Applied (High Temperature) Superconductivity

Academic Training Lecture 1

Justin Schwartz
Department of Materials Science and Engineering
North Carolina State University

CERN/Geneva June 25-29, 2012

Outline for the week of training

- Lectures 1& 2: Introduction & "Just enough" physics
 - Brief introduction ... what is superconductivity and why is it useful?
 - Basic physics of superconductivity and the superconducting state
 - Applications-relevant physics of superconductivity & superconducting state
- Lecture 3: Technical superconductors
 - A brief summary of NbTi and Nb₃Sn
 - HTS conductor options: Bi2212 & YBCO
- Lecture 4: Electromechanical behavior
 - A brief summary of NbTi and Nb₃Sn
 - HTS conductor options: Bi2212 & YBCO
- Lecture 5: Quench behavior and high field magnets
 - What is quench protection?
 - Quench protection in HTS magnets

What is superconductivity?

- Let's start with basic, relatively well-known behaviors
- Most of you likely know:
 - Zero resistivity (usually)
 - Persistent magnets are common in MRI/NMR
 - Requires proper electromagnetic conditions
 - Only during DC operation; AC (or any transient) is intrinsically lossy
 - Power systems are mostly AC
 - Perfect diamagnetism (sometimes but not functionally)
 - Makes great demonstrations
 - Perfect diamagnetism not desirable for applications
 - Magnetic behavior very complex and can dominate electrical performance

Who is interested in superconductivity?

- Science: high energy physics and nuclear magnetic resonance
- Medicine: magnetic resonance imaging becoming functionalized to individual body parts
- Energy: we have a 21st Century economy, with 21st Century electrical demands driven by 21st Century loads and 21st Century applications, all supported by a post-WWII power grid with energy still primarily generated by fossil fuel and nuclear power

Superconductivity – an introduction

- Discovery of Superconductivity- 1911 H. Kamerlingh Onnes
- Preceeded by liquefaction of Helium- 1908
- Study of the low temperature resistivity of metals- no

theory

• Predictions on resistivity

Lecture 1

Resistivity of Metals at Low Temperature

Resistance

Temperature

Theory of Metallic Resistivity

T=0, coherent, no electron-ion scattering
T > 0, scattering, non-periodic lattice due to lattice vibrations
(quantum = phonon)

7

Resistivity of Metals – For example, Cu

Resistivity increases with impurities

Discovery of Superconductivity - 1911

by K. Onnes in pure Hg

Superconductors

- Many materials (metals, alloys, oxides, polymers)
- Resistive transition (how measured originally)
- Persistent current method

Superconductor Critical Surface

 Superconductivity occurs within a "critical surface" in T_c, B_c & J_c space

Note the tradeoff between critical properties

Critical parameters depend on several factors

- Elements

Crystal structure

Microstructure (mostly affects J_c)

 $J_c(A/mm^2)$

Critical Temperature (T_c)

- Property that wins Nobel prizes
- Values
 - Lowest Rh $(T_c = 325 \text{ mK})$
 - Highest element Nb ($T_c = 9.2 \text{ K}$)
 - Highest metallic alloys Nb_3Ge ($T_c = 23$ K); MgB_2 ($T_c = 39$ K)
 - Highest oxide $HgBa_2Ca_2Cu_3O_{10}$ ($T_c = 135 \text{ K}$)
 - Under pressure ... 160 K
- The search continues!

Critical temperatures and magnetic fields of "Type I" superconductors: all values are very low!

Material	$T_{c}\left(\mathbf{K}\right)$	$\mu_0 H_0 (\mathrm{mT})$
Aluminum	1.2	9.9
Cadmium	0.52	3.0
Gallium	1.1	5.1
Indium	3.4	27.6
Iridium	0.11	1.6
Lanthanum α	4.8	
$oldsymbol{eta}$	4.9	
Lead	7.2	80.3
Lutecium	0.1	35.0
Mercury α	4.2	41.3
β	4.0	34.0
Molybdenum	0.9	,
Osmium	0.7	~ 6.3
Rhenium	1.7	20.1
Rhodium	0.0003	4.9
Ruthenium	0.5	6.6
Tantalum	4.5	83.0
Thalium	2.4	17.1
Thorium	1.4	16.2
Tin	3.7	30.6
Titanium	0.4	
Tungsten	0.016	0.12
Uranium α	0.6	
β	1.8	
Zinc	0.9	5.3
Zirconium	0.8	4.7

