Towards

an asymptotically safe model of
 electroweak interactions

> Federica Bazzocchi,
> sissa \& INFN Trieste
> APPS 2011, Amsterdam

Based on: Fabbrichesi, Percacci, Tonero, Zanusso PRD83,2011; Fabbrichesi, Percacci, Tonero, Vecchi PRL107,2011; FB,Fabbrichesi, Percacci,Tonero, Vecchi PLB705,2011; FB, Fabbrichesi, Percacci,Towero, Vecchi to appear.
weinberg (1976)

- A quantum field theory that has a fixed point with a finite number of uv-attractive directions is said to be asymptotically safe
- The demanding that a theory is asymptotically free imposes constraints along the directions UV-repulsive and leave free parameters in the UV-attractive direction: highly predictive
Dasymptotic safety may provide a rationale for picking accetable quantum field theory more than demanding to a theory to be renormalizable

Weinberg (1976)

- A quantum field theory that has a fixed point with a finite number of uv-attractive directions is said to be asymptotically safe
- The demanding that a theory is asymptotically free imposes constraints along the directions UV-repulsive and leave free parameters in the UV-attractive direction: highly predictive
- asymptotic safety may provide a rationale for picking accetable quantum field theory more than demanding to a theory to be renormalizable

Example...

$$
\tilde{f}=k f \quad \frac{d \tilde{f}}{d t}=\tilde{f}-\frac{N}{64 \pi^{2}} \tilde{f}^{3}
$$

$$
\begin{aligned}
& \tilde{f}^{*}= \pm \frac{8 \pi}{\sqrt{N}} \\
& \tilde{f}^{*}=0 \quad \text { uv-repulsive }
\end{aligned}
$$

Weinberg (1976)

- A quantum field theory that has a fixed point with a finite number of uv-attractive directions is said to be asymptotically safe
- The demanding that a theory is asymptotically free imposes constraints along the directions UV-repulsive and leave free parameters in the UV-attractive direction: highly predictive
- asymptotic safety may provide a rationale for picking accetable quantum field theory more than demanding to a theory to be renormalizal'.

Example...

$$
\tilde{f}=k f
$$

$$
\frac{d \tilde{f}}{d t}=\tilde{f}-\frac{N}{64 \pi^{2}} \tilde{f}^{3}
$$

Weinberg (1976)

- A quantum field theory that has a fixed point with a finite number of uv-attractive directions is said to be asymptotically safe
- The demanding that a theory is asymptotically free imposes constraints along the directions UV-repulsive and leave free parameters in the UV-attractive direction: highly predictive
asymptotic safety may provide a rationale for picking accetable quantum field theory more than demanding to a theory to be renormalizal'.

Example...

in the RGE evolution the theory may become strongly interacting thus non perturbatively. Perturbation theory maybe only a rough guide for a phenomenological approach

EW Non Linear Sigma Model

- Minimal realization of the SM: only particles already discovered (NO HIGGS BOSON) - Fermions and gauge bosons couple to the Nambu-Goldstone bosons associated to the EW symmetry breaking
- It corresponds to take the limit of infinite mass of the higgs boson: NLSM (so far no gauge)

$$
U=e^{i f \pi^{a} t^{a}}
$$

EW Non Linear Sigma Model

- Minimal realization of the SM: only particles already discovered (NO HIGGS BOSON) - Fermions and gauge bosons couple to the Nambu-Goldstone bosons associated to the EW symmetry breaking
\rightarrow it corresponds to take the limit of infinite mass of the higgs boson: NLSM (so far no gauge)

$$
U=e^{i f \pi^{a} t^{a}}
$$

$$
\mathcal{O}\left(p^{2}\right) \quad \frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U \quad f=\frac{2}{v}
$$

EW Non Linear Sigma Model

- Minimal realization of the SM: only particles already discovered (NO HIGGS BOSON) - Fermions and gauge bosons couple to the Nambu-Goldstone bosons associated to the EW symmetry breaking
- It corresponds to take the limit of infinite mass of the higgs boson: NLSM (so far no gauge)

$$
\begin{array}{cl}
U=e^{i f \pi^{a} t^{a}} & \begin{array}{l}
\text { NLSM (perturbatively } \\
\text { non renormalizable) have } \\
\text { UV-attractive fixed points }
\end{array} \\
O\left(p^{2}\right) & \frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U
\end{array} \begin{aligned}
& \text { A. codello and R. Percacci, PLB } 672 \\
& \text { (2009) } 280
\end{aligned}
$$

