Universal Extra Dimensions Search at SPRACE


S. M. Lietti

DOSAR Workshop at U.T. Arlington

Physics Analysis at SPRACE

- We are starting our first physics analysis at SPRACE in close collaboration with Greg Landsberg from Brown University
- We intend to explore the signatures of Universal Extra Dimensions at D0
- We started with an initial warmup doing some analysis exercises (e.g. Z peak cross section evaluation) in order to get used with the D0 analysis tools;
- Greg Landsberg will make his second visit to São Paulo in the next week in order to discuss the first steps of the UED analysis.

Physics Beyond SM

 If SM is the ultimate theory up to GUT scale, an extremely precise finetuning is required

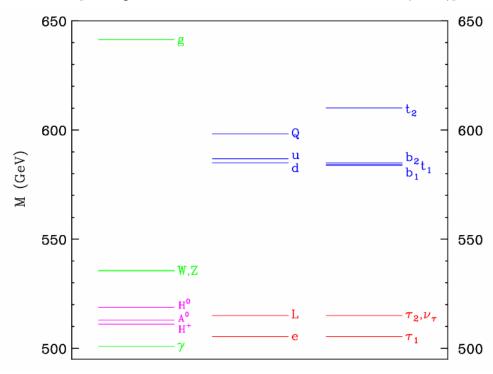
- We may conclude that SM is an effective theory, i.e. a low energy approximation of a more complete model that explains things only postulated in the SM
- Extra Dimension Models can solve the hierarchy problem
- In this case, new physics effects should appear in a scale comparable to the mass of the Higgs boson (~ 1 Tev)

Examples of Extra Dimensions Models

- ADD Model (Arkani-Hamed, Dimopoulos, and Dvali): hides the hierarchy problem by making gravity as strong as other gauge forces in (4+n)-dimensions. Only graviton can access the extra dimensions (n>1)
- RS Model (Randall and Sundrum): provides a solution for the hierarchy problem using metric of curved anti-deSitter space. Only graviton can access the extra dimension (n=1)
- Universal Extra Dimensions (Appelquist, Cheng, and Dobrescu): in this model the extra dimensions can be accessed by all SM fields (n=1,2,...). Gravity is not included in the model

Experimental Constraints on Extra Dimensions Models

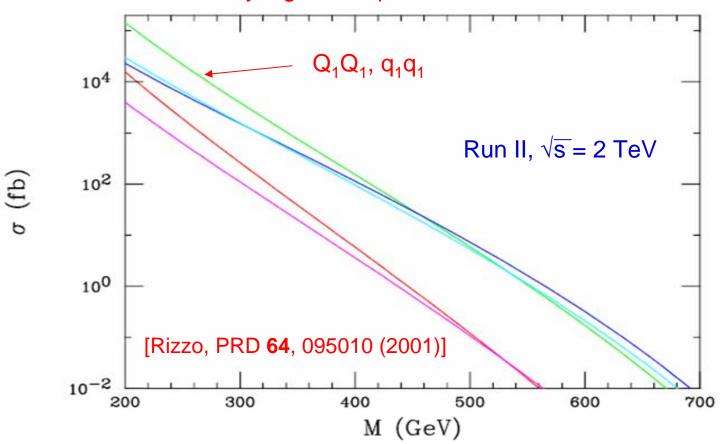
- All these models result in rich low energy phenomenology
- Constraints for the ADD Model could be obtained from Gravity experiments, Astrophysical and Cosmological data, and Collider experiments
- For RS and UED Models only Collider experiments could provide interesting limits, dominated by precision electroweak measurements at LEP


UED Models

- Many theoretical reasons for studying UEDs (electroweak symmetry breaking, proton decay, the number of generations, neutrino masses, etc.)
- All SM fields are free to propagate in EDs with the size $R_c = 1/M_c \sim 1 \text{ TeV}^{-1}$
- Instead of chiral doublets and singlets, model contains vector-like quarks and leptons
- The Gravitational force is not included
- The number of ED is not fixed
- All particles acquire Kaluza-Klein (KK) modes with masses $M_n^2 = M_0^2 + n^2/R_c^2$, n = 0, 1, 2, ...
- If KK number (n) is conserved at tree level, KK-excitations are produced in pairs, similar to SUSY particles
- Current limits dominated by precision electroweak measurements are low ($M_c = 1/R_c \sim 300 \text{ GeV}$)

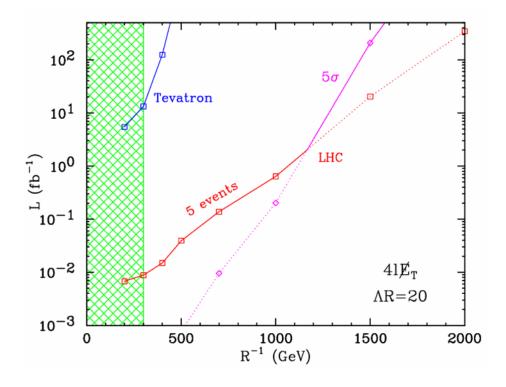
MUED Phenomenology

- Simplest scenario, all SM fields propagating in a single extra dimension
- One would expect large clusters of nearly degenerate states with mass around 1/R_C, 2/R_C,
- However, as radiative corrections tend to be large, the KK excitation mass spectrum resembles that of SUSY! (Cheng, Feng, Matchev, Schmaltz)
- The pair production of 1-level (KK) modes of quarks and leptons could be tested at Tevatron