Trends in Critical Temperature

- T_c increases w/ # of constituents
 - $T_c(Nb) < T_c(Nb_3Sn) < T_c(YBa_2Cu_3O_y) < T_c(HgBa_2Ca_2Cu_3O_y)$
- T_c is maximum with odd Z compounds
 - (Mattias' Rule)
- T_c function of crystal structure
 - $-\alpha$ U: T_c = 0.68 K; β U: T_c = 1.8 K
 - A-15 compounds, HTS
 - structural anisotropy seems to result in higher T_c
- for a given stoichiometry, T_c depends on isotopic mass

Record T_c versus time

Number of Superconductors vs T_c

About ½ of all elements and 100s of alloys are superconductors

Critical Field (H_c) or Flux Density (B_c)

- As important as T_c for applications
- Two classes: Type I and Type II
- Values at T=0 K
 - $W, B_c = 0.12 \text{ mT}$
 - Pb, B_c = 80.3 mT (highest Type I
 - Nb₃Sn, B_{c2} \sim 25 T (Type II)
 - $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$, $B_{c2} \sim 100 \text{ T}$

Perfect diamagnetism (Type I)

Type I Superconductors H_c(T)

Type II Superconductors

- First discovered in 1960s
 - PbBi alloy not a perfect diamagnet above H_{c1}
- $H_{c2} > H > H_{c1} \rightarrow$ "mixed state"
 - Magnetic flux within superconductor: |M| < |H|
- New class of superconductors for applications

Type I versus Type II

Type II Superconductors H_c vs T

Type I: Critical Current I_c(B, T)

- Determined by B_c at the surface of the wire
- $B_c = \mu_o I_c / 2\pi r$
- Limits (eliminates) applications

Type II: Critical Current I_c(B, T)

- Depends on microstructure and thus is strongly influenced by processing
- Pinning of flux lines and connectivity between grains
- Main focus of much on-going research

We'll come back to this later

Review of Basic Electromagnetism Maxwell's Equations

- Differential Form
- Integral Form

$$\vec{\nabla} \cdot \vec{D} = \rho$$

$$\int \vec{D} \cdot d\vec{s} = Q$$

No Magnetic Monopoles

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\int \vec{B} \cdot d\vec{s} = 0$$

Review of Basic Electromagnetism Maxwell's Equations

Differential Form

Integral Form

• Ampere's Law:
$$\vec{\nabla} x \vec{H} = \vec{j} + \frac{\partial D}{\partial t}$$

$$\oint \vec{H} \cdot d\vec{l} = I$$

• Faraday's Law:

$$\mathbf{r} \mathbf{r} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\oint E \cdot dl = -\frac{\partial \phi}{\partial t}$$

Perfect Conductivity Model

- Early (<1930) model for the superconducting state
 - Obeys Maxwell's Equations
 - Ohm's Law (E = ρ J, ρ = 0)
 - PC requires E = 0, but J > 0
- Application of Faraday's Law for E = 0

$$\vec{\nabla} x \vec{E} = 0 = -\frac{\partial \vec{B}}{\partial t}$$

Lecture 1

27

What a "perfect conductor" would do

What a superconductor actually does

Meissner Effect

(Meissner & Oshenfield, 1933)

Path-independent

Two-Fluid Model

- Consider a Two-Fluid Model for superconducting electrons
 - n = total number of electrons/volume
 - $n_s = number of superconducting electrons/volume$
 - $n_n = number of normal electrons/volume$
 - $n = n_s + n_n$
 - $n_s \sim (1-(T/T_c)^4) \rightarrow \text{so at } T_c, n_s \rightarrow 0$
- Then the current density of the superconducting electrons is $J_{S} = n_{S} e v_{S}$

Supercurrent density

Start with: $J_S = n_S e v_S$ take d/dt $\rightarrow \dot{J}_S = n_S e \dot{v}_S$

Use $\mathbf{F} = \mathbf{e}\mathbf{E} = \mathrm{md}\mathbf{v}_{\mathbf{s}}/\mathrm{dt}$, take $\nabla_{\mathcal{X}}$ of both sides and use Faraday's Law $(\nabla_{x}\vec{E} = -\vec{B})$ to get

$$\vec{\nabla} x \vec{J}_s = -\frac{n_s e^2}{m_e} \vec{B}$$
 First Perfect Conductor Eq.