EW Non Linear Sigma Model

- Minimal realization of the SM: only particles already discovered (NO HIGGS BOSON)
- Fermions and gauge bosons couple to the Nambu-Goldstone bosons associated to the EW symmetry breaking
- It corresponds to take the limit of infinite mass of the higgs boson: NLSM (so far no gauge)

$$
\begin{array}{cl}
U=e^{i f \pi^{a} t^{a}} & \begin{array}{l}
\text { NLSM (perturbatively } \\
\text { non renormalizable) have } \\
\text { UV-attractive fixed points }
\end{array} \\
\text { uv } \left.p^{2}\right) & \frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U \quad f=\frac{2}{v}
\end{array} \begin{aligned}
& \text { A. codello and R. Percacci, pLB } 672 \\
& \text { (2009) } 280
\end{aligned}
$$

Real World...

- Gauge interactions
- EWPT?
- pf >1 we should include higher order derivative terms $O\left(p^{\wedge} 4\right) \ldots$
-unitarity?
- Fermíons

Assumptions:

- we use perturbation theory only as a rough guide
- one loop computations and analysis of the presence/consequenece of UVattractive FPS
- one loop results are assumed to hold at least qualitative in the non-perturbative solution

When studying $O\left(p^{\wedge} 4\right)$ operators and fermions we may "freeze" the gauge coupling and neglect them (they flow very slowly)

Gauging the NLSM

$$
\begin{array}{ll}
\frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U \quad \text { it has a su(2)Lxsu(2)R global symmetry } & U \rightarrow L U R^{\dagger} \\
\frac{1}{f^{2}}\left(D_{\mu} U\right)^{\dagger} D^{\mu} U \quad \text { we gange su(2)Lxu(1)y=T3R } & U \rightarrow L U R_{3}^{\dagger} \\
D_{\mu} U=\partial_{\mu} U+i g t^{k} W_{\mu}^{k}-i g^{\prime} U t^{3} B_{\mu} &
\end{array}
$$

Gauging the NLSM

$$
\begin{array}{ll}
\frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U \quad \text { it has a su(2)Lxsu(2)R global symmetry } & U \rightarrow L U R^{\dagger} \\
\frac{1}{f^{2}}\left(D_{\mu} U\right)^{\dagger} D^{\mu} U \quad \text { we gangesu(2)Lxu(1)y=T3R } & U \rightarrow L U R_{3}^{\dagger} \\
D_{\mu} U=\partial_{\mu} U+i g t^{k} W_{\mu}^{k}-i g^{\prime} U t^{3} B_{\mu} & \\
V_{\mu}=\left(D_{\mu} U\right) U^{\dagger} & \\
T=U\left(2 t^{3}\right) U^{\dagger} & \\
W_{\mu \nu}=t^{k} W_{\mu \nu}^{k}=\partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}+i g\left[W_{\mu}, W_{\nu}\right] &
\end{array}
$$

Gauging the NLSM

$$
\begin{array}{ll}
\frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U \quad \text { it has a su(2)Lxsu(2)r global symmetry } & U \rightarrow L U R^{\dagger} \\
\frac{1}{f^{2}}\left(D_{\mu} U\right)^{\dagger} D^{\mu} U \quad \text { we gangesu(2)Lxu(1)y=T3R } & U \rightarrow L U R_{3}^{\dagger} \\
D_{\mu} U=\partial_{\mu} U+i g t^{k} W_{\mu}^{k}-i g^{\prime} U t^{3} B_{\mu} & \\
V_{\mu}=\left(D_{\mu} U\right) U^{\dagger} & \\
T=U\left(2 t^{3}\right) U^{\dagger} & \\
W_{\mu \nu}=t^{k} W_{\mu \nu}^{k}=\partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}+i g\left[W_{\mu}, W_{\nu}\right] &
\end{array}
$$

