) make this lagrangian the minimal choice, and the one we will study here.

More general sets of operators may well be relevant depending on the symmetries of this new sector; the SM group

SU(2) × U(1) being the first instance coming to mind. The analysis is in this case more cumbersome because more

operators must be included, but no distinctive features are expected to arise.

The operators in eq. (6) are similar to those discussed in top-quark condensation models. In these and other models

of composite quarks only operators with vector current structure that is iso- and color singlet are usually considered.

Here the full set of operators are taken into account since their couplings mix in the RG evolution equations. Notice

however that the RG regime we are interested in is very different because we do not seek to model chiral symmetry

breaking and therefore the IR initial conditions for the parameter λi are taken at finite values and no phase transition

is present. A discussion of the four-fermion lagrangian in eq. (6), and its FP, as a model of chiral symmetry breaking

can be found in [9]. The special role played in that context by the operator associated to λ1 has been recently

emphasized in [10].

We write the system of coupled β-function equations for the dimensionless variables f̃ , h and λ̃i = λik2. In these

variables, we find the following RG equations:

df̃

dt
= f̃ − 1

32π2
f̃3

+
Nc

4π2
h2f̃

dh

dt
=

1

16π2

�
4Nc − 3 +

16

f̃2
(Ncλ̃1 + λ̃2)

�
h3

+
1

64π2

�
f̃2 − 16(Ncλ̃1 + λ̃2)

�
h

dλ̃1

dt
= 2λ̃1 −

1

4π2

�
Ncλ̃

2
1 +

3

2
λ̃1λ̃2 − 2λ̃1λ̃3 − 4λ̃1λ̃4

�

dλ̃2

dt
= 2λ̃2 +

1

4π2

�
1

4
λ̃2
1 + 4λ̃1λ̃3 + 2λ̃1λ̃4 −

3

4
λ̃2
2 + 2(2Nc + 1)λ̃2λ̃3 + 2(Nc + 2)λ̃2λ̃4

�
(7)

dλ̃3

dt
= 2λ̃3 +

1

4π2

�
1

4
λ̃1λ̃2 +

Nc

8
λ̃2
2 + (2Nc − 1)λ̃2

3 + 2(Nc + 2)λ̃3λ̃4 − 2λ̃2
4

�

dλ̃4

dt
= 2λ̃4 +

1

4π2

�
1

8
λ̃2
1 − 4λ̃3λ̃4 + (Nc + 2)λ̃2

4

�
.

In the RG equations above for the coefficients λ̃i we have neglected contributions coming from the Yukawa terms

which are proportional to h2f̃2
, h2λ̃i or h2λ̃2

i /f̃
2
. These latter terms are negligible in the UV because we will select

fixed points for which the Yukawa coupling approaches zero. They are also subdominant in the IR because the

couplings λ2
i , f̃

2
are IR-free, and such that λ2

i /f̃
2 → 0 at low scales.

Notice that only the operators proportional to λ1 and λ2 contribute to the β-function for h. The other two operators

do not contribute because of their chiral properties. Moreover, it is crucial that the combination 16(Ncλ̃1 + λ̃2) at

the FP of λ̃1 and λ̃2 be different from zero and larger than f̃2
because otherwise there would be no UV FP.

From here on we fix Nc = 3. We begin by observing that the β-functions of the λ̃i form a closed sub-system.

The numerical study of these equations reveals the presence of 16 real fixed points. Their coordinates are given in

the first four columns in Table I. They are listed in order of decreasing trace of the stability matrix
∂βλ̃i

∂λ̃j
, from the

most UV-repulsive, the Gaussian FP fp0, to the most UV attractive fp4. The coefficients of the operators related

to UV-repulsive directions are completely determined by the AS condition. Hence, the FPs with a low number of

UV-attractive directions are the most predictive ones, and hence the most phenomenologically appealing. The number

in the name of the FP is the number of relevant (UV attractive) directions. These values can then be used to find

the zeroes of βh, and these in turn are used to find the zeroes of βf̃ .

