H-matrix base on e-ID

Hyeon Jin Kim
March 31, 2006 DOSAR

OUTLINE

- Motivation
- Principle of H-matrix - Hm5e \& HM10e
- Data
- Performance of HM10e \& HM5e
$\rightarrow \chi^{2}$, e efficiency \& jet rejection
\rightarrow HM10e \& HM5e comparison
- Comparison of HM10e \& LH
- Comparison of HM10e variables reconstructed by 11.0.1 \& 11.0.41
- At UTA...
- Summary

Motivation

- Vector Boson Fusion is second dominant Higgs production
- Electron identification from H --> ZZ* --> 4e \& H --> WW* --> 2e2v \rightarrow clean signal
- D0 constructs H-Matrices in many dimensions and computes their χ^{2} for e-ID
\rightarrow has been proved a great alternate tool for electron and hadron separation
- Improve electron ID by generating a quantity utilizing H-matrix for ATLAS electron
\rightarrow identify good electron ID.
- Measure and understand Electron ID efficiencies and jet of hadron rejection

Principle of H-matrix

- H-matrix uses the correlation in transverse and longitudinal shower shape of electrons. Using these variables, a covariant matrix M is built

$$
M_{i j}=\frac{1}{N} \sum_{n=1}^{N}\left(y_{i}^{(n)}-\bar{y}_{i}\right)\left(y_{j}^{(n)}-\bar{y}_{j}\right)
$$

- $\chi_{\mathrm{m}}{ }^{2}$ for a given candidate object is defined as a measure of how much electron like the object is

$$
\begin{aligned}
& \chi_{m}{ }^{2}=\sum_{I, j=1}^{\operatorname{dim}}\left(y_{i}^{(m)}-\bar{y}_{i}\right) H_{i j}\left(y_{j}^{(m)}-\bar{y}_{j}\right) \\
& \text { where, } \mathrm{H} \equiv \mathrm{M}^{-1}
\end{aligned}
$$

HM5e \& HM10e

- η coverage is <2.47
- Crack region is not considered.
- List of HM10e \& HM5e variables

	HM5e	HM10e		HM5e	HM10e
e0/etot		\checkmark	e233/e277	\checkmark	\checkmark
e1/etot	\checkmark	\checkmark	weta1		$\sqrt{ }$
e2/etot	\checkmark	\checkmark	weta2	\checkmark	\checkmark
e3/etot	\checkmark	\checkmark	fracs1		\checkmark
e4/etot		\checkmark	isol		$\sqrt{ }$

- Built covariant matrix M.
- Parameterize eta or energy dependence of H-matrix variables or elements of matrix M.
- Using these relation, calculate elements of H-matrix and χ^{2} for each electron candidate

Data

- ZeeJimmy(mc11.004201.ZeeJimmy)
- DiJet(mc11.005802.JF17_pythia_jet_filter)

		2elevnt	dr(<0.05)	et(>20Gev)	IsEM	track
Zee	20671	16846	16834	$13154(11711)$	9077	11063
Dijet	152187	-	-	$7755(6475)$	261	3393

(); excluding bad HM10e variables.

- 100 GeV Electron
\rightarrow dc2.003061.digit.E7_eminus_e100_eta25(11.0.1)
\rightarrow mc11.004003.Electron_e100 (11.0.41)

HM10e χ^{2} for Zee and DiJet

Chin2 Histogram for el in Zee and DiJet

Dijet Zee
\qquad \longrightarrow
chi^2 Histogram for el in Zee and DiJet w/ IsEM

DOAR at UTA 03/31/2006

HM5e χ^{2} for Zee and DiJet

Chin2 Histogram for el in Zee and DiJet

DiJet \qquad Zee

HM10e e efficiency and jet rejection

	Zee	DiJet
$\mathbf{2 5}$	0.8890	0.9978
40	0.9635	0.9968
50	0.9725	0.9962

H-matrix base on e-ID

trmatch	Zee	DiJet
25	0.9008	0.9995
40	0.9716	0.9992
50	0.9788	0.9990

DOAR at UTA 03/31/2006

HM10e \& HM5e comparison

	Zee		DiJet	
w/o	0.9636	0.9635	0.9945	0.9968
trmatch	0.9488	0.9488	0.9989	0.9994
IsEM	0.9520	0.9524	0.9991	0.9991

HM10e \& LH comparison

	HM10e		LH	
trmatch	0.9556	0.9996	0.9563	0.9959
ISEM	0.9874	0.99996	0.9887	0.99994

- IsEM is not independent with track match anymore
- LH has bad value(-999.) when track requirement is not satisfied

H-matrix base on e-ID
DOAR at UTA 03/31/2006
11

Variables of HM10e(on 11.0.1 \& 11.0.41)

eta for CSC \& DC2

fre0 for CSC \& DC2

Variables of HM10e(on 11.0.1 \& 11.0.41)

weta1 for CSC \& DC2
1600 E

isol for CSC \& DC2

DOAR at UTA 03/31/2006

HM10e χ^{2} for e (100 GeV)

H-matrix base on e-IL

At UTA....

- Using CERN \& BNL ATLAS analysis servers via remote login (SSH)
\rightarrow Plan to perform this development work utilizing UTA resources
\rightarrow Reduce the time required to produce ESD and generate H -matrix
- Seeking for suitable variables of higher dimensional H-matrix that gives best discriminating power between e and hadrons
- Understanding algorithms in the each ATLAS analysis package.

SUMMARY

- H-matrix is a strong method for e-ID and jet rejection.
- HM10e \& HM5e have been tested on Zee and DiJet
- HM10e has been compared to HM5e

\rightarrow HM10e has higher jet rejection over HM5e

- HM10e efficiency is comparable to LH.
- HM10e variables reconstructed by 11.0.1 and 11.0.41 are mostly consistent with each other (except fr37, weta1, weta2, fracs1 and isol)
\rightarrow need to regenerate H-matrix on 11.0.41
To DO...
- Regenerations of HM10e and HM5e processing using by CSC, 11.0.41
- prepare to release HM10e \& HM5e