$a_{0} g^{2} \frac{1}{f^{2}}\left[\operatorname{Tr}\left(T V_{\mu}\right)\right]^{2}+\frac{1}{2} a_{1} g g^{\prime} B_{\mu \nu} \operatorname{Tr}\left(T W^{\mu \nu}\right)+\frac{1}{2} i a_{2} g^{\prime} B_{\mu \nu} \operatorname{Tr}\left(T\left[V^{\mu}, V^{\nu}\right]\right)+i a_{3} g \operatorname{Tr}\left(W_{\mu \nu}\left[V^{\mu}, V^{\nu}\right]\right)$

Gauging the NLSM

$$
\begin{aligned}
& \frac{1}{f^{2}} \partial_{\mu} U^{\dagger} \partial^{\mu} U \quad \text { it has a su(2)Lxsu(2)R globalsymmetry } U \rightarrow L U R^{\dagger} \\
& \frac{1}{f^{2}}\left(D_{\mu} U\right)^{\dagger} D^{\mu} U \quad \text { we gangesu(2)Lxu(1)y=T3R } \quad U \rightarrow L U R_{3}^{\dagger} \\
& D_{\mu} U=\partial_{\mu} U+i g t^{k} W_{\mu}^{k}-i g^{\prime} U t^{3} B_{\mu} \\
& V_{\mu}=\left(D_{\mu} U\right) U^{\dagger} \\
& T=U\left(2 t^{3}\right) U^{\dagger} \\
& W_{\mu \nu}=t^{k} W_{\mu \nu}^{k}=\partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}+i g\left[W_{\mu}, W_{\nu}\right] \\
& \\
& a_{0} g^{2} \frac{1}{f^{2}}\left[T r\left(T V_{\mu}\right)\right]^{2}+\frac{1}{2} a_{1} g g^{\prime} B_{\mu \nu} T r\left(T W^{\mu \nu}\right)+\frac{1}{2} i a_{2} g^{\prime} B_{\mu \nu} T r\left(T\left[V^{\mu}, V^{\nu}\right]\right)+i a_{3} g T r\left(W_{\mu \nu}\left[V^{\mu}, V^{\nu}\right]\right) \\
& \text { controls } T
\end{aligned}
$$

Gauging the NLSM

$$
\begin{aligned}
& g^{2}, g^{\prime 2} \ll \tilde{f}^{2} \\
& \frac{d g^{2}}{d t}=-\frac{29}{2} \frac{g^{4}}{(4 \pi)^{2}} \\
& \frac{d g^{\prime 2}}{d t}=\frac{1}{6} \frac{g^{\prime 4}}{(4 \pi)^{2}} \\
& \frac{d \tilde{f}^{2}}{d t}=2 \tilde{f}^{2}-\frac{1}{2} \frac{\tilde{f}^{2}}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{0}\left(1+2 a_{0}\right)+6 g^{2}+3 g^{\prime 2}\right) \\
& \frac{d a_{0}}{d t}=\frac{1}{2} \frac{1}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{0}\left(1-2 a_{0}\right)+\frac{3}{2} g^{\prime 2}\right) \\
& \frac{d a_{1}}{d t}=\frac{1}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{1}+\frac{1}{6}\right)
\end{aligned}
$$

FP	eigenvalue	eigenvector components		
		\tilde{f}	a_{0}	a_{1}
I	-1.99	1.00	11.6×10^{-6}	14.1×10^{-6}
I	1.99	-0.997	0.0795	-42.2×10^{-6}
I	3.98	0	0	1
II	-1.99	1.00	66.0×10^{-6}	29.9×10^{-6}
II	-0.996	-0.998	0.0563	-40×10^{-6}
II	1.99	0	0	1

Gauging the NLSM

$$
\begin{aligned}
& g^{2}, g^{\prime 2} \ll \tilde{f}^{2} \\
& \frac{d g^{2}}{d t}=-\frac{29}{2} \frac{g^{4}}{(4 \pi)^{2}} \quad \text { we freeze' the gauge couplings } \\
& \frac{d g^{\prime 2}}{d t}=\frac{1}{6} \frac{g^{\prime 4}}{(4 \pi)^{2}} \quad \begin{array}{l}
\text { problem with } g^{\prime} \text {, but it runs } \\
\text { slowly }
\end{array} \\
& \frac{d \tilde{f}^{2}}{d t}=2 \tilde{f}^{2}-\frac{1}{2} \frac{\tilde{f}^{2}}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{0}\left(1+2 a_{0}\right)+6 g^{2}+3 g^{\prime 2}\right) \\
& \frac{d a_{0}}{d t}=\frac{1}{2} \frac{1}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{0}\left(1-2 a_{0}\right)+\frac{3}{2} g^{\prime 2}\right) \\
& \frac{d a_{1}}{d t}=\frac{1}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{1}+\frac{1}{6}\right)
\end{aligned}
$$