We are interested in the sixteen FPs for the complete system with h∗ = 0; this requirement implies f̃2
∗ = 32π2

. At

each of these sixteen FPs the direction f̃ is always a relevant one, with eigenvalue −0.45; the direction h is also an

dimensional 
parameters
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λ̃1 λ̃2 λ̃3 λ̃4 �h

fp0 0 0 0 0 0.5

fp1a 0 −28.71 −7.18 0 1.22

fp1b 0 0 7.85 −9.51 0.5

fp1c 0 25.61 −4.27 0 −0.15

fp1d 25.80 −1.77 0.19 −1.15 −1.42

fp2a 13.41 20.10 −3.80 −0.24 −1.03

fp2b 20.86 −3.56 7.04 −8.94 −1.00

fp2c 0 −36.55 2.34 −13.92 1.43

fp2d 0 0 −15.79 0 0.5

fp2e 37.17 −37.36 −8.43 −1.65 −1.38

fp2f −2.92 32.59 4.67 −12.04 −0.10

fp3a 0. 31.67 4.67 −12.06 −0.30

fp3b 19.95 −8.59 −15.27 −0.36 −0.80

fp3c 31.22 −44.52 0.73 −13.38 −0.74

fp3d −4.87 1.54 −5.42 −20.10 0.83

fp4 0 0 −5.42 −20.13 0.5

TABLE I: Values of the coefficients λ̃i∗ for the 16 FPs discussed in the text. f̃∗ = 17.78, h∗ = 0 for all FPs. The FP fp1c is
boxed.
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FIG. 2: Running of the λ̃i for the FP fp1c. λ̃1 and λ̃4 are equal to zero at all energies.

eigendirection, with eigenvalue

�h =
∂βh

∂h

�����
∗

=
1

64π2

�
f̃2
∗ − 16(Ncλ̃1∗ + λ̃2∗)

�
. (8)

The numerical values of �h are listed in the last column of Table I. The seven FPs with �h > 0 are physically

uninteresting since the requirement of flowing to one of them in the UV implies that h(t) = 0 at all scales. The other

nine FPs of the fermionic sector for which �h < 0 also admit a FP with nonzero h. We are not interested here in these

additional nontrivial FPs, but restrict our attention to those with h∗ = 0. For the λ̃i, the condition of flowing to fpnx
in the UV yields 4− n predictions. The values of f̃ and h remain always free parameters, to be fixed by comparison

with the experiment.

We have studied numerically the trajectories emerging from the FPs in the directions of the relevant eigenvectors.

Some of them lead to divergences, others flow to other FPs. Here we shall consider only the single renormalizable

Including fermions
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FIG. 2: Running of the λ̃i for the FP fp1c. λ̃1 and λ̃4 are equal to zero at all energies.

eigendirection, with eigenvalue

�h =
∂βh

∂h

�����
∗

=
1

64π2

�
f̃2
∗ − 16(Ncλ̃1∗ + λ̃2∗)

�
. (8)

The numerical values of �h are listed in the last column of Table I. The seven FPs with �h > 0 are physically

uninteresting since the requirement of flowing to one of them in the UV implies that h(t) = 0 at all scales. The other

nine FPs of the fermionic sector for which �h < 0 also admit a FP with nonzero h. We are not interested here in these

additional nontrivial FPs, but restrict our attention to those with h∗ = 0. For the λ̃i, the condition of flowing to fpnx
in the UV yields 4− n predictions. The values of f̃ and h remain always free parameters, to be fixed by comparison

with the experiment.

We have studied numerically the trajectories emerging from the FPs in the directions of the relevant eigenvectors.

Some of them lead to divergences, others flow to other FPs. Here we shall consider only the single renormalizable

Including fermions

t = log k/v

2

II. FERMIONS AND GOLDSTONE BOSONS

We consider a SU(N)–valued scalar field U = exp(ifπaTa) where πa
are the Goldstone boson fields, trTaTb = δab/2

and f is the Goldstone boson coupling, which in the SM case can be identified with 2/υ, where υ = 246 GeV is the

Higgs VEV. We limit ourselves to the lowest order term in the NLσM lagrangian, which reads

Lσ = − 1

f2
Tr

�
U†∂µUU†∂µU

�
. (1)

This model is invariant under separate SU(N)L and SU(N)R transformations acting on U by left- and right multi-

plication respectively.

We couple the Goldstone bosons to left- and right-handed fermions ψia
L and ψia

R carrying the fundamental represen-

tation of SU(N)L and SU(N)R respectively (corresponding to the indices i = 1, . . . , N), and also the fundamental

representation of a color group SU(Nc) (corresponding to the indices a = 1, . . . , Nc). In the real world the latter

group is gauged; here we merely retain it as a global symmetry to count fermionic states. We couple the fermions in

a chiral invariant way to the U field by adding to the NLσM lagrangian the fermion kinetic and the Yukawa terms:

Lψ2 = ψ̄Liγµ∂µψL + ψ̄Riγµ∂µψR −
2h

f

�
ψ̄ia

L U ijψja
R + h.c.