[Cheng, Matchev, Schmaltz, PRD 66, 056006 (2002)]

 One-loop corrected mass of 1-level (kk) modes: Q, L (q, I) are SU(2) doublets (singlets) and contain both chiralities

Production Cross Section



MUED Signatures at Tevatron

- Consider Q_1Q_1 Production ($\sim \sigma^{had}/4$) $Q_1Q_1 \rightarrow W_1W_1$, W_1Z_1 , Z_1Z_1 + jets \rightarrow 2-4 leptons + ME_T
- Only the gold-plated 4-leptons + ME_T mode has been considered in the original paper
- Sensitivity in Run IIb can exceed current limits
- Much more promising channels:
 - dileptons + jets + ME_T + X
 - trileptons + jets + ME_T + X
- Detailed simulations is required
- One could use SUSY production with adjusted masses and branching fractions as a quick fix

[Cheng, Matchev, Schmaltz, PRD 66, 056006 (2002)]

Discovery reach for MUEDs

2UED Phenomenology

- The case of two ED is theoretically attractive, as it breaks down to the chiral SM and has additional nice features (proton stability, etc.)
- Level-2 (KK) Modes of the gauge bosons can be tested at Tevatron
- Considering kk-number violating interactions, a level-2 KK mode can be produced in the schannel
- These level-2 modes decay mainly into a pair of SM particles giving rise to a high transverse momentum signal

[Burdman, Dobrescu, Pontón, hep-ph/0601186]

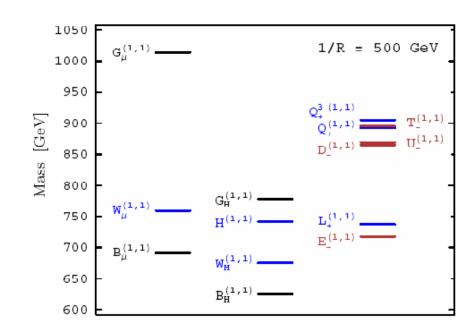


FIG. 1: Mass spectrum of the (1,1) level for 1/R = 500 GeV. Electroweak symmetry breaking effects are small, and have not been included.

Production Cross Section

[Burdman, Dobrescu, Pontón, hep-ph/0601186]

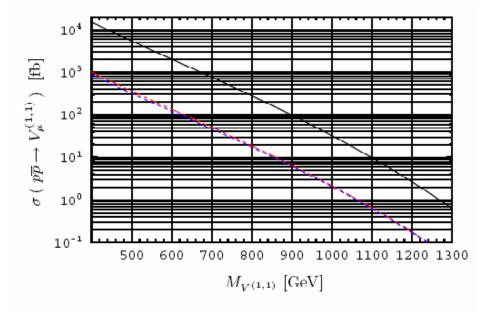


FIG. 3: Production cross sections for (1,1) vector modes in the s channel at the Tevatron, as a function of their mass. The solid line is for $G_{\mu}^{(1,1)}$, while the dashed and dotted (lowest) lines are for $W_{\mu}^{(1,1)3}$ and $B_{\mu}^{(1,1)}$, respectively (accidentally, the cross sections for these two are close to each other such that they might not be distinguishable).

2UED Signatures at Tevatron

[Burdman, Dobrescu, Pontón, hep-ph/0601186]

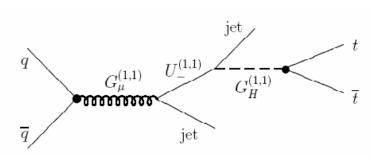


FIG. 4: Production of the vector (1,1) gluon followed by a cascade decay. The \bullet stands for a KK number-violating coupling. Other diagrams having the same topology exist: the $U_{-}^{(1,1)}$ quark KK mode may be replaced by $D_{-}^{(1,1)}$, $Q_{+}^{(1,1)}$, or the corresponding antiquarks; in addition the spinless gluon $G_{H}^{(1,1)}$ may be replaced by $B_{\mu}^{(1,1)}$ or $B_{H}^{(1,1)}$, and in the case where the quark KK mode is an SU(2)w doublet, by $W_{\mu}^{(1,1)3}$ or $W_{H}^{(1,1)3}$.

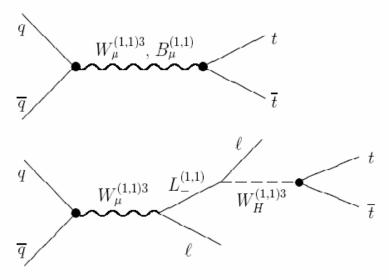


FIG. 5: Production of W_{μ}^{3} and B_{μ} (1,1) modes, followed by representative decays.

- t tbar resonances could be observed taking into account realistic t tbar pair mass resolution
- A limit on 1/R in the 320-450 GeV range may be imposed with 4 fb⁻¹

Summary

- Mininal UED Model promising channels:
 - 4-leptons + ME_T
 - dileptons + jets + ME_T + X
 - trileptons + jets + ME_T + X
 - Run II will increase the Run I limit (1/R ~ 280 GeV) and precision electroweak measurements (1/R ~ 300 GeV)
- 2 UED Model promising channels:
 - t tbar, t tbar + 2jets, t tbar + 2 leptons
 - t tbar resonances could be observed taking into account realistic t tbar pair mass resolution
 - A limit on 1/R in the 320-450 GeV range may be imposed with 4 fb⁻¹
- Discuss with Greg Landsberg in the next weeks the first steps of the UED analysis