FP	eigenvalue	eigenvector components		
		\tilde{f}	a_{0}	a_{1}
I	-1.99	1.00	11.6×10^{-6}	14.1×10^{-6}
I	1.99	-0.997	0.0795	-42.2×10^{-6}
I	3.98	0	0	1
II	-1.99	1.00	66.0×10^{-6}	29.9×10^{-6}
II	-0.996	-0.998	0.0563	-40×10^{-6}
II	1.99	0	0	1

Gauging the NLSM

$$
\begin{aligned}
& g^{2}, g^{\prime 2} \ll \tilde{f}^{2} \\
& \frac{d g^{2}}{d t}=-\frac{29}{2} \frac{g^{4}}{(4 \pi)^{2}} \quad \text { we freeze' the gauge couplings } \\
& \frac{d g^{\prime 2}}{d t}=\frac{1}{6} \frac{g^{\prime 4}}{(4 \pi)^{2}} \quad \begin{array}{l}
\text { problem with } g^{\prime} \text {, but it runs } \\
\text { slowly }
\end{array} \\
& \frac{d \tilde{f}^{2}}{d t}=2 \tilde{f}^{2}-\frac{1}{2} \frac{\tilde{f}^{2}}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{0}\left(1+2 a_{0}\right)+6 g^{2}+3 g^{\prime 2}\right) \\
& \frac{d a_{0}}{d t}=\frac{1}{2} \frac{1}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{0}\left(1-2 a_{0}\right)+\frac{3}{2} g^{\prime 2}\right) \\
& \frac{d a_{1}}{d t}=\frac{1}{(4 \pi)^{2}}\left(\tilde{f}^{2} a_{1}+\frac{1}{6}\right)
\end{aligned}
$$

FP	eigenvalue	eigenvector components		
		\tilde{f}	a_{0}	a_{1}
I	-1.99	1.00	11.6×10^{-6}	14.1×10^{-6}
I	1.99	-0.997	0.0795	-42.2×10^{-6}
I	3.98	0	0	1
II	-1.99	1.00	66.0×10^{-6}	29.9×10^{-6}
II	-0.996	-0.998	0.0563	-40×10^{-6}
II	1.99	0	0	1

uv repulsive, we have to fix it at
the FP

Gauging the NLSM

$$
\begin{aligned}
& S=-16 \pi a_{1}\left(m_{Z}\right)+\frac{1}{6 \pi}\left[\frac{5}{12}-\log \left(\frac{m_{H}}{m_{Z}}\right)\right] \\
& T=\frac{2}{\alpha_{e m}} a_{0}\left(m_{Z}\right)-\frac{3}{8 \pi \cos ^{2} \theta_{W}}\left[\frac{5}{12}-\log \left(\frac{m_{H}}{m_{Z}}\right)\right]
\end{aligned}
$$

scattering amplitude and unitarity

$$
A\left(\pi^{i} \pi^{j} \rightarrow \pi^{k} \pi^{l}\right)=A(s, t, u) \delta^{i j} \delta^{k l}+A(t, s, u) \delta^{i k} \delta^{j l}+A(u, s, t) \delta^{i l} \delta^{j k}
$$

$$
\begin{aligned}
& \text { isospin amplitudes } \\
& 1=0,1,2
\end{aligned}\left\{\begin{array}{l}
A_{0}(s, t, u)=3 A(s, t, u)+A(t, s, u)+A(u, s, t) \quad A(s, t, u)=s \frac{f^{2}}{4} \\
A_{1}(s, t, u)=A(t, s, u)-A(u, s, t) \\
A_{2}(s, t, u)=A(t, s, u)+A(u, s, t)
\end{array}\right.
$$