�
, (2)

where we have explicitly written out the group indices in the interaction.
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FIG. 1: Running of f̃ and h (rescaled by a factor of 10 to fit the figure) for N = 2, Nc = 3. The AS behaviour of f̃ (represented
in the figure by the blue dashed line) is destabilized around t = 4.5 (that is, around 22 TeV) due to the increasingly large
Yukawa coupling contribution (green dashed line) which at about the same value becomes strongly coupled, that is larger
than 2π. The asymptotically safe behavior (continuous lines) is recovered after the introduction of the four-fermion contact
interactions, as discussed in section III.

In a more realistic model, the Yukawa coupling should distinguish among the fermion components and there should

be more than one family, as is the case in the SM, but this is not essential for the present discussion. We should also

add the leptons, which are color singlets, but these turn out to be numerically unimportant. Phenomenologically,

the most important contribution comes from the top quark, and all other SU(2) doublets can be neglected. We

also neglect the strong, weak and electromagnetic gauge couplings (after having checked that they do not alter our

conclusions) and for this reason the derivatives in eqs. (1)–(2) are not covariant.

Using a sharp cutoff regularization, we obtain the following one-loop RG equations for f̃ = kf and h:

df̃

dt
= f̃ − N

64π2
f̃3

+
Nc

4π2
h2f̃ , (3)

dh

dt
=

1

16π2

�
4Nc − 2

N2 − 1

N

�
h3

+
1

64π2

N2 − 2

N
hf̃2

(4)
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λ̃1 λ̃2 λ̃3 λ̃4 �h

fp0 0 0 0 0 0.5

fp1a 0 −28.71 −7.18 0 1.22

fp1b 0 0 7.85 −9.51 0.5

fp1c 0 25.61 −4.27 0 −0.15

fp1d 25.80 −1.77 0.19 −1.15 −1.42

fp2a 13.41 20.10 −3.80 −0.24 −1.03

fp2b 20.86 −3.56 7.04 −8.94 −1.00

fp2c 0 −36.55 2.34 −13.92 1.43

fp2d 0 0 −15.79 0 0.5

fp2e 37.17 −37.36 −8.43 −1.65 −1.38

fp2f −2.92 32.59 4.67 −12.04 −0.10

fp3a 0. 31.67 4.67 −12.06 −0.30

fp3b 19.95 −8.59 −15.27 −0.36 −0.80

fp3c 31.22 −44.52 0.73 −13.38 −0.74

fp3d −4.87 1.54 −5.42 −20.10 0.83

fp4 0 0 −5.42 −20.13 0.5

TABLE I: Values of the coefficients λ̃i∗ for the 16 FPs discussed in the text. f̃∗ = 17.78, h∗ = 0 for all FPs. The FP fp1c is
boxed.
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In a more realistic model, the Yukawa coupling should distinguish among the fermion components and there should

be more than one family, as is the case in the SM, but this is not essential for the present discussion. We should also

add the leptons, which are color singlets, but these turn out to be numerically unimportant. Phenomenologically,

the most important contribution comes from the top quark, and all other SU(2) doublets can be neglected. We

also neglect the strong, weak and electromagnetic gauge couplings (after having checked that they do not alter our

conclusions) and for this reason the derivatives in eqs. (1)–(2) are not covariant.

Using a sharp cutoff regularization, we obtain the following one-loop RG equations for f̃ = kf and h:

df̃

dt
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From here on we fix Nc = 3. We begin by observing that the β-functions of the λ̃i form a closed sub-system. The

numerical study of these equations reveals the presence of 16 real fixed points. Their coordinates are given in the

first four columns in Table I. They are listed in order of decreasing trace of the stability matrix
∂βλ̃i

∂λ̃j
, from the most

UV-repulsive, the Gaussian FP fp0, to the most UV attractive fp4. The number in the name of the FP is the number

of relevant (UV attractive) directions. These values can then be used to find the zeroes of βh, and these in turn are

used to find the zeroes of βf̃ .

We are interested in the 16 FPs for the complete system with h∗ = 0, thus resembling the SM behavior; this

requirement implies f̃2
∗ = 32π2

.

