ATRAP: Context and Status

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ R. Kalra,¹ E. Novitski,¹ D. Grzonka,² W. Oelert,¹ T. Sefzick,² M. Zielinski,² D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴ (ATRAP Collaboration) ¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany

Antihydrogen and the Antiproton Magnetic Moment

Gerald Gabrielse Spokesperson for TRAP and ATRAP at CERN Leverett Professor of Physics, Harvard University

Context

CERN Pursues Fundamental Particle Physics at Whatever Energy Scale is Interesting

A Long and Noble CERN Tradition

- 1981 traveled to Fermilab "TEV or bust"
- 1985 different response at CERN when I went there to try to get access to LEAR antiprotons for q/m measurements and cold antihydrogen

It is exciting that there is now

- a dedicated storage ring for antihydrogen experiments
- four international collaborations
- too few antiprotons for the demand

Pursuing Fundamental Particle Physics at Whatever Energy Scale is Interesting

A Long and Noble CERN Tradition

- 1986 First trapped antiprotons (TRAP)
- 1989 First electron-cooling of trapped antiprotons (TRAP)

CERN's AD, plus these cold methods \rightarrow make antihydrogen possible

Pursuing Fundamental Particle Physics at Whatever Energy Scale is Interesting

A Long and Noble CERN Tradition

1981 – traveled to Fermilab "TEV or bust"

1985 – different response at CERN when I went there to try to get access to LEAR antiprotons for q/m measurements and cold antihydrogen

	LHC:	7 TeV + 7 TeV	Ť
100 times More trapped antiprotons	AD:	5 MeV	5×10^{16}
	ELENA upgrade:	0.1 MeV	
	ATRAP:	0.3 milli-eV	

Physics With Low Energy Antiprotons

First Physics: Compare q/m for antiproton and protonto 9 parts in 10^{11} (could now be improved)

Current Physics: Compare antihydrogen and hydrogen (goal is a higher precision than q/m measur.)

Future Physics: Compare antiproton and proton magnetic moment

First Physics: Comparing Antiproton and Proton

Gabrielse, Khabbaz, Hall, Heimann, Kalinowsky, Jhe; Phys. Rev. Lett. 82, 3198 (1999).

Gabrielse

Current Physics: Antihydrogen

Quarter century

Antihydrogen ideas (1986-1988) \rightarrow realized in 2002-2010

1986 Idea: Use Cold Antiprotons to Make Cold Antihydrogen Atoms

used field ionization detection

Gabrielse

1988 Ideas: Use Nested Penning Trap and 3-Body "Recombination"

To get fast enough formation rate

3-Body "Recombination"

Used by ATRAP, ALPHA and ASACUSA

1988 Ideas: Use Nested Penning Trap and 3-Body "Recombination"

- 1996 Protons and electrons interact in a nested Penning trap (TRAP)
- 2001 Antiprotons and positrons interact in a Nested Penning Trap (TRAP)
- 2002 Demonstrate that antihydrogen is produced by this method (ATRAP and ATHENA)
- 2010 ASACUSA also uses these methods (with RFQ)
- This method produced all slow antihydrogen to date (almost)

1986 Idea: Trap Cold Antihydrogen for Accurate Spectroscopy

"For me, the most attractive way ... would be to capture the antihydrogen in a neutral particle trap ... The objective would be to then study the properties of a small number of [antihydrogen] atoms confined in the neutral trap for a long time."

Gerald Gabrielse, 1986 Erice Lecture (shortly after first pbar trapping) In **Fundamental Symmetries**, (P.Bloch, P. Paulopoulos, and R. Klapisch, Eds.) p. 59, Plenum, New York (1987).

Proof-of-principle demo (< 1 trapped atom per trial) – ALPHA, 2011

Need many more atoms

ATRAP PRL 2008

First Antihydrogen Production within a Penning-Ioffe Trap

G. Gabrielse,^{1, *} P. Larochelle,¹ D. Le Sage,¹ B. Levitt,¹ W.S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ J. Wrubel,¹ A. Speck,² M.C. George,^{3, 4} D. Grzonka,³ W. Oelert,³ T. Sefzick,³ Z. Zhang,³ A. Carew,⁴ D. Comeau,⁴ E.A. Hessels,⁴ C.H. Storry,⁴ M. Weel,⁴ and J. Walz⁵ (ATRAP Collaboration)

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 ²Rowland Inst. at Harvard, Harvard University, Cambridge, MA 02142 ³IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ⁴York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada ⁵Institut fur Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

No trapped antihydrogen detected

Detection limit: < 20 atoms trapped per trial **ATRAP** – produced and observed antihydrogen atoms in the fields of a Ioffe trap (PRL 2008)

Limit: less than **20 atoms** were being trapped per trial

ALPHA – did similar production the following year

Nature's Gift – trapping happens despite deexcitation through chaotic orbital motions