$$
t_{I J}=\frac{1}{64 \pi} \int_{-1}^{1} d \cos \theta P_{J}(\cos \theta) A_{I}(s, t, u) \quad \text { partial waves decomposition }
$$

$$
t_{00}=\frac{s f^{2}}{64 \pi}=\frac{\tilde{f}^{2}}{64 \pi}<\frac{1}{2}=N>2 \pi
$$

$$
\tilde{f}^{*}= \pm \frac{8 \pi}{\sqrt{N}}
$$

scattering amplitude and unitarity

$$
A\left(\pi^{i} \pi^{j} \rightarrow \pi^{k} \pi^{l}\right)=A(s, t, u) \delta^{i j} \delta^{k l}+A(t, s, u) \delta^{i k} \delta^{j l}+A(u, s, t) \delta^{i l} \delta^{j k}
$$

isospin amplitudes

$$
A(s, t, u)=s \frac{f^{2}}{4}
$$

$$
1=0,1,2
$$

$$
\left\{\begin{array}{l}
A_{0}(s, t, u)=3 A(s, t, u)+A(t, s, u)+A(u, s, t) \\
A_{1}(s, t, u)=A(t, s, u)-A(u, s, t) \\
A_{2}(s, t, u)=A(t, s, u)+A(u, s, t)
\end{array}\right.
$$

$t_{I J}=\frac{1}{64 \pi} \int_{-1}^{1} d \cos \theta P_{J}(\cos \theta) A_{I}(s, t, u) \quad$ partíal waves decomposition
for large N the NLSM does not violate
$t_{00}=\frac{s f^{2}}{64 \pi}=\frac{\tilde{f}^{2}}{64 \pi}<\frac{1}{2} \quad \geqslant>2 \pi$
unitarity, unfortunately EW
symmetry has $N=2$, so...

$$
\tilde{f}^{*}= \pm \frac{8 \pi}{\sqrt{N}}
$$

$a_{4}\left[\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]^{2}+a_{5}\left[\operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right]^{2}$

control the resonances

$$
\begin{aligned}
& \frac{d \tilde{f}}{d t}=\tilde{f}-\frac{1}{4} \frac{\tilde{f}^{3}}{(4 \pi)^{2}}-\frac{1}{6} \frac{\tilde{f}^{5}}{(4 \pi)^{2}}\left(4 a_{4}+7 a_{5}\right) \\
& \frac{d a_{4}}{d t}=\frac{1}{12} \frac{1}{(4 \pi)^{2}} \tilde{f}^{2}\left(19 a_{4}+10 a_{5}\right)-\frac{1}{6} \frac{1}{(4 \pi)^{2}}+\mathcal{O}\left(a_{4,5}^{2} \tilde{f}^{4}\right) \\
& \frac{d a_{5}}{d t}=-\frac{1}{24} \frac{1}{(4 \pi)^{2}} \tilde{f}^{2}\left(22 a_{4}+28 a_{5}\right)-\frac{1}{12} \frac{1}{(4 \pi)^{2}}+\mathcal{O}\left(a_{4,5}^{2} \tilde{f}^{4}\right)
\end{aligned}
$$

FP

$$
\tilde{f}^{*}=38.6, \quad a_{4}^{*}=0.00016, \quad a_{5}^{*}=-0.00018
$$

control the resonances

$$
\frac{d \tilde{f}}{d t}=\tilde{f}-\frac{1}{4} \frac{\tilde{f}^{3}}{(4 \pi)^{2}}-\frac{1}{6} \frac{\tilde{f}^{5}}{(4 \pi)^{2}}\left(4 a_{4}+7 a_{5}\right) \quad \quad \quad \text { comparable to } o(p \text { cos })
$$

$$
\frac{d a_{4}}{d t}=\frac{1}{12} \frac{1}{(4 \pi)^{2}} \tilde{f}^{2}\left(19 a_{4}+10 a_{5}\right)-\frac{1}{6} \frac{1}{(4 \pi)^{2}}+\mathcal{O}\left(a_{4,5}^{2} \tilde{f}^{4}\right)
$$

$$
\frac{d a_{5}}{d t}=-\frac{1}{24} \frac{1}{(4 \pi)^{2}} \tilde{f}^{2}\left(22 a_{4}+28 a_{5}\right)-\frac{1}{12} \frac{1}{(4 \pi)^{2}}+\mathcal{O}\left(a_{4,5}^{2} \tilde{f}^{4}\right)
$$