• Screening current will result from dB/dt ρ = 0, so screening current will not decay

Flux Density within Superconductor

- Ampere's Law: $\nabla x \vec{B} = \mu_0 \vec{J}_s$
- Take ∇x and d/dt of both sides and substitute using the 1st P.C. equation,

$$\nabla x \nabla x \vec{B} = -\frac{\mu_0 n_s e^2}{m_e} \vec{B}$$

• Calculus identity, $\nabla x \nabla x B = \nabla (\nabla \cdot B) - \nabla^2 B = -\nabla^2 B$

Since
$$\nabla \cdot B = 0$$

• 2nd P.C Eq:

$$\nabla^2 \vec{B} = \frac{\mu_0 n_s e^2}{m} \vec{B} = \frac{1}{\lambda_L^2} \vec{B}$$

Semi-infinite Perfect Conductor Solution

One-dimensional solution to the 2nd PC equation

Current and magnetic field are in a surface layer of characteristic length scale called the PENETRATION DEPTH $\lambda_{\scriptscriptstyle L}$

Thin, but non-zero, why?? → if zero, J must be infinite

On the order of 10-100 nm for pure metals

6/25/12

CDOUB

COURSE

Lecture 1

Temperature Dependence of λ

 λ is characteristic of the superconducting state \propto to $1/n_s^{1/2}$

Surface Current Density

Current flows on surface

1-D Maxwell's Equation

$$\nabla x H = \frac{\partial H}{\partial x} \hat{z} = J_{S} \hat{z}$$

$$\frac{\partial H}{\partial x} = \frac{1}{\mu_o} \frac{\partial B}{\partial x} = -\frac{B_a}{\mu_0 \lambda_L} e^{-x/\lambda_L} \hat{z}$$

At surface, $J_s = H_a/\lambda_L$, which is max when $H_a = H_c$ Note that J_s is constant

Thermodynamics of Type I S/C

- Superconducting transition is reversible (thermodynamic system)
- Gorter (1933) predicted the Meissner Effect by showing the S/C transition is reversible
- Thermodynamics describes the transition and the state properties.
- No assumptions about "superconducting state"
- No contribution to understanding the transport properties

Lecture 2 36

Thermodynamics of Magnetic Systems

• Cylinder in parallel magnetic field (M > 0)

 Gibbs Free Energy (with magnetic term) for system with external variables mostly constant

$$G = U - TS + pV - \mu_0 MH$$

• Differentiating with T at fixed p, H:

$$dG = dU - TdS - SdT + pdV - \mu_0 HdM$$

and applying the First Law of Thermodynamics:

$$dU = TdS - pdV + \mu_0 HdM$$

one finds:

$$dG = -SdT$$

Differential form of Gibbs Energy

 If instead one assumes constant T & p but not constant H,

$$dG = -SdT + Vdp - \mu_0 MdH = - \mu_0 MdH$$

 Now consider a Type I superconductor: perfect diamagnetism M = -H

$$dG_s = \mu_0 H dH$$

• For a finite change in applied field (0 \rightarrow H_a) at constant T and p, integrate

$$G_s(H_a,T)$$
 - $G_s(0,T)$ = 1/2 $\mu_0 H_a^2$ for $H_a < H_c$ (magnetic energy density)

Lecture 2 38

Free Energy of Sphere in External Field

- Increase in energy associated with field needed to oppose applied field and preserve diamagnetic state
- Superconducting transition is reversible Gibbs free energy must be continuous across the transition
- At constant T, $H_a \approx H_c$
- $G_s(H_c, T) = G_n(H_c, T)$

