

Vacuum Surfaces.. Coatings

Manpower and Financial Structure of ELENA Construction and AD Consolidation

Vacuum System

P. Chiggiato TE-VSC

Main topics

- ELENA vacuum system feasibility
- Proposed technical solution
- Costs
- Manpower needs
- AD consolidation
- Costs and manpower

ELENA Vacuum System feasibility

The vacuum chamber diameter will be 70mm.

Pressure requirement	10 ⁻¹² Torr	
Total surface area of the ring	About 10 m ²	
Gas load after bakeout non-fired st. Steel (H ₂)	2x10 ⁻⁷ Torr l s ⁻¹	Required S for (H_2): 2x10 ⁵ l s ⁻¹ -> unfeasible
Gas load after bakeout fired stainless steel (H ₂)	2x10 ⁻⁸ Torr l s ⁻¹	Required S for (H_2): 2x10 ⁴ l s ⁻¹ -> feasible
Conductance of a ID 70 beam pipe aperture (H_2)	1693 l s ⁻¹	
Maximum applicable effective S (H_2) in the beampipe (lump pump)	about 800 l s-1	
Minimum number of pumps needed	25	4 to 5 per straight section

acuum

$$\begin{split} P_{o} &= Q/S = 5.7 \times 10^{-10} / 800 = 7.1 \times 10^{-13} \text{ Torr} \\ \Delta P &= Q/8C = 7.5 \times 10^{-10} / (8 \times 118) = 6.0 \times 10^{-13} \text{ Torr} \\ P_{max} &\approx 1.3 \times 10^{-12} \text{ Torr} \end{split}$$

Effective pumping speed at the pressure maximum: $1/S_{eff}=1/S + 1/C_{(half pipe)} = 1/800 + 1/236$ $S_{eff} = 182 l/s$

Maximum gas load of installed monitors and devices: Q_{max} = 1.10⁻¹² x 182 x 2 = **3.6 x 10⁻¹⁰ Torr l/s**

September 28, 2011

NEG coating solution

Ti-Zr-V thin film coating onto all inner walls of the vacuum chambers. Total pumping speed for H2: S=A $C_{H2} \alpha_{H2}=10^5 \times 44 \times 8 \ 10^{-3}=35200 \ l \ s^{-1}$ P=Q/S=2 $10^{-8}/3.5 \ 10^4=6\times 10^{-13}$ Torr

(this is an upper limit because the outgassing rate of a NEG coated surface is much lower than that of a bare surface).

Maximum pumping speed of the beampipe aperture:

 $S_{H_2} = \sigma(\alpha) \times 1693 = 0.17 \times 1693 = 288 l s^{-1}$

Maximum allowed outgassing rate of any device installed in the beampipe: Q_{MAX} = 10⁻¹² x 288 x 2 = 6 x 10⁻¹⁰ Torr l s⁻¹

For $3 \ge 10^{-12}$ Torr ->Q_{MAX}= 1.8 $\ge 10^{-9}$ Torr l s⁻¹

a. vacuum fired beampipes pumped by NEG lump pumps, or

b. NEG coated vacuum chambers.A safety margin can be obtain by combining the two solutions.

2. A severe limitation must be imposed to the outgassing rate of any device installed in the vacuum system (Q<1x10⁻⁹ Torr l s⁻¹) including kickers and beam position monitors.

Ion pumps

Rough estimation of the CH₄ gas load:

 $Q_{CH_4} \approx 5 \times 10^{-16} \text{ Torr } l \text{ s}^{-1} \text{ cm}^{-2} \times 10^5 \text{ cm}^2 = 5 \times 10^{-11} \text{ Torr } l/s$

Estinated pumping speed for CH₄ : S_{min} = Q_{CH4} /1x10⁻¹² = 50 l/s \approx 3 'VACION-PLUS 40 starcell' installed in the ring.

Costs of ELENA's Ring

TE-VSC

Manpower for ELENA's Ring

Manpower FSU [KCHF]	TE-VSC FTE [MY]	Needed manpower contribution FTE [MY]
100	3	2

TE-VSC APT line

	20	12	20	13	2014		
	Cat2	Cat3	Cat2	Cat3	Cat2	Cat3	
ELENA Project			1	1	1	2	

Beam lines to transport the 100-keV antiprotons to the experimental areas

Total length of **63 m**:

- 15 m common ejection line from ELENA to the beam switchyard
- 15 m ASACUSA line to entrance of the present RFQD
- 20 m ALPHA line
- two 3-m long beam-lines for the two ATRAP zones
- 8 m AEGIS line

Effective beam aperture: 60 mm (70 mm on both sides used for in-vacuum electrodes and insulation).

Beam pipe diameter: 200 mm (CF250).

Vacuum: 10⁻⁹ – 10⁻¹² Torr depending on the position.

Experimental Lines (Vacuum) Cost an Manpower Estimation

The estimation was done by Masaki Hori.

The vacuum layout should by reviewed by TE-VSC in the next months.

Cost estimation (Vacuum system only)*	TE-VSC FTE [MY]*	Needed manpower contribution FTE [MY]*
1557 KCHF (not in TE-VSC APT)	0	3

* Excluded from Masaki Hori's estimation: electrostatic steering system, beam profile monitors and magnetic shielding.

We need expertise and manpower for the new experimental lines

TE

AD consolidation

TE-VSC APT line

	20	11	2012		2013		2014		2015		2016		2017		2018		2011-2015		
	Cat2	Cat3	Cat2	Cat3	Total														
AD consolidation					0.2	0.2	0.1	0.3	0.1	0.2							0.4	0.7	1.1
	1																		
	20	11	2012		2013		2014		2015		2016		2017		2018		2011-2015		.5
	Mat	IS	Mat	IS	Total														
AD consolidation					130	100	100	100	100	105							330	305	635

The TE-VSC group activity for AD consolidation is mostly focused on the **replacement of power supplies of ion pumps and instrumentation**.

The final aim is the full integration of AD in the PVSS system.

The estimated cost is 635 KCHF (Material: 330, FSU: 305)

The consolidation will be undertaken entirely in the TE-VSC group.

A machine shut-down longer than 5 months is needed.

Conclusions

To tackle the ELENA project we need help from the collaborations, in particular for the experimental lines, in the period 2012-2014:

Beam line	Needed FTE [MY]
ELENA ring	2
Experimental lines	3