FP

$$
\tilde{f}^{*}=38.6, \quad a_{4}^{*}=0.00016, \quad a_{5}^{*}=-0.00018
$$

$O\left(p^{\wedge} 4\right)$ EResonances

IAM prescription
$t_{00}^{(2)}=\frac{s f^{2}}{64 \pi}=\frac{\tilde{f}^{2}}{64 \pi}<\frac{1}{2}$
$t_{00}^{(4)}=\frac{s^{2} f^{4}}{1024 \pi}\left[\frac{16\left(11 a_{5}+7 a_{4}\right)}{3}+\frac{101 / 9-50 \log \left(s / \mu^{2}\right) / 9+4 i \pi}{16 \pi^{2}}\right]$
unitarized amplítude

$$
t_{00}(s)=\frac{t_{00}^{(2)}}{1-t_{00}^{(4)} / t_{00}^{(2)}}+\mathcal{O}\left(s^{3}\right)
$$

the poles of the amplitude are interpreted as resonances

Including the fermions

$$
\mathcal{L}_{\psi}=\bar{\psi}_{L} i \gamma^{\mu} \partial_{\mu} \psi_{L}+\bar{\psi}_{R} i \gamma^{\mu} \partial_{\mu} \psi_{R}-\frac{2 h}{f}\left(\bar{\psi}_{L}^{a} U \psi_{R}^{a}+H . c .\right) \quad m=\frac{2 h}{f}=h v
$$

Including the fermions

$$
\mathcal{L}_{\psi}=\bar{\psi}_{L} i \gamma^{\mu} \partial_{\mu} \psi_{L}+\bar{\psi}_{R} i \gamma^{\mu} \partial_{\mu} \psi_{R}-\frac{2 h}{f}\left(\bar{\psi}_{L}^{a} U \psi_{R}^{a}+\text { H.c. }\right) \quad m=\frac{2 h}{f}=h v
$$

Real World...

- splitting up and down, 3 families
- gange interactions (no su(2)R)

Including the fermions

$$
\mathcal{L}_{\psi}=\bar{\psi}_{L} i \gamma^{\mu} \partial_{\mu} \psi_{L}+\bar{\psi}_{R} i \gamma^{\mu} \partial_{\mu} \psi_{R}-\frac{2 h}{f}\left(\bar{\psi}_{L}^{a} U \psi_{R}^{a}+H . c .\right) \quad m=\frac{2 h}{f}=h v
$$

Real World...

- splitting up and down, 3 families
- gange interactions (no su(2)R)
for the moment...

$$
\begin{array}{ll}
\frac{d \tilde{f}}{d t} & =\tilde{f}-\frac{N}{64 \pi^{2}} \tilde{f}^{3}+\frac{N_{c}}{4 \pi^{2}} h^{2} \tilde{f} \\
\frac{d h}{d t} & =\frac{1}{16 \pi^{2}}\left(4 N_{c}-2 \frac{N^{2}-1}{N}\right) h^{3}+\frac{1}{64 \pi^{2}} \frac{N^{2}-2}{N} h \tilde{f}^{2}
\end{array}
$$

