A Search for WH/Wbb Production with 1.2 fb⁻¹ of data at the DØ Experiment

Venkat Kaushik, Jae Yu University of Texas at Arlington

Physics Motivation

• Existence of Higgs has major consequences

- \circ W and Z bosons $acquire\ mass$ in the ratio M_W/M_Z = $cos\theta_W$
- o neutral Higgs bosons H^o must exist !
- Interactions with the Higgs field can *generate* fermion masses
- SM Predicts neutral Higgs Boson which has not been verified experimentally
 - Since H^o couples strongly to W and Z the best places to search for it are at Tevatron and LHC!
 - Does *not predict* the mass of the Higgs boson
 - Does predict its couplings to other particles e.g.
 coupling to fermions gffH ~ mf
 - H°→b<u>b</u> is likely to be the decay mode for Higgs *discovery*

Higgs Search at Tevatron

Gluon fusion dominates but WH/ZH more accessible $(gg \rightarrow bb \text{ channel has huge QCD background })$

Event signature with 2 b-tagged jets, missing transverse energy and an isolated lepton (electron/muon)

W(Iv) H(bb) Results with 378 pb⁻¹

Analysis by Hyunwoo (UTA) and Lars (IN2P3) on electron and muon channels respectively

The goal is to extend the analysis to 1.2 fb^{-1} with significant improvements to b-tagging,

Identifying Physical Objects

- Isolated Electron
 - p_T > 20 GeV/c
 - |η| < 1.1
 - Fractional Energy in EM Calorimeter > 90%
 - Isolation Fraction < 0.2
 - Tight Shower shape $\circ \Rightarrow \chi^2$ of HMx(7) < 75
 - Electron Likelihood > 0.85
 - Event should have fired at least one of the single EM Triggers
 e,µ

- Neutrino (Missing E_T)
 - Require $\not{\!\! E_T}$ > 25 GeV
 - Corrected for the presence of Muons
 - Corrected for the jet energy scales
- $\circ\,$ Two Jets (Missing E_T)
 - Exactly 2 jets required
 - Reconstructed with cone algorithm

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2} = 0.5$$

- |η| < 2.5
- p_T > 20 GeV/c
- B Tagging

Analysis Approach

- Apply selection criteria to the data to select the candidate signal events. (S)
 - Split the selection into loose/tight samples based on electron quality (likelihood requirement)
- Estimate the background sources (B)
 - Physics Backgrounds (from simulated data)
 - Instrumental Background multi-jet/QCD
 - Determine the efficiency corrections to be applied to simulated data (Monte Carlo/MC) from data
 - Determine the Luminosity for MC
- Optimize selection for S/\sqrt{B}
- Estimate the Systematic Uncertainties
- To minimize Wbb contributions to a potential Higgs signal
 - Apply additional selection on bb invariant mass, using a sliding mass window for Higgs (115 145)GeV/c².
 - Hope to observe an excess of signal over estimated background!!

Dataset and Sub-skimming Status

a) Data - def:CSG_CAF_EMinclusive_p17refix - 29.53M Events $\approx 800 \ pb^{-1}$

- (SKIM_TOP_ETRACK && HAS_JCCB && EM pT > 15 && |eta| < 2.5 and emfrac > 0.9 and iso < 0.2 and chi2 > 0.0) || HAS_2ELE_5
- b) Subskims Require ≥ 1 e with Loose_trk or Tight_trk Ver.2 (emid_cuts)

c) Still to Process ~ 300 pb^{-1} of data

d) Standard Data/MC scale factors: 1D binned vs DetEta ver.2 loose_trk/ tight_trk

Summary of Event Selection

Selection	Events	Relative %	Absolute %
Proc "dq" (input)	29528499	100	100
Data Quality	27663515	82.82	82.82
Object ID = 10, 11	27614353	99.82	82.67
Calorimeter isolation ≤ 0.2	27614261	99.99	82.67
EM fraction ≥ 0.9	27593237	99.92	82.60
Electron $pT \ge 3$	27570345	99.91	82.54
Likelihood $7 \ge 0.2$	6418061	24.74	20.44
N electrons ≥ 1	6418061	24.74	20.44
Proc "selected" (input)	6418061	24.74	20.44
Likelihood $7 \ge 0.85$	3309472	12.00	9.91
N electrons ≥ 1	3309472	12.00	9.91
Proc "electronCorr" (input)	3309472	12.00	9.91
Proc "selected" (input)	3309472	12.00	9.91