At each of these 16 FPs the direction f̃ is always a relevant one, with eigenvalue −0.45; the direction h is also an

eigendirection, with eigenvalue

�h =
∂βh

∂h

�����
∗

=
1

64π2

�
f̃2
∗ − 16(Ncλ̃1∗ + λ̃2∗)

�
. (8)

The numerical values of �h are listed in the last column of Table I. The 7 FPs with �h > 0 are physically uninteresting

since the requirement of flowing to one of them in the UV implies that h(t) = 0 at all scales. The other 9 FPs of the

fermionic sector for which �h < 0 also admit a FP with nonzero h. We are not interested here in these additional

nontrivial FPs, but restrict our attention to those with h∗ = 0. For the λ̃i, the condition of flowing to fpnx in the UV

yields 4 − n predictions. The values of f̃ and h remain always free parameters, to be fixed by comparison with the

experiment.

We have studied numerically the trajectories emerging from the FPs in the directions of the relevant eigenvectors.

Some of them lead to divergences, others flow to other FPs. Here we shall consider only the single renormalizable

trajectory that ends at fp1c in the UV.

In order to select the fine-tuned initial conditions in the IR that guarantee AS at fp1c, we have first solved numerically

the flow equations of the fermionic subsystem for decreasing t, starting at an initial point λ̃i∗+10
−8vi, where vi is the

relevant eigenvector. This trajectory is attracted towards fp0 after roughly 20 e-foldings, so the four-fermion couplings

can be taken arbitrarily small by selecting the IR value of t appropriately. We then shift t such that this value is zero,

in accordance with our convention that t = 0 corresponds to the scale k0 = υ. Now we pick a trajectory for the whole

system by fixing the initial values of the λ̃i to agree with the ones find by this method, while the initial value of f̃ is

2k0/υ = 2 and the initial value for h is 0.7. These agree with the initial values of the trajectory discussed in section

II.
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FIG. 2: Running of the λ̃i for the FP fp1c. λ̃1 and λ̃4 are equal to zero at all energies.

The result is shown in Figs. 1 (continuous curves) and 2. We see that for small t the couplings f̃ and h behave

as in the model of section II, with f̃ and h both increasing. At some point, however, λ̃2 becomes sizable and then

the last term in the right hand side of eq. (7) pulls h towards zero. The trajectory is therefore characterized by a

crossover from the IR regime where the fermionic interactions are mainly of Yukawa type, with IR free four-fermion

interactions, and the UV regime dominated by the contact interactions, with UV free Yukawa coupling. This is similar



Phenomenological constraints

E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

Lqqqq =
2πA

Λ2
ψ̄ia
L γµψ

ia
L ψ̄jb

L γµψjb
L



Phenomenological constraints

E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

Lqqqq =
2πA

Λ2
ψ̄ia
L γµψ

ia
L ψ̄jb

L γµψjb
L

New J. Phys. 13 (2011) 053044

Λbound > 9.5
(Λbound > 30)

TeV



Phenomenological constraints

E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

Lqqqq =
2πA

Λ2
ψ̄ia
L γµψ

ia
L ψ̄jb

L γµψjb
L

(B, De Sanctis,
 Fabbrichesi and Tonero 
1111.5936[hep-ph])

New J. Phys. 13 (2011) 053044

Λbound > 9.5
(Λbound > 30)

TeV

λ̃3(k) =
2π

Λ2
bound

k2



Phenomenological constraints

E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

Lqqqq =
2πA

Λ2
ψ̄ia
L γµψ

ia
L ψ̄jb

L γµψjb
L

(B, De Sanctis,
 Fabbrichesi and Tonero 
1111.5936[hep-ph])

New J. Phys. 13 (2011) 053044

Λbound > 9.5
(Λbound > 30)

TeV

λ̃3(k) =
2π

Λ2
bound

k2

0.0 0.5 1.0 1.5 2.00.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

t

!Λ i" ! Λ1
"
#Λ4
"
#0

Λ2
"

Λ3
"



Conclusions



many efforts would spend into  Higgs 
reduced production, invisible decays, 
non standard scenarios...

Conclusions



Conclusions

‣  a scenario with  no Higgs boson is  a real possibility

‣asymptotic safe description of EW interactions is competitive with other 
higgsless or composite framework  

‣drawback: we lack of  satisfactory mathematical tools, perturbative 
computations are only a rough guide

‣a complete description is deeply challenging but difficult

‣is it possible to distinguish it from other higgsless scenarios?
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