Including fermions

$$
\begin{aligned}
& \mathcal{L}_{\psi^{4}}=\lambda_{1}\left(\bar{\psi}_{L}^{i a} \psi_{R}^{j a} \bar{\psi}_{R}^{j b} \psi_{L}^{i b}\right)+\lambda_{2}\left(\bar{\psi}_{L}^{i a} \psi_{R}^{j b} \bar{\psi}_{R}^{j b} \psi_{L}^{i a}\right) \\
&+\lambda_{3}\left(\bar{\psi}_{L}^{i a} \gamma_{\mu} \psi_{L}^{i a} \bar{\psi}_{L}^{j b} \gamma^{\mu} \psi_{L}^{j b}+\bar{\psi}_{R}^{i a} \gamma_{\mu} \psi_{R}^{i a} \bar{\psi}_{R}^{j b} \gamma^{\mu} \psi_{R}^{j b}\right) \\
&+\lambda_{4}\left(\bar{\psi}_{L}^{i a} \gamma_{\mu} \psi_{L}^{i b} \bar{\psi}_{L}^{j b} \gamma^{\mu} \psi_{L}^{j a}+\bar{\psi}_{R}^{i a} \gamma_{\mu} \psi_{R}^{i b} \bar{\psi}_{R}^{j b} \gamma^{\mu} \psi_{R}^{j a}\right) \\
& \frac{d \tilde{f}}{d t}= \text { parameters } \\
& \frac{d h}{d t}=\frac{1}{32 \pi^{2}} \tilde{f}^{3}+\frac{N_{c}}{4 \pi^{2}} h^{2} \tilde{f} \\
& \frac{d \tilde{\lambda}_{1}}{d t}= 2 \tilde{\lambda}_{1}-\frac{1}{4 \pi^{2}}\left[N_{c}-3+\frac{16}{\tilde{f}^{2}}\left(\tilde{\lambda}_{1}^{2}+\frac{3}{2} \tilde{\lambda}_{1} \tilde{\lambda}_{1}+2 \tilde{\lambda}_{1} \tilde{\lambda}_{3}-4 \tilde{\lambda}_{1} \tilde{\lambda}_{4}\right]\right. \\
& \frac{d \tilde{\lambda}_{2}}{d t}=2 \tilde{\lambda}_{2}+\frac{1}{4 \pi^{2}}\left[\frac{1}{4} \tilde{\lambda}_{1}^{2}+4 \tilde{\lambda}_{1} \tilde{\lambda}_{3}+2 \tilde{\lambda}_{1} \tilde{\lambda}_{4}-\frac{3}{4} \tilde{\lambda}_{2}^{2}+2\left(2 N_{c}+1\right) \tilde{\lambda}_{2} \tilde{\lambda}_{3}+2\left(N_{c}+2\right) \tilde{\lambda}_{2} \tilde{\lambda}_{4}\right] \\
& \frac{d \tilde{\lambda}_{3}}{d t}=\left.2 \tilde{\lambda}_{3}+\frac{1}{4 \pi^{2}}\left[\frac{1}{4} \tilde{\lambda}_{1} \tilde{\lambda}_{2}+\frac{N_{c}}{8} \tilde{\lambda}_{2}^{2}+\left(2 N_{c}-1\right) \tilde{\lambda}_{c}^{2}+2\left(N_{c}+2\right) \tilde{\lambda}_{3}+\tilde{\lambda}_{2}\right)\right] h \\
&\left.\frac{d \tilde{\lambda}_{4}}{d t}=2 \tilde{\lambda}_{4}^{2}\right]
\end{aligned}
$$

Including fermions

	$\tilde{\lambda}_{1}$	$\tilde{\lambda}_{2}$	$\tilde{\lambda}_{3}$	$\tilde{\lambda}_{4}$	ϵ_{h}
fp0	0	0	0	0	0.5
fp1a	0	-28.71	-7.18	0	1.22
fp1b	0	0	7.85	-9.51	0.5
fp1c	0	25.61	-4.27	0	-0.15
fp1d	25.80	-1.77	0.19	-1.15	-1.42
fp2a	13.41	20.10	-3.80	-0.24	-1.03
fp2b	20.86	-3.56	7.04	-8.94	-1.00
fp2c	0	-36.55	2.34	-13.92	1.43
fp2d	0	0	-15.79	0	0.5
fp2e	37.17	-37.36	-8.43	-1.65	-1.38
fp2f	-2.92	32.59	4.67	-12.04	-0.10
fp3a	0.	31.67	4.67	-12.06	-0.30
fp3b	19.95	-8.59	-15.27	-0.36	-0.80
fp3c	31.22	-44.52	0.73	-13.38	-0.74
fp3d	-4.87	1.54	-5.42	-20.10	0.83
fp4	0	0	-5.42	-20.13	0.5

Including fermions

	$\tilde{\lambda}_{1}$	$\tilde{\lambda}_{2}$	$\tilde{\lambda}_{3}$	$\tilde{\lambda}_{4}$	ϵ_{h}
fp0	0	0	0	0	0.5
fp1a	0	-28.71	-7.18	0	1.22
fp1b	0	0	7.85	-9.51	0.5
fp1c	0	25.61	-4.27	0	-0.15
fp1d	25.80	-1.77	0.19	-1.15	-1.42
fp2a	13.41	20.10	-3.80	-0.24	-1.03
fp2b	20.86	-3.56	7.04	-8.94	-1.00
fp2c	0	-36.55	2.34	-13.92	1.43
fp2d	0	0	-15.79	0	0.5
fp2e	37.17	-37.36	-8.43	-1.65	-1.38
fp2f	-2.92	32.59	4.67	-12.04	-0.10
fp3a	0.	31.67	4.67	-12.06	-0.30
fp3b	19.95	-8.59	-15.27	-0.36	-0.80
fp3c	31.22	-44.52	0.73	-13.38	-0.74
fp3d	-4.87	1.54	-5.42	-20.10	0.83
fp4	0	0	-5.42	-20.13	0.5

Including fermions

Phenomenological constraints

$$
\mathcal{L}_{q q q q}=\frac{2 \pi A}{\Lambda^{2}} \bar{\psi}_{L}^{i a} \gamma_{\mu} \psi_{L}^{i a} \bar{\psi}_{L}^{j b} \gamma^{\mu} \psi_{L}^{j b}
$$

E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

Phenomenological constraints

$$
\mathcal{L}_{q q q q}=\frac{2 \pi A}{\Lambda^{2}} \bar{\psi}_{L}^{i a} \gamma_{\mu} \psi_{L}^{i a} \bar{\psi}_{L}^{j b} \gamma^{\mu} \psi_{L}^{j b}
$$

E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

$$
\begin{gathered}
\Lambda_{\text {bound }}>9.5 \\
\left(\Lambda_{\text {bound }}>30\right)
\end{gathered}
$$

New J. Phys. 13 (2011) 053044

Phenomenological constraints

$\mathcal{L}_{q q q q}=\frac{2 \pi A}{\Lambda^{2}} \bar{\psi}_{L}^{i a} \gamma_{\mu} \psi_{L}^{i a} \bar{\psi}_{L}^{j b} \gamma^{\mu} \psi_{L}^{j b}$
E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

$$
\begin{gathered}
\Lambda_{\text {bound }}>9.5 \\
\left(\Lambda_{\text {bound }}>30\right)
\end{gathered}
$$

NewJ. Phys. 13 (2011) 053044

$$
\tilde{\lambda}_{3}(k)=\frac{2 \pi}{\Lambda_{b o u n d}^{2}} k^{2}
$$

(B) De sauctis,

Fabbrichesi and Tonero
1111.5936 [hep-ph])

Phenomenological constraints

$\mathcal{L}_{q q q q}=\frac{2 \pi A}{\Lambda^{2}} \bar{\psi}_{L}^{i a} \gamma_{\mu} \psi_{L}^{i a} \bar{\psi}_{L}^{j b} \gamma^{\mu} \psi_{L}^{j b}$
E. Eichten, K. D. Lane, M. E. Peskin, PRL 50 (1983) 811

$$
\begin{gathered}
\Lambda_{\text {bound }}>9.5 \\
\left(\Lambda_{\text {bound }}>30\right)
\end{gathered}
$$

Newl. Phys. 13 (2011) 053044

$$
\tilde{\lambda}_{3}(k)=\frac{2 \pi}{\Lambda_{\text {bound }}^{2}} k^{2}
$$

(B) De sauctis, Fabbrichesi and Tonero 1111.5936 [hep-ph])

conclusions

conclusions

many efforts would spend into Higgs reduced production, invisible decays, non standard scenarios...
conclusions

- a scenario with no Higgs boson is a real possibility
- asymptotic safe description of EW interactions is competitive with other higgsless or composite framework
drawback: we lack of satisfactory mathematical tools, perturbative computations are only a rough guide
a complete description is deeply challenging but difficult
is it possible to distinguish it from other higgsless scenarios?
conclusions
- a scenario with no Higgs boson is a real possibility
- asymptotic safe description of EW interactions is competitive with other higgsless or composite framework
- drawback: we lack of satisfactory mathematical tools, perturbative computations are only a rough guide
a complete description is deeply challenging but difficult
is it possible to distinguish it from other higgsless scenarios?

Thanks!