Loose

Tight

Single EM-Trigger Suite

- Trigger V11(i.e., all versions before 12) are represented by EM_MX and EM_HI
- Ex_SHT20 (x=1,4) belong exclusively to V12
- Ex_SHT22 and Ex_T13SH15 (x=1,4,6) belong exclusively to V13
- Ex_SH30 (x=1,4), Ex_SHT15_TK13 (x=1,4,6), and Ex_T13L15 (x=1,4,6) are common to V12 and V13
- Ex_SHT25, Ex_ISH30, Ex_ISHT22, Ex_T15SH20, Ex_ISHT15_TK13 (x=1,3,4) are exclusive to V14
- <u>E1_SH30</u> and <u>E1_ISH30</u> are unprescaled
- · Used tag-probe method. Restricted to CC region. Determined the trigger "turn-ons"

$$y = \frac{p_2}{2} \left[1 + ERF\left(\frac{x - p_0}{p_1\sqrt{x}}\right) + ERF\left(\frac{x - p_3}{p_4\sqrt{2}}\right) \right]$$

Trigger Efficiency using $Z \rightarrow ee$ events

- Require two reconstructed em objects with
 - emfrac > 0.9
 - has_track_match(χ^2 prob > 1%)
 - $|\eta_{cal}^{det}| < 1.2$
 - is_in_fiducial
 - $-~\mathrm{HMx8} < 20$
 - isolation < 0.15
 - | typeID | = 10, 11
- 65 GeV < Z invariant mass < 110 GeV

Probe- Test if it passed all the trigger requirements

Tag - Must be matched to a single EM trigger

- 1. Plot the efficiencies as a function of pT of the electron
- 2. This method can also be used to measure electron ID efficiencies and examine differences between data & MC.

Trigger Efficiency vs. p_T

Electron ID Efficiency

- Using a similar Tag-Probe method, we can measure the electron reconstruction and identification efficiency
 - HMx(7) efficiency
 - Track Match Efficiency
 - Likelihood Efficiency

CC Eff	Loose		Tight	
	Data	мс	Data	MC
HM×	98.514 ± 0.053	99.216 ± 0.020	98.205 ± 0.059	99.237 ± 0.027
Track	89.457 ± 0.123	93.574 ± 0.057	89.384 ± 0.120	82.353 ± 0.253
Track + pT	89.280 ± 0.124	93.396 ± 0.058	89.205 ± 0.121	93.450 ± 0.058
Lhood	96.020 ± 0.083	97.603 ± 0.037	86.038 ± 0.139	91.639 ± 0.091
Total	84.620 <u>±</u> 0.158	90.615 ± 0,071	75.524 ± 0.193	74.892 ± 0.270

Track Match Efficiency vs. p_T

13

HMx Efficiency vs. p_T

Likelihood Efficiency vs. p_T

Simulated Data for various processes

Process	Release	# Events	Generator/Comment
$\gamma Z - ee$ incl	p170901	663000	CSMC Pythia gam-z(+jets) \rightarrow ee(+jets)
$\gamma Z - \tau \tau$ (incl?)	p170901	447500	CSMC Pythia gam-z→tautau m=60-130
tī-dileptons	p170901	253750	Alpgen t+t+0lp \rightarrow 2l+2nu+2b+0lp excl
tī-l+jets			
Single Top -s	p170602	146500	Comphep SingleTop S
Single Top -t	p170602	147000	Comphep SingleTop T
$W b \overline{b}$	p170602	99000	Alpgen(1.2) + Pythia-6.202(fix) W(enu)bb
Wjj	p170602	64550	Alpgen w+2j→e+met+2j
$W - \tau v$ (incl?)	p170901	977250	CSMC Pythia W→taunu
W(e)H, W($\tau \rightarrow e$)H			
$\mathrm{WZ}(\to b\bar{b})$			

Preliminary Data/MC comparisons

Action Items / Conclusions

- Estimate the QCD Background
- Apply efficiency corrections to MC
- o Determine the Jet Reconstruction Efficiency
- b Tagging using NN algorithm
- Estimate b tagging efficiency
- o Systematic Uncertainties have to be estimated
- Plan to complete most of the items above by end of June 2006.
- Current analysis can be improved in many ways
 - Extend the analysis to forward region
 - Increase b-quark jet tagging performance
 - Improve the mass resolution of reconstructed bb jets