Chaotic Orbits \rightarrow **States that can be trapped**

ATRAP – observed the first production of antihydrogen atoms within in the fields of a Ioffe trap (PRL 2008)

Set limit: less than **20 atoms** were being trapped per trial

ALPHA – did similar production the following year

For the next step two different approaches ATRAP ALPHA Make more cold atoms Detect fewer atoms (0.1 per trial in 2010)

Gabrielse

Colder Electrodes: $4.2 \text{ K} \rightarrow 1.2 \text{ K}$

10 Million Cold Pbar/Trial at ATRAP

 $\begin{array}{ll} 0.4 \text{ million} \rightarrow & 10 \text{ million} \\ (5.4 \text{ Tesla}) & (1 \text{ Tesla}) \end{array}$

Typical experiment trial uses a few million antiprotons
→ Need ELENA to get 10 million in a reasonable time
→ Need ELENA so that we can use more than 6 hours/day

ATRAP → More Antiprotons, Much Colder

- Lowered electrode temperature to 1.2 K
- Started measuring antiproton temperatures
- Developed new pbar cooling methods

First antiprotons cold enough to centrifugally separate from the electrons that cool them

Phys. Rev. Lett. 105, 213002 (2010).

Two new cooling methods for antiprotons

- -- embedded electron cooling (almost no electrons)
- -- adiabatic cooling Phys. Rev. Lett. **106**, 073002 (2011).

\rightarrow 3 million antiprotons at 3.5 K

antiprotons

15

25

x10

0

20

ATRAP **Centrifugal Separation of Antiprotons and Electrons**

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ J. Wrubel,^{1,†} R. Kalra,¹ E. Novitski,¹ D. Grzonka,² W. Oelert,² T. Sefzick,³ M. Zielinski,² J. S. Borbely,³ D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ J. Walz,⁴ and A. Speck⁵

- Important for arranging efficient overlap of antiprotons and a positron plasma
- Important for understanding the heating of antiprotons when electrons are ejected

1 million antiprotons, 100 million electrons

ATRAP

Adiabatic Cooling of Antiprotons

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ R. Kalra,¹ E. Novitski,¹ D. Grzonka,² W. Oelert,¹ T. Sefzick,² M. Zielinski,² D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴

(ATRAP Collaboration)

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany (Received 1 December 2010; published 15 February 2011)

Embedded electron cooling (to 31 K or 17 K)

Followed by adiabatic cooling (to 3.5 K or below)

Compare Adiabatic and Evaporative Cooling

Compare to evaporative cooling – ALPHA (PRL 2010) starting 100 K

- \rightarrow 1000 times more antiprotons per trial
- \rightarrow 3 times lower temperature

(Need to show that these give better antihydrogen production)

Even Lower Temperatures Should be Possible

Embedded electron cooling

- \rightarrow Adiabatic cooling
 - \rightarrow Evaporative cooling (if large particle loss is ok)

There is a Second Method to Produce Slow Antihydrogen

- 1. In a nested Penning trap, during positron cooling of antiprotons ATRAP, ALPHA, ASACUSA
- 2. Laser-controlled resonant charge exchange ATRAP
 - Proof-of-principle demo (2004)
 - 200 times more atoms produced (2010-2011)

Method II: Antihydrogen Via Laser-Controlled Resonant Charge Exchange

ATRAP, Phys. Rev. Lett. 93, 263401 (2004) -- demo with a few atoms

Gabrielse

Make Big Cs Atoms

We Returned to this Method in 2010

- greatly increased number of positrons and antiprotons
- better control of the positron and antiproton plasmas
- better laser systems
- Cs source lasted the whole beam run
- greatly reduced antiproton losses
- \rightarrow 500 times more positronium than in 2004 demo
- \rightarrow Looks like much more antihydrogen (not yet published)
- ??? Detection well seems to spill the ionized antiprotons before we can count them (due to hot electrons from positronium)
 - \rightarrow do not yet understand
 - \rightarrow must detect without using detection well so far

200 Times More Antihydrogen Made Per Trial

(compared to proof-of-principle demonstration)

Antiprotons: 5 million Positrons: 300 million

Gabrielse

Remains to be done in a Ioffe field

During 2011

Use much larger and much colder antiprotons for hbar production

Looking for trapped antihydrogen from laser-controlled charge exchange

Second generation Ioffe trap (with laser access)

- Built
- Not yet fully tested

Improving Lyman alpha laser for laser cooling antihydrogen

Comparing the antiproton and proton magnetic moments

- Demonstrated parts in 10¹⁰ cyclotron frequency measurements long ago
- Should be able to improve pbar/p comparison by $>10^{6}$
- Using a single trapped proton to develop spin